第六章 定积分的应用(三峡大学高等数学教案)[范文模版]

时间:2019-05-12 19:04:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第六章 定积分的应用(三峡大学高等数学教案)[范文模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第六章 定积分的应用(三峡大学高等数学教案)[范文模版]》。

第一篇:第六章 定积分的应用(三峡大学高等数学教案)[范文模版]

高等数学教案

定积分的应用

教学目的 第六章

定积分的应用

1、理解元素法的基本思想;

2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:

1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:

1、截面面积为已知的立体体积。

2、引力。

§6 1 定积分的元素法

回忆曲边梯形的面积

设yf(x)0(x[a b]) 如果说积分

Aaf(x)dx

b是以[a b]为底的曲边梯形的面积 则积分上限函数

A(x)af(t)dt

x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素

以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分

Aaf(x)dx 

b

一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得

Uaf(x)dx

b

用这一方法求一量的值的方法称为微元法(或元素法)

三峡大学高等数学课程建设组

高等数学教案

定积分的应用

§6 2 定积分在几何上的应用

一、平面图形的面积

1.直角坐标情形

设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为

Sa[f上(x)f下(x)]dx 

类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为

Sc[右(y)左(y)]dy

例1 计算抛物线y2x、yx2所围成的图形的面积

解(1)画图

(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2

(4)计算积分 db1

S(xx)dx[2x21x3]10033321

3例2 计算抛物线y22x与直线yx4所围成的图形的面积

解(1)画图

(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4

2(4)计算积分418

S2(y41y2)dy[1y24y1y3]426222y 例3 求椭圆x221所围成的图形的面积

ab 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx

所以 2S40ydx a椭圆的参数方程为: xa cos t  yb sin t 

于是

S40ydx4bsintd(acost)

2a0三峡大学高等数学课程建设组

高等数学教案

定积分的应用

4absintdt2ab02(1cos2t)dt2abab

2202

2.极坐标情形

曲边扇形及曲边扇形的面积元素

由曲线()及射线   围成的图形称为曲边扇形 曲边扇形的面积元素为 dS1[()]2d 2曲边扇形的面积为

S1[()]2d 2

例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积

224a23

解: S01(a)2d1a2[13]02332

例5.计算心形线a(1cos)(a>0)所围成的图形的面积

 解: S201[a(1cos]2da20(12cos1cos2)d

22232

a2[32sin1sin2]0a

242

二、体 积

1.旋转体的体积

旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴

常见的旋转体 圆柱、圆锥、圆台、球体

旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体

设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx 

于是体积元素为

dV  [f(x)]2dx 

旋转体的体积为

Va[f(x)]2dx

1连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积

解: 直角三角形斜边的直线方程为yrx

h

所求圆锥体的体积为

三峡大学高等数学课程建设组

b高等数学教案

定积分的应用

22hrr1hr2

V0(x)dx2[1x3]0h3h32y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积

ab

解: 这个旋转椭球体也可以看作是由半个椭圆 h

yba2x2

a及x轴围成的图形绕x轴旋转而成的立体 体积元素为dV  y 2dx 

于是所求旋转椭球体的体积为

22a2 Vb2(a2x2)dxb2[a2x1x3]aaab

a33aa

例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积

所给图形绕x轴旋转而成的旋转体的体积为

Vx0y2dx0a2(1cost)2a(1cost)dt

a30(13cost3cos2tcos3t)dt

5 2a 3

所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则

22(y)dy0x1(y)dy

Vy0x22a2a22a2

2a2(tsint)2asintdt0a2(tsint)2asintdt

a30(tsint)2sintdt6 3a 3 

2.平行截面面积为已知的立体的体积

设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx  立体的体积为

VaA(x)dx

例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积

解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为

三峡大学高等数学课程建设组

b2高等数学教案

定积分的应用

A(x)1(R2x2)tan 于是所求的立体体积为

2RR2R3tan

VR1(R2x2)tandx1tan[R2x1x3]R223

3例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积

解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(R

A(x)hyhR2x2

于是所求正劈锥体的体积为

VRhR2x2dx2R2h2co2sd1R2h

02R

三、平面曲线的弧长

设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2     Mi1 Mi    Mn1 MnB  并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为曲线弧AB的弧长 并称此曲线i1n弧AB是可求长的

定理

光滑曲线弧是可求长的

1.直角坐标情形

设曲线弧由直角坐标方程

yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度

取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为

(dx)2(dy)21y2dx

从而得弧长元素(即弧微分)

ds1y2dx

以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为

sa1y2dx

三峡大学高等数学课程建设组

b高等数学教案

定积分的应用

在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此

例1 计算曲线y2x2上相应于x从a到b的一段弧的长度

3解 yx2 从而弧长元素 13ds1y2dx1xdx

因此 所求弧长为

sab2221xdx[2(1x)2]ba[(1b)(1a)]

3333

3例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度

c

解 yshx 从而弧长元素为

cds1sh2xdxchxdx

cc因此 所求弧长为

bbb

sbchxdx20chxdx2c[shxdx]b02cshcccc

2.参数方程情形

设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数

dy(t)因为 dx(t)d t  所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt

(t)所求弧长为

s2(t)2(t)dt

例3 计算摆线xa(sin) ya(1cos)的一拱(0  2)的长度

解 弧长元素为

dsa2(1cos)2a2sin2da2(1cos)d2asind

2所求弧长为

2s02asind2a[2cos]08a

222三峡大学高等数学课程建设组

高等数学教案

定积分的应用

3.极坐标情形

设曲线弧由极坐标方程

()(    )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得

x()cos

y()sin(   ) 于是得弧长元素为

dsx2()y2()d2()2()d

从而所求弧长为

s2()2()d

例4

求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长

解

弧长元素为

dsa22a2da12d

于是所求弧长为

2s0a12da[2142ln(2142)]

作业:P284:2(2)(4),3,4,5(1),10,12,15(2),18,22,23,29,30

三峡大学高等数学课程建设组

高等数学教案

定积分的应用

§6 3 功

水压力和引力

一、变力沿直线所作的功

1把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为

Fkq(k是常数)

r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a

解: 在r轴上 当单位正电荷从r移动到r+dr时

电场力对它所作的功近似为k即功元素为dWk于是所求的功为 qdr

r2qdr

r2bkq2Wa11drkq[1]bakq()

rabr

例2

在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀

把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功

解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k  即

pVk 或pk

V

在点x处 因为VxS 所以作在活塞上的力为

FpSkSk

xSx当活塞从x移动到xdx时 变力所作的功近似为kdx x即功元素为dWkdx

x于是所求的功为

bbWakdxk[lnx]bakln

xa

例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功?

解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为

三峡大学高等数学课程建设组

高等数学教案

定积分的应用

dW882xdx

此即功元素 于是所求的功为

225(kj)

xW088.2xdx88.2[]5088.222

5二、水压力

从物理学知道 在水深为h处的压强为ph  这里  是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为

PpA

如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算

例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为  

计算桶的一个端面上所受的压力

解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图

在水深x处于圆片上取一窄条 其宽为dx  得压力元素为

dP2xR2x2dx

所求压力为

P02  xRxdx(R03R2rR3

[2(R2x2)2]033R22R2122x)d(R2x2)

三、引力

从物理学知道 质量分别为m

1、m 2 相距为r的两质点间的引力的大小为

FGm1m2

r2其中G为引力系数 引力的方向沿着两质点连线方向

如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算

例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力

解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量为dy 与M相距ra2y2 于2222是在水平方向上 引力元素为

dFxGmdyamdya

Ga2y2a2y2(a2y2)3/2三峡大学高等数学课程建设组

高等数学教案

定积分的应用

引力在水平方向的分量为

Fx2lG2l2Gmlamdy1

223/222a(ay)4al

作业:P292:3(2),6

三峡大学高等数学课程建设组

第二篇:同济版高等数学教案第五章 定积分

高等数学教案

第五章 定积分

第五章

定积分

教学目的:

1、理解定积分的概念。

2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。

3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。

4、了解广义积分的概念并会计算广义积分。

教学重点:

1、定积分的性质及定积分中值定理

2、定积分的换元积分法与分部积分法。

3、牛顿—莱布尼茨公式。

教学难点:

1、定积分的概念

2、积分中值定理

3、定积分的换元积分法分部积分法。

4、变上限函数的导数。§5 1 定积分概念与性质

一、定积分问题举例

1 曲边梯形的面积

曲边梯形 设函数yf(x)在区间[a b]上非负、连续 由直线xa、xb、y0及曲线yf(x)所围成的图形称为曲边梯形 其中曲线弧称为曲边

求曲边梯形的面积的近似值

将曲边梯形分割成一些小的曲边梯形 每个小曲边梯形都用一个等宽的小矩形代替 每个小曲边梯形的面积都近似地等于小矩形的面积 则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是 在区间[a b]中任意插入若干个分点

ax0 x1 x2    xn1 xn b

把[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ]

它们的长度依次为x1 x1x0  x2 x2x1      xn  xn xn1 

经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n个窄曲边梯形 在每个小区间 [xi1 xi ]上任取一点i  以[xi1 xi ]为底、f(i)为高的窄矩形近似替代第i个窄曲边梯形(i1 2     n) 把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值 即

Af(1)x1 f(2)x2   f(n)xnf(i)xi

i1n

求曲边梯形的面积的精确值

显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积A的近似值就越接近曲边梯天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

形面积A的精确值 因此 要求曲边梯形面积A的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记

max{x1 x2   xn } 于是 上述增加分点 使每个小曲边梯形的宽度趋于零 相当于令0 所以曲边梯形的面积为

Alimf(i)xi

0i1n

2 变速直线运动的路程

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数 且v(t)0 计算在这段时间内物体所经过的路程S 

求近似路程

我们把时间间隔[T 1 T 2]分成n 个小的时间间隔ti  在每个小的时间间隔ti内 物体运动看成是均速的 其速度近似为物体在时间间隔ti内某点i的速度v(i) 物体在时间间隔ti内 运动的距离近似为Si v(i)ti  把物体在每一小的时间间隔ti内 运动的距离加起来作为物体在时间间隔[T 1  T 2]内所经过的路程S 的近似值 具体做法是

在时间间隔[T 1  T 2]内任意插入若干个分点

T 1t 0 t 1 t 2   t n1 t nT 2

把[T 1  T 2]分成n个小段

[t 0 t 1] [t 1 t 2]    [t n1 t n] 

各小段时间的长依次为

t 1t 1t 0 t 2t 2t 1   t n t n t n1

相应地 在各段时间内物体经过的路程依次为

S 1 S 2    S n

在时间间隔[t i1 t i]上任取一个时刻 i(t i1 i t i) 以 i时刻的速度v( i)来代替[t i1 t i]上各个时刻的速度 得到部分路程S i的近似值 即

S i v( i)t i

(i1 2     n)

于是这n段部分路程的近似值之和就是所求变速直线运动路程S 的近似值 即

Sv(i)ti

i1n

求精确值

记  max{t 1 t 2   t n} 当0时 取上述和式的极限 即得变速直线运动的路程

Slimv(i)ti

0i1n

设函数yf(x)在区间[a b]上非负、连续 求直线xa、xb、y0 及曲线yf(x)所围成的曲边梯形的面积

(1)用分点ax0x1x2   xn1xn b把区间[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ] 记xixixi1(i1 2     n)

(2)任取i[xi1 xi] 以[xi1 xi]为底的小曲边梯形的面积可近似为

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(i)xi(i1 2     n) 所求曲边梯形面积A的近似值为

Af()x iii1nn

(3)记max{x1 x2   xn } 所以曲边梯形面积的精确值为

Alim0f()x iii1

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数

且v(t)0 计算在这段时间内物体所经过的路程S 

(1)用分点T1t0t1t2  t n1tnT2把时间间隔[T 1  T 2]分成n个小时间 段 [t0 t1] [t1 t2]    [tn1 tn]  记ti titi1(i1 2     n)

(2)任取i[ti1 ti] 在时间段[ti1 ti]内物体所经过的路程可近似为v(i)ti

(i1 2     n) 所求路程S 的近似值为

Sv()tii1nni

(3)记max{t1 t2   tn} 所求路程的精确值为

Slim0v()t iii

1二、定积分定义

抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括 就抽象出下述定积分的定义

定义

设函数f(x)在[a b]上有界 在[a b]中任意插入若干个分点

a x0 x1 x2    xn1 xnb

把区间[a b]分成n个小区间

[x0 x1] [x1 x2]    [xn1 xn] 

各小段区间的长依次为

x1x1x0 x2x2x1   xn xn xn1

在每个小区间[xi1 xi]上任取一个点 i(xi1  i  xi) 作函数值f( i)与小区间长度xi的乘积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f( i)xi(i1 2   n) 并作出和

Sf(i)xi

i1n记  max{x1 x2   xn} 如果不论对[a b]怎样分法 也不论在小区间[xi1 xi]上点 i 怎样取法 只要当0时 和S 总趋于确定的极限I 这时我们称这个极限I为函数f(x)在区间[a b]上的定积分 记作af(x)dx

limf(i)xi af(x)dx0i1bnb其中f(x)叫做被积函数 f(x)dx叫做被积表达式 x叫做积分变量 a 叫做积分下限 b 叫做积分上限 [a b]叫做积分区间

定义

设函数f(x)在[a b]上有界 用分点ax0x1x2   xn1xnb把[a b]分成n个小区间 [x0 x1] [x1 x2]    [xn1 xn]  记xixixi1(i1 2   n)

任 i[xi1 xi](i1 2   n) 作和

Sf()xii1ni

记max{x1 x2   xn} 如果当0时 上述和式的极限存在 且极限值与区间[a b]的分法和 i的取法无关 则称这个极限为函数f(x)在区间[a b]上的定积分 记作即

根据定积分的定义 曲边梯形的面积为Aaf(x)dx

变速直线运动的路程为ST2v(t)dt

1baf(x)dx

baf(x)dxlimf(i)xi

0i1nbT

说明

(1)定积分的值只与被积函数及积分区间有关 而与积分变量的记法无关 即

af(x)dxaf(t)dtaf(u)du

(2)和f(i)xi通常称为f(x)的积分和

i1nbbb

(3)如果函数f(x)在[a b]上的定积分存在 我们就说f(x)在区间[a b]上可积

函数f(x)在[a b]上满足什么条件时 f(x)在[a b]上可积呢?

定理

1设f(x)在区间[a b]上连续 则f(x)在[a b]上可积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

定理2 设f(x)在区间[a b]上有界 且只有有限个间断点 则f(x)在[a b]上可积

定积分的几何意义

在区间[a b]上 当f(x)0时 积分af(x)dx在几何上表示由曲线yf(x)、两条直线xa、xb 与x轴所围成的曲边梯形的面积 当f(x)0时 由曲线y f(x)、两条直线xa、xb 与x轴所围成的曲边梯形位于x轴的下方 定义分在几何上表示上述曲边梯形面积的负值

babf(x)dxlimf(i)xilim[f(i)]xia[f(x)]dx

0i10i1nnb

当f(x)既取得正值又取得负值时 函数f(x)的图形某些部分在x轴的上方 而其它部分在x轴的下方 如果我们对面积赋以正负号 在x轴上方的图形面积赋以正号 在x轴下方的图形面积赋以负号 则在一般情形下 定积分af(x)dx的几何意义为 它是介于x轴、函数f(x)的图形及两条直线xa、xb之间的各部分面积的代数和

b用定积分的定义计算定积分

例1.利用定义计算定积分0x2dx

把区间[0 1]分成n等份分点为和小区间长度为

xii(i1 2   n1) xi1(i1 2   n)

nn

取ii(i1 2   n)作积分和 n

1f(i)xii1i1nni2xi(i)21

ni1nnn1i2131n(n1)(2n1)1(11)(21)

3ni1n66nn

因为1 当0时 n 所以n

n12xdxlim00i11(11)(21)1f(i)xinlim6nn

3利定积分的几何意义求积分:

例2用定积分的几何意义求0(1x)dx 解: 函数y1x在区间[0 1]上的定积分是以y1x为曲边以区间[0 1]为底的曲边梯形的面积 因为以y1x为曲边以区间[0 1]为底的曲边梯形是一直角三角形 其底边长及高均为1 所以 1天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0(1x)dx211211

1三、定积分的性质

两点规定

(1)当ab时

(2)当ab时 af(x)dx0

af(x)dxbf(x)dx

bbbab

性质

1函数的和(差)的定积分等于它们的定积分的和(差)即

a[f(x)g(x)]dxaf(x)dxag(x)dx

bb 证明:a[f(x)g(x)]dxlim[f(i)g(i)]xi

0i1nnn

limf(i)xilimg(i)xi

0i1b0i1

af(x)dxag(x)dx

性质2 被积函数的常数因子可以提到积分号外面 即

bakf(x)dxkaf(x)dxbnnbbb

这是因为akf(x)dxlimkf(i)xiklimf(i)xikaf(x)dx

0i10i1性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即

af(x)dxaf(x)dxcbcbf(x)dx

这个性质表明定积分对于积分区间具有可加性

值得注意的是不论a b c的相对位置如何总有等式

af(x)dxaf(x)dxcf(x)dx af(x)dxaf(x)dxbf(x)dx

天津工业大学理学院基础数学系高等数学、经济数学教研室 cbcbcb成立 例如 当a

高等数学教案

第五章 定积分

于是有

af(x)dxaf(x)dxbf(x)dxaf(x)dxca1dxadxba

af(x)dx0(ab)

af(x)dxag(x)dx(ab)

ag(x)dxaf(x)dxa[g(x)f(x)]dx0

af(x)dxag(x)dx

bbbbbbbbbbbbbcccbf(x)dx

性质

4如果在区间[a b]上f(x)1 则

性质

5如果在区间[ab]上 f(x)0 则

推论

1如果在区间[ab]上 f(x) g(x)则

这是因为g(x)f(x)0 从而

所以

推论2 |af(x)dx|a|f(x)|dx(ab)

这是因为|f(x)|  f(x) |f(x)|所以

a|f(x)|dxaf(x)dxa|f(x)|dx

即 |af(x)dx|a|f(x)|dx|

性质6 设M 及m 分别是函数f(x)在区间[ab]上的最大值及最小值 则

m(ba)af(x)dxM(ba)(ab)

证明

因为 m f(x) M  所以

从而

m(ba)af(x)dxM(ba)

性质7(定积分中值定理)

如果函数f(x)在闭区间[ab]上连续 则在积分区间[ab]上至少存在一个点 使下式成立 bbbbbbb

amdxaf(x)dxaMdxbbb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxf()(ba) b这个公式叫做积分中值公式

证明

由性质6

m(ba)af(x)dxM(ba) 各项除以ba

b

m1af(x)dxM

bab再由连续函数的介值定理 在[ab]上至少存在一点  使

b

f()1af(x)dx

ba于是两端乘以ba得中值公式

af(x)dxf()(ba) b

积分中值公式的几何解释

应注意 不论ab 积分中值公式都成立

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 2 微积分基本公式

一、变速直线运动中位置函数与速度函数之间的联系

设物体从某定点开始作直线运动 在t时刻所经过的路程为S(t) 速度为vv(t)S(t)(v(t)0) 则在时间间隔[T1 T2]内物体所经过的路程S可表示为

S(T2)S(T1)及T2v(t)dt

1T即 T2v(t)dtS(T2)S(T1)

1T

上式表明 速度函数v(t)在区间[T1 T2]上的定积分等于v(t)的原函数S(t)在区间[T1 T2]上的增量

这个特殊问题中得出的关系是否具有普遍意义呢?

二、积分上限函数及其导数

设函数f(x)在区间[a b]上连续 并且设x为[a b]上的一点我们把函数f(x)在部分区间[a x]上的定积分

af(x)dx

xx称为积分上限的函数 它是区间[a b]上的函数 记为 (x)af(x)dx 或(x)af(t)dt

定理1 如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

在[a b]上具有导数 并且它的导数为

x

(x)daf(t)dtf(x)(ax

dxxx

简要证明

若x(a b) 取x使xx(a b)

(xx)(x)a

af(t)dtxxxxxxf(t)dtaf(t)dt

xf(t)dtaf(t)dt x天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

xxxf(t)dtf()x

应用积分中值定理 有f()x

其中在x 与xx之间 x0时 x  于是

(x)limlimf()limf()f(x)

x0xx0x

若xa  取x>0 则同理可证(x) f(a) 若xb  取x<0 则同理可证(x) f(b)

定理

2如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

就是f(x)在[a b]上的一个原函数

定理的重要意义 一方面肯定了连续函数的原函数是存在的 另一方面初步地揭示了积分学中的定积分与原函数之间的联系

三、牛顿莱布尼茨公式

定理

3如果函数F(x)是连续函数f(x)在区间[a b]上的一个原函数 则

xaf(x)dxF(b)F(a)

xb此公式称为牛顿莱布尼茨公式 也称为微积分基本公式

这是因为F(x)和(x)af(t)dt都是f(x)的原函数 所以存在常数C 使

F(x)(x)C(C为某一常数)

由F(a)(a)C及(a)0 得CF(a) F(x)(x)F(a) 由F(b)(b)F(a) 得(b)F(b)F(a) 即

af(x)dxF(b)F(a)

xb

证明 已知函数F(x)是连续函数f(x)的一个原函数 又根据定理2 积分上限函数

(x)af(t)dt

也是f(x)的一个原函数 于是有一常数C 使

F(x)(x)C(axb)

当xa时 有F(a)(a)C 而(a)0 所以CF(a) 当xb 时 F(b)(b)F(a)

所以(b)F(b)F(a) 即

af(x)dxF(b)F(a) b 为了方便起见 可把F(b)F(a)记成[F(x)]ba 于是天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

aF(b)F(a)

af(x)dx[F(x)]bb

进一步揭示了定积分与被积函数的原函数或不定积分之间的联系

例1.计算0x2dx

解 由于1x3是x2的一个原函数 所以 11213131xdx[1x3]1010 03333

3例2 计算1dx2

1x

解 由于arctan x是12的一个原函数 所以

1x

13 ( )7

dx[arctanx]3arctan3arctan(1)134121x2

1例3.计算21dx

x

解 12ln 1ln 2ln 22xdx[ln|x|]11

例4.计算正弦曲线ysin x在[0 ]上与x轴所围成的平面图形的面积

解 这图形是曲边梯形的一个特例 它的面积

A0sinxdx[cosx]0(1)(1)2

例5.汽车以每小时36km速度行驶 到某处需要减速停车设汽车以等加速度a5m/s2刹车 问从开始刹车到停车 汽车走了多少距离?

从开始刹车到停车所需的时间

当t0时 汽车速度

v036km/h361000m/s10m/s

3600刹车后t时刻汽车的速度为

v(t)v0at 105t 

当汽车停止时 速度v(t)0 从

v(t)105t 0 得 t2(s)

于是从开始刹车到停车汽车所走过的距离为

210(m)

s0v(t)dt0(105t)dt[10t51t2]0222天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

即在刹车后 汽车需走过10m才能停住

例6.设f(x)在[0, )内连续且f(x)>0 证明函数F(x)在(0 )内为单调增加函数

xx 证明 d0 tf(t)dtxf(x) d0f(t)dtf(x) 故

dxdx0tf(t)dt

x0f(t)dtxF(x)xf(x)0f(t)dtf(x)0tf(t)dt(0f(t)dt)xx2xxf(x)0(xt)f(t)dt(0f(t)dt)x2x

按假设 当0tx时f(t)>0(xt)f(t) 0  所以

0f(t)dt0 x0(xt)f(t)dt0

cosxetdtx212从而F (x)>0(x>0) 这就证明了F(x)在(0 )内为单调增加函数

例7.求limx0

解 这是一个零比零型未定式 由罗必达法则

limx0cosxetdtx2x212limx01cosxt2edtx2cosxlimsinxe1

x02x2e2提示 设(x)1etdt 则(cosx)1cosxt2edt

dcosxet2dtd(cosx)d(u)dueu2(sinx)sinxecos2x

dx1dxdudx

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 3 定积分的换元法和分部积分法

一、换元积分法

定理

假设函数f(x)在区间[a b]上连续 函数x(t)满足条件

(1)()a  ()b

(2)(t)在[ ](或[ ])上具有连续导数 且其值域不越出[a b] 则有

af(x)dxf[(t)](t)dt

这个公式叫做定积分的换元公式

证明

由假设知 f(x)在区间[a b]上是连续 因而是可积的 f [(t)](t)在区间[ ](或[ ])上也是连续的 因而是可积的

假设F(x)是f(x)的一个原函数 则

baf(x)dxF(b)F(a)

另一方面 因为{F[(t)]}F [(t)](t) f [(t)](t) 所以F[(t)]是f [(t)](t)的一个原函数 从而

bf[(t)](t)dtF[()]F[()]F(b)F(a)

因此 af(x)dxf[(t)](t)dt

例1 计算0a2x2dx(a>0)

解 ab0aa2x2dx 令xasint 02acostacostdt 

2a2222(a0costdt1cos2t)dt

20天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

221a2

a[t1sin2t]0224提示 a2x2a2a2sin2tacost dxa cos t  当x0时t0 当xa时t 例2 计算02cos5xsinxdx

解 令tcos x 则

20cosxsinxdx02cos5xdcosx

011 1t5dt0t5dt[1t6]01

令cosxt提示 当x0时t1 当x时t0

2或

20cosxsinxdx02cos5xdcosx 521cos61cos601

[1cos6x]066266

例3 计算0sin3xsin5xdx

解 0sin3xsin5xdx0sin2x|cosx|dx

3 2sin2xcosxdxsin2xcosxdx

023

32sin20xdsinx32sin2xdsinx

55222 [sinx]0[sin2x]2(2)4

555525提示 sinxsinxsinx(1sin35323x)sin2x|cosx|

在[0, ]上|cos x|cos x 在[, ]上|cos x|cos x

4例4 计算x2dx

02x

1解 04x2dx 令2x1t21232x1t32 1tdt11(t23)dt

t2312711122

[t33t]1[(9)(3)]232333天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

2t提示 x1 dxtdt 当x0时t1 当x4时t3

2例5 证明 若f(x)在[a a]上连续且为偶函数 则

af(x)dx20aaaf(x)dx

0a

证明 因为af(x)dxaf(x)dx0f(x)dx 而

所以

af(x)dx a0令xt af(t)dt0f(t)dt0f(x)dx

a0aaaf(x)dx0aaf(x)dx0f(x)dx

aa

0[f(x)f(x)]dxa2f(x)dx20f(x)dx

讨论

若f(x)在[a a]上连续且为奇函数 问af(x)dx?

提示

若f(x)为奇函数 则f(x)f(x)0 从而

aaf(x)dx0[f(x)f(x)]dx0

aa

例6 若f(x)在[0 1]上连续 证明

(1)02f(sinx)dx02f(cosx)dx(2)0xf(sinx)dx 20f(sinx)dx

证明(1)令xt 则 02f(sinx)dx20f[sin(t)]dt

2

2f[sin(t)]dt2f(cosx)dx

002(2)令xt 则

00xf(sinx)dx(t)f[sin(t)]dt

t)]dt0(t)f(sint)dt

0(t)f[sin(0f(sint)dt0tf(sint)dt

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0f(sinx)dx0xf(sinx)dx

所以

0xf(sinx)dx20 f(sinx)dx

x24xe x0

例7 设函数f(x)1 计算1f(x2)dx 1x01cosx

解 设x2t 则

14f(x2)dx1f(t)dt1201dt2tet2dt

01cost220

[tant]1[1et]0tan11e41

22222提示 设x2t 则dxdt 当x1时t1 当x4时t2

二、分部积分法

设函数u(x)、v(x)在区间[a b]上具有连续导数u(x)、v(x) 由

(uv)uv u v得u vu vuv  式两端在区间[a b]上积分得

baauvdx 或audv[uv]aavdu auvdx[uv]bbbbb这就是定积分的分部积分公式

分部积分过程

baavdu[uv]aauvdx    

auvdxaudv[uv]bbbbb 例1 计算 解 12arcsinxdx 0

12arcsinxdx0112[xarcsinx]012xdarcsinx0

102xdx

261x21 021221d(1x2)

1x212231

[1x]012122 例2 计算0exdx

解 令xt 则

10e1xdx20ettdt

天津工业大学理学院基础数学系高等数学、经济数学教研室 1高等数学教案

第五章 定积分

20tdet

2[tet] 0 20etdt

2e2[et] 0 2

例3 设In02sinnxdx 证明

(1)当n为正偶数时 Inn1n331

nn242

2(2)当n为大于1的正奇数时 Inn1n342

nn2

53证明 In2sinnxdx0111102sinn1xdcosx

n1 2x] 0

[cosxsin02cosxdsinn1x



(n1)02cos2xsinn2xdx(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得

Inn1In2

n

I2m2m12m32m531I0

2m2m22m442

I2m12m2m22m442I1

2m12m12m353而I002dx I102sinxdx1

2因此

I2m2m12m32m531

2m2m22m4422

I2m12m2m22m4422m12m12m353 例3 设In02sinnxdx(n为正整数) 证明

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

I2m2m12m32m531 2m2m22m442 I2m12m2m22m442 2m12m12m353 证明 In02sinnxdx02sinn1xdcosx

[cosxsinn1 2x] 0(n1)02cos2xsinn2xdx

(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得 Inn1In2 n

I2m2m12m32m531I0 2m2m22m442

I2m12m2m22m442I1 2m12m12m353特别地 I02dx02 I102sinxdx1 因此

I2m2m12m32m531 2m2m22m4422

I2m12m2m22m442 2m12m12m3

53天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 4 反常积分

一、无穷限的反常积分

定义1 设函数f(x)在区间[a )上连续 取b>a  如果极限

blimaf(x)dx

b存在 则称此极限为函数f(x)在无穷区间[a )上的反常积分 记作af(x)dx 即

a这时也称反常积分af(x)dx收敛f(x)dxlimaf(x)dx

bb

如果上述极限不存在 函数f(x)在无穷区间[a )上的反常积分af(x)dx就没有意义 此时称反常积分af(x)dx发散

类似地 设函数f(x)在区间( b ]上连续 如果极限

alimaf(x)dx(a

bb存在 则称此极限为函数f(x)在无穷区间( b ]上的反常积分 记作f(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(x)dxalimf(x)dx

a这时也称反常积分f(x)dx收敛如果上述极限不存在 则称反常积分f(x)dx发散

设函数f(x)在区间( )上连续 如果反常积分 bbbbf(x)dx和0f(x)dx

都收敛 则称上述两个反常积分的和为函数f(x)在无穷区间( )上的反常积分 记作

0f(x)dx 即

f(x)dxf(x)dx00a0f(x)dx

b

limaf(x)dxlim0f(x)dx

b这时也称反常积分f(x)dx收敛

如果上式右端有一个反常积分发散 则称反常积分f(x)dx发散

定义1

连续函数f(x)在区间[a )上的反常积分定义为

af(x)dxlimaf(x)dx

bb

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地 连续函数f(x)在区间( b]上和在区间( )上的反常积分定义为

f(x)dxlimaf(x)dx

abbf(x)dxlimaf(x)dxlim0f(x)dx

ab0b

反常积分的计算 如果F(x)是f(x)的原函数 则

af(x)dxlimaf(x)dxlim[F(x)]ba

bbb

limF(b)F(a)limF(x)F(a)

bx可采用如下简记形式

类似地 af(x)dx[F(x)]alimF(x)F(a)

xF(b)limF(x)

f(x)dx[F(x)]bxb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

limF(x)limF(x)

f(x)dx[F(x)]xx 例1 计算反常积分12dx

1x

解 

11x2dx[arctanx]

limarctanxlimarctanx

xx

 ( ) 例2 计算反常积分0teptdt(p是常数 且p>0)

解 0teptdt[teptdt]0[1tdept]0

p

[1tept1eptdt]0pp

[1tept12ept]0pp

lim[1tept12ept]1212

tpppp提示 limteptlimtptlim1pt0

ttetpe 例3 讨论反常积分a 解 当p1时

当p<1时

当p>1时 1dx(a>0)的敛散性

xpa1dx1dx[lnx] 

aaxxpa1dx[1x1p] 

a1pxpa1dx[1x1p] a1p

a1pp1xp1p 因此 当p>1时 此反常积分收敛 其值为a 当p1时 此反常积分发散

p

1二、无界函数的反常积分

定义

2设函数f(x)在区间(a b]上连续 而在点a的右邻域内无界 取>0 如果极限

talimf(x)dx tbb存在 则称此极限为函数f(x)在(a b]上的反常积分 仍然记作af(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dx

这时也称反常积分af(x)dx收敛

如果上述极限不存在 就称反常积分af(x)dx发散

类似地 设函数f(x)在区间[a b)上连续 而在点b 的左邻域内无界 取>0 如果极限

tbbblimf(x)dx abt存在 则称此极限为函数f(x)在[a b)上的反常积分 仍然记作af(x)dx 即

f(x)dx

af(x)dxlimatbbt这时也称反常积分af(x)dx收敛 如果上述极限不存在 就称反常积分af(x)dx发散

设函数f(x)在区间[a b]上除点c(a

都收敛 则定义

cbaf(x)dxaf(x)dxcf(x)dx

否则 就称反常积分af(x)dx发散

瑕点 如果函数f(x)在点a的任一邻域内都无界 那么点a称为函数f(x)的瑕点 也称为无界

定义2

设函数f(x)在区间(a b]上连续 点a为f(x)的瑕点 函数f(x)在(a b]上的反常积分定义为 bbcbaf(x)dxtlimatbbf(x)dx

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地函数f(x)在[a b)(b为瑕点)上的反常积分定义为

f(x)dx

af(x)dxlimatbbt

函数f(x)在[a c)(c b](c为瑕点)上的反常积分定义为

af(x)dxtlimcabtf(x)dxlimf(x)dx

ttcb反常积分的计算

如果F(x)为f(x)的原函数 则有

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dxlim[F(x)]bt

ta

F(b)limF(t)F(b)limF(x) taxa可采用如下简记形式

aF(b)limF(x)

af(x)dx[F(x)]bxab类似地 有

alimF(x)F(a)

af(x)dx[F(x)]bxbb当a为瑕点时af(x)dx[F(x)]bF(x)

aF(b)limxab当b为瑕点时af(x)dx[F(x)]bF(x)F(a)

alimxbb当c(acb)为瑕点时

F(x)F(a)][F(b)limF(x)]

af(x)dxaf(x)dxcf(x)dx[xlimcxcbcb 例4 计算反常积分 解 因为limxaa01dx

2ax21 所以点a为被积函数的瑕点

a2x 0a1alimarcsinx0 dx[arcsinx] 0a2xaaa2x2

1例5 讨论反常积分112dx的收敛性

x

解 函数12在区间[1 1]上除x0外连续 且lim12

x0xx0 0 由于112dx[1]lim(1)1

1xxx0x01即反常积分112dx发散 所以反常积分112dx发散

xx

例6 讨论反常积分a

解 当q1时

当q1时 bbbdx的敛散性

(xa)qdxbdx[ln(xa)] b

aa(xa)qaxadx[1(xa)1q] b

aa(xa)q1q天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

当q1时 dx[1(xa)1q] b1(ba)1q

aa(x1qa)q1qb 因此 当q<1时 此反常积分收敛 其值为1(ba)1q 当q1时 此反常积分发散

1q

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

天津工业大学理学院基础数学系高等数学、经济数学教研室

第三篇:第七章 微分方程(三峡大学高等数学教案)

高等数学教案

微分方程

第七章

微分方程

教学目的:

1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)

5. 理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:

1、可分离的微分方程及一阶线性微分方程的解法

(n)

2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)

3、二阶常系数齐次线性微分方程;

4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;

教学难点:

1、齐次微分方程、伯努利方程和全微分方程;

2、线性微分方程解的性质及解的结构定理;

3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

三峡大学高等数学课程建设组

高等数学教案

微分方程

§7 1 微分方程的基本概念

函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程

例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程

解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)

dy2x

(1)

dx此外 未知函数yy(x)还应满足下列条件

x1时 y2 简记为y|x12

(2)把(1)式两端积分 得(称为微分方程的通解)

y2xdx 即yx2C

(3)其中C是任意常数

把条件“x1时 y2”代入(3)式 得

212C

由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)

yx21

例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?

解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式 d2s0.

(4)dt2此外 未知函数ss(t)还应满足下列条件

三峡大学高等数学课程建设组

高等数学教案

微分方程

t0时 s0 vds20 简记为s|=0 s|=20

(5)

t0t0dt

把(4)式两端积分一次 得

vds0.4tC

(6)1dt再积分一次 得

s02t2 C1t C2

(7)这里C1 C2都是任意常数

把条件v|t020代入(6)得

20C1

把条件s|t00代入(7)得0C2

把C1 C2的值代入(6)及(7)式得

v04t 20

(8)

s02t220t

(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间

t2050(s)

0.4再把t50代入(9) 得到列车在制动阶段行驶的路程

s025022050500(m)

几个概念

微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程

常微分方程 未知函数是一元函数的微分方程 叫常微分方程

偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程

微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶

x3 yx2 y4xy3x2 

y(4)4y10y12y5ysin2x

y(n)10

一般n阶微分方程

F(x y y

    y(n))0

y(n)f(x y y

    y(n1))

三峡大学高等数学课程建设组

高等数学教案

微分方程

微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上

F[x (x) (x)    (n)(x)]0

那么函数y(x)就叫做微分方程F(x y y    y(n))0在区间I上的解

通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解

初始条件 用于确定通解中任意常数的条件 称为初始条件 如

xx0 时 yy0  y y0 

一般写成



yxx0y0 yxx0y0

特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解

初值问题 求微分方程满足初始条件的解的问题称为初值问题

如求微分方程yf(x

y)满足初始条件yxx0y0的解的问题 记为

yf(x,y)

 yxx0y0

积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线

d2xk2x0

例3 验证 函数 xC1cos ktC2 sin kt是微分方程

的解

dt

2解 求所给函数的导数

dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)

1212dt2d2x将2及x的表达式代入所给方程 得 dt

k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0

d2xk2x0

这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解

dt三峡大学高等数学课程建设组

高等数学教案

微分方程

例4 已知函数xC1cosktC2sinkt(k0)是微分方程

x| t0 A x| t0 0 的特解

由条件x| t0 A及xC1 cos ktC2 sin kt 得

C1A

再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得

C20

把C1、C2的值代入xC1cos ktC2sin kt中 得

xAcos kt

作业:P298:4

d2xk2x0的通解 求满足初始条件 2dt

§7 2 可分离变量的微分方程

观察与分析

1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C

一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)

2 求微分方程y2xy2 的通解

因为y是未知的 所以积分2xy2dx无法进行 方程两边直

接积分不能求出通解

为求通解可将方程变为

 1dy2xdx 两边积分 得

y21x2C1  或y2yxC三峡大学高等数学课程建设组 高等数学教案

微分方程

可以验证函数y1是原方程的通解

x2C

一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx

形式 则两边积分可得一个不含未知函数的导数的方程

G(y)F(x)C

由方程G(y)F(x)C所确定的隐函数就是原方程的通解

对称形式的一阶微分方程

一阶微分方程有时也写成如下对称形式

P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的

若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有

dyP(x,y)

dxQ(x,y)dxQ(x,y)

dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有

可分离变量的微分方程

如果一个一阶微分方程能写成

g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程

讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy

是 y1dy2xdx (2)3x25xy0

是 dy(3x25x)dx(3)(x2y2)dxxydy=0

不是

(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy

是 10ydy10xdx(6)yxy

不是 yx三峡大学高等数学课程建设组

高等数学教案

微分方程

可分离变量的微分方程的解法

第一步

分离变量 将方程写成g(y)dy f(x)dx的形式

第二步

两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C

第三步

求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C  y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解

例1 求微分方程dy2xy的通解

dx

此方程为可分离变量方程 分离变量后得

1dy2xdx

y1dy2xdx

y两边积分得

ln|y|x2C1

从而

yex2C1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解

yCex

例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律

解 铀的衰变速度就是M(t)对时间t的导数2dM

dtdMM

dtdM0

dt

由于铀的衰变速度与其含量成正比 故得微分方程其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为 M|t0M0

将方程分离变量得

dMdt

M三峡大学高等数学课程建设组

高等数学教案

微分方程

两边积分 得dM()dt

M即

lnMtlnC 也即MCet

由初始条件 得M0Ce0C

所以铀含量M(t)随时间t变化的规律MM0et 

例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系

设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为

mdvmgkv

dt初始条件为

v|t00

方程分离变量 得

dvdt

mgkvm两边积分 得mgkvm

tC

m1dvdt

ln(mgkv)1kkC1ktmgCem(Ce即

v)

kkmg将初始条件v|t00代入通解得C

kktmg(1em)

于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解

例4 求微分方程dx

解 方程可化为

dy(1x)(1y2)

dx分离变量得

三峡大学高等数学课程建设组

高等数学教案

微分方程

1dy(1x)dx

1y21dy(1x)dx 即1x2xC

arctany1y22两边积分得

于是原方程的通解为ytan(x2xC)

作业:P304:1(1)(2)(3)(7)(9)(10),2(2)(4),3

§7 3 齐次方程

齐次方程

如果一阶微分方程12dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程

xx

下列方程哪些是齐次方程?

dyyy2x2dyyy

(1)xyyyx0是齐次方程()21

dxxdxxx22dy1y

2(2)1xy1y不是齐次方程

dx1x222dyx2y2dyxy

(3)(xy)dxxydy0是齐次方程 dxxydxyx22

(4)(2xy4)dx(xy1)dy0不是齐次方程

(5)(2xshdy2xy4

dxxy1yyy3ych)dx3xchdy0是齐次方程

xxx三峡大学高等数学课程建设组

高等数学教案

微分方程

yy2xsh3ychdyxxdy2thyy 

ydxdx3xx3xchx

齐次方程的解法

在齐次方程

ux分离变量 得

ydyy()中 令u 即yux 有 dxxxdu(u)

dxdudx (u)uxdudx(u)ux 两端积分 得

求出积分后 再用y代替u 便得所给齐次方程的通解

xdydyxy

dxdx

例1 解方程y2x2

原方程可写成

y2()dyyx

2ydxxyx1x2因此原方程是齐次方程 令

yux 于是原方程变为

ux即

xyu 则 xdyuxdu

dxdxduu2

dxu1duu

dxu1分离变量 得

三峡大学高等数学课程建设组

高等数学教案

微分方程

(1)du1udx

x两边积分 得uln|u|Cln|x|

或写成ln|xu|uC

以y代上式中的u 便得所给方程的通解 x

ln|y|yC

x

例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程

解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM

因为

OAAPOPPMcotOP而

OMx2y2

于是得微分方程

yx

yyxx2y2 y整理得dxx(x)21 这是齐次方程

dyyydxx(x)21

dyyy

问题归结为解齐次方程

令即

yxvdvvv21 即xyv 得vy

dyydvv21 dy分离变量 得dvdy

v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21三峡大学高等数学课程建设组

高等数学教案

微分方程

y22yv1

C2C以yvx代入上式 得y22C(xC)

2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为

y2z22C(xC) 2这就是所求的旋转曲面方程

例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程

解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度

v(vx, vy)(dx, dy) 故有dxvx

dyvydtdtx, y) v(abx, by)

x2y2x2y2x2y2x2y2另一方面 vab(a, 0)b(因此dxvxa(x)21x 即dxa(x)21x

dybyydyvybyydxa(x)21x

dybyy

问题归结为解齐次方程

yxu 即xyu 得 yduau21 dyb分离变量 得duady

u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]

将u代入上式并整理 得xy2C三峡大学高等数学课程建设组

aa高等数学教案

微分方程

以x|yh0代入上式 得C1 故鸭子游过的轨迹方程为 haay1by1bh()] 0yh

x[()2hhb将ux代入arshu(lnylnC)后的整理过程

yaarshxb(lnylnC)

yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bby1b1b1aax[(Cy)(Cy)]x[(Cy)a(Cy)a]

2C2bbb作业:P309:1(1)(3)(5),2

§7.4 线性微分方程

一、线性方程

线性方程

方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程

dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0  则方程称为齐次线性方程 否则方程称为非齐次线性方程

方程

下列方程各是什么类型方程?

(1)(x2)

(2)3x25x5y0y3x25x  是非齐次线性方程

(3)yy cos xesin x  是非齐次线性方程

(4)dy10xy 不是线性方程 dx三峡大学高等数学课程建设组

高等数学教案

微分方程

3dy3(y1)2dydxxx00或

(5)(y1) 不是线性方程

dxdydx(y1)2x

32齐次线性方程的解法

齐次线性方程

dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx

y两边积分 得

ln|y|P(x)dxC1

P(x)dx(CeC1)

yCe这就是齐次线性方程的通解(积分中不再加任意常数)

1求方程(x2)dyy的通解

dx

这是齐次线性方程 分离变量得

dydx

yx2两边积分得

ln|y|ln|x2|lnC

方程的通解为

yC(x2)

非齐次线性方程的解法

将齐次线性方程通解中的常数换成x的未知函数u(x) 把

P(x)dx

yu(x)e

设想成非齐次线性方程的通解 代入非齐次线性方程求得

P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)

u(x)e化简得

u(x)Q(x)eP(x)dx

三峡大学高等数学课程建设组

高等数学教案

微分方程

u(x)Q(x)eP(x)dxdxC

于是非齐次线性方程的通解为

P(x)dxP(x)dx

ye[Q(x)edxC] P(x)dxP(x)dxP(x)dx或

yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和

5dy2y(x1)2的通解

例2 求方程dxx1

这是一个非齐次线性方程

先求对应的齐次线性方程分离变量得

dy2y0的通解

dxx1dy2dx

yx1两边积分得

ln y2ln(x1)ln C

齐次线性方程的通解为

yC(x1)2

用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得

52u(x1)2(x1)2

u(x1)2u(x1)x12

1u(x1)2

两边积分 得 u(x1)2C

3再把上式代入yu(x1)2中 即得所求方程的通解为 32

y(x1)[(x1)2C]

323

例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)

三峡大学高等数学课程建设组

高等数学教案

微分方程

由电学知道 当电流变化时 L上有感应电动势L

EL即

di 由回路电压定律得出 dtdiiR0

dtdiRiE

dtLLdiRiEmsin t

dtLL

把EEmsin t代入上式 得

初始条件为

i|t00

diRiEmsin t为非齐次线性方程 其中

dtLLER t

P(t) Q(t)msinLL

方程由通解公式 得

i(t)eP(t)dtdtdtEP(t)dt[Q(t)edtC]eL(msin teLdtC)

LRRRttEmReL(sinteLdtC)

LRtEm(Rsin t Lcos t)CeL

222RL其中C为任意常数

将初始条件i|t00代入通解 得C因此 所求函数i(t)为

t LEmREmLe(Rsin t Lcos t)

i(t)2R2L2R22L2 LEm

R22L

2二、伯努利方程

伯努利方程 方程

dyP(x)yQ(x)yn(n0 1)dx叫做伯努利方程

三峡大学高等数学课程建设组

高等数学教案

微分方程

下列方程是什么类型方程?

(1)

(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy

1(3)y yyxy1 是伯努利方程 yxx

(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx

伯努利方程的解法 以yn除方程的两边 得

yn令z y1n  得线性方程

dz(1n)P(x)z(1n)Q(x)

dxdyya(lnx)y2的通解

例4 求方程dxx

解 以y2除方程的两端 得

y2dy11yalnx

dxxd(y1)11yalnx

dxx令zy1 则上述方程成为

dz1zalnx

dxxa2这是一个线性方程 它的通解为

zx[C(lnx)2]

以y1代z  得所求方程的通解为

yx[C(lnx)2]1

经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程

5解方程 a2dy1

dxxy三峡大学高等数学课程建设组 高等数学教案

微分方程

若把所给方程变形为

dxxy

dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程

令xyu 则原方程化为

du11 即duu1

dxudxu分离变量 得

ududx

u1两端积分得

uln|u1|xln|C|

以uxy代入上式 得

yln|xy1|ln|C| 或xCeyy1

作业:P315:1(1)(3)(5)(7)(9),2(1)(3)(5),7(1)(2)

§7 5可降阶的高阶微分方程

一、y(n)f(x)型的微分方程

解法 积分n 次

y(n1)f(x)dxC1 

y(n2)[f(x)dxC1]dxC2 

  

例1 求微分方程ye2xcos x 的通解

解 对所给方程接连积分三次 得

ye2xsinxC1

三峡大学高等数学课程建设组

12高等数学教案

微分方程

ye2xcosxC1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

ye2xsinx2C1

ye2xcosx2C1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律

解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为

2dx

m2F(t)

dt141812121418由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而

F(t)F0(1)

于是质点运动的微分方程又写为 tTd2xF0(1t)

Tdt2mdx|0 其初始条件为x|t00

dtt0

把微分方程两边积分 得

dxF0(tt2)C

1

dtm2T再积分一次 得

F012t x(t)C1tC2

m26T由初始条件x|t00 得C1C20

三峡大学高等数学课程建设组

dx|0

dtt0高等数学教案

微分方程

于是所求质点的运动规律为

x

二、y f(x y)型的微分方程

解法 设yp则方程化为

pf(x p)

设pf(x p)的通解为p(xC1) 则

F012t3(t) 0tT

m26Tdy(x,C1)

dx原方程的通解为

y(x,C1)dxC2

例3 求微分方程

(1x2)y2xy 满足初始条件

y|x01 y|x03 的特解

解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有

dp2xdx

p1x2两边积分 得

ln|p|ln(1x2)C

pyC1(1x2)(C1eC)

由条件y|x03 得C13

所以

y3(1x2)

两边再积分 得 yx33xC2

又由条件y|x01 得C21

于是所求的特解为

yx33x1

例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?

三、yf(y y)型的微分方程

解法 设yp有

三峡大学高等数学课程建设组

高等数学教案

微分方程

y原方程化为 dpdpdydpp

dxdydxdydpf(y,p)

dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy

p

dy(y,C1)xC2

dp

dy

例5 求微分yyy20的通解

解 设yp 则yp代入方程 得

ypdp2p0

dy

在y0、p0时 约去p并分离变量 得

dpdy

py两边积分得

ln|p|ln|y|lnc

pCy或yCy(Cc)

再分离变量并两边积分 便得原方程的通解为

ln|y|Cxlnc1

yC1eCx(C1c1)

作业:P323:1(1)(3)(5)(7)(9),2(1)(3)(5)

三峡大学高等数学课程建设组

高等数学教案

微分方程

§7 6 高阶线性微分方程 一、二阶线性微分方程举例

例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点

给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)

设弹簧的弹性系数为c 则恢复力fcx

又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则

Rdx

dt

由牛顿第二定律得

md2xcxdx

2dtdt

移项 并记2nc k2

mmd2x2ndxk2x0则上式化为

dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程

如果振动物体还受到铅直扰力

FHsin pt 的作用 则有

d2x2ndxk2xhsinpt

dtdt2H其中h 这就是强迫振动的微分方程

m

例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数

设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL  由电学知道

iqdqdi uc ELL

Cdtdt三峡大学高等数学课程建设组

高等数学教案

微分方程

根据回路电压定律 得

ELdiqRi0

dtCd2ucducRCucEmsint

LC2dtdt或写成

d2ucducEm22usint

0c2dtLCdtR 1 这就是串联电路的振荡方程 其中02LLC

如果电容器经充电后撤去外电源(E0) 则上述成为

d2ucduc220uc0

2dtdt

二阶线性微分方程 二阶线性微分方程的一般形式为

yP(x)yQ(x)yf(x)

若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的

二、线性微分方程的解的结构

先讨论二阶齐次线性方程

d2ydyQ(x)y0

yP(x)yQ(x)y0 即2P(x)dxdx

定理

1如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0的两个解 那么

yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数

齐次线性方程的这个性质表明它的解符合叠加原理

证明 [C1y1C2y2]C1 y1C2 y2

[C1y1C2y2]C1 y1C2 y2

因为y1与y2是方程yP(x)yQ(x)y0 所以有

y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20

从而

[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]

三峡大学高等数学课程建设组

高等数学教案

微分方程

C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000

这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解

函数的线性相关与线性无关

设y1(x) y2(x)     yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2     kn 使得当xI 时有恒等式

k1y1(x)k2y2(x)

    knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关

判别两个函数线性相关性的方法

对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关

例如 1 cos2x  sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无关的

定理2 如果如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0 的两个线性无关的解 那么

yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解

例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解

解 因为

y1y1cos xcos x0

y2y2sin xsin x0

所以y1cos x与y2sin x都是方程的解

因为对于任意两个常数k1、k2 要使

k1cos xk2sin x0

只有k1k20 所以cos x与sin x在(, )内是线性无关的

因此y1cos x与y2sin x是方程yy0的线性无关解

方程的通解为yC1cos xC2sin x

例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解

解 因为

三峡大学高等数学课程建设组

高等数学教案

微分方程

(x1)y1xy1y10xx0

(x1)y2xy2y2(x1)exxexex0

所以y1x与y2ex都是方程的解

因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的

因此y1x 与y2ex是方程(x1)yxyy0的线性无关解

方程的通解为yC1xC2e x

推论 如果y1(x) y2(x)    yn(x)是方程

y(n)a1(x)y(n1)    an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为

yC1y1(x)C2y2(x)     Cnyn(x)

其中C1 C2    Cn为任意常数

二阶非齐次线性方程解的结构

我们把方程

yP(x)yQ(x)y0 叫做与非齐次方程

yP(x)yQ(x)yf(x)对应的齐次方程

定理3 设y*(x)是二阶非齐次线性方程

yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么

yY(x)y*(x)是二阶非齐次线性微分方程的通解

证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]

 [Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]

0 f(x) f(x)

例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此

yC1cos xC2sin xx22 是方程yyx2的通解

定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如

三峡大学高等数学课程建设组

高等数学教案

微分方程

yP(x)yQ(x)yf1(x) f2(x)

而y1*(x)与y2*(x)分别是方程

yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解

证明提示

[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]

[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]

f1(x)f2(x)

作业:P331:1(1)(3)(5)(7),4(1)(3)(5)

§7 7 二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程 方程 ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解

我们看看

能否适当选取r 使yerx

满足二阶常系数齐次线性微分方程 为此将yerx代入方程

ypyqy0 得

(r 2prq)erx 0

由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解

特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式

pp24q

r 1,22求出

三峡大学高等数学课程建设组

高等数学教案

微分方程

特征方程的根与通解的关系

(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解

这是因为

函数y1er1x、y2er2x是方程的解 又因此方程的通解为

yC1er1xC2er2x

(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分方程的两个线性无关的解

这是因为 y1er1x是方程的解 又

r1xr1x2r1x

(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x

2er1x(2r1p)xe(r1pr1q)0

y1er1x(r1r2)x不是常数

ey2er2xy2xer1xx不是常数

所以y2xe也是方程的解 且y1er1xr1x

因此方程的通解为

yC1er1xC2xer1x

(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解

函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得

y1e(i)xex(cosxisinx)

y2e(i)xex(cosxisinx)

1y1y22excosx excosx(y1y2)

2三峡大学高等数学课程建设组

高等数学教案

微分方程

1y1y22iexsinx exsinx(y1y2)

2i故excosx、y2exsinx也是方程解

可以验证 y1excosx、y2exsinx是方程的线性无关解

因此方程的通解为

yex(C1cosxC2sinx)

求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为

第一步

写出微分方程的特征方程

r2prq0 第二步

求出特征方程的两个根r1、r2

第三步

根据特征方程的两个根的不同情况 写出微分方程的通解

例1 求微分方程y2y3y0的通解

解 所给微分方程的特征方程为

r22r30 即(r1)(r3)0

其根r11 r23是两个不相等的实根 因此所求通解为

yC1exC2e3x

例2 求方程y2yy0满足初始条件y|x0

4、y| x02的特解

解 所给方程的特征方程为

r22r10 即(r1)20

其根r1r21是两个相等的实根 因此所给微分方程的通解为

y(C1C2x)ex

将条件y|x04代入通解 得C14 从而

y(4C2x)ex

将上式对x求导 得

y(C24C2x)ex

再把条件y|x02代入上式 得C22 于是所求特解为

x(42x)ex

例 3 求微分方程y2y5y 0的通解

解 所给方程的特征方程为

三峡大学高等数学课程建设组

高等数学教案

微分方程

r22r50

特征方程的根为r112i r212i 是一对共轭复根

因此所求通解为

yex(C1cos2xC2sin2x)

n 阶常系数齐次线性微分方程 方程

y(n)p1y(n1)p2 y(n2)     pn1ypny0

称为n 阶常系数齐次线性微分方程 其中 p1

p2      pn1 pn都是常数

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去

引入微分算子D 及微分算子的n次多项式

L(D)=Dn p1Dn1p2 Dn2      pn1Dpn 则n阶常系数齐次线性微分方程可记作

(Dn p1Dn1p2 Dn2      pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy   Dnyy(n)

分析 令yerx 则

L(D)yL(D)erx(rn p1rn1p2 rn2      pn1rpn)erxL(r)erx

因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解

n 阶常系数齐次线性微分方程的特征方程

L(r)rn p1rn1p2 rn2      pn1rpn0 称为微分方程L(D)y0的特征方程

特征方程的根与通解中项的对应

单实根r 对应于一项 Cerx 

一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)

k重实根r对应于k项 erx(C1C2x    Ck xk1)

一对k 重复根r1 2 i 对应于2k项

ex[(C1C2x    Ck xk1)cosx(D1D2x    Dk xk1)sinx]

例4 求方程y(4)2y5y0 的通解

这里的特征方程为

r42r35r20 即r2(r22r5)0

三峡大学高等数学课程建设组

高等数学教案

微分方程

它的根是r1r20和r3 412i

因此所给微分方程的通解为

yC1C2xex(C3cos2xC4sin2x)

例5 求方程y(4) 4y0的通解 其中0

这里的特征方程为

r4 40

它的根为r1,22(1i) r3,42(1i)

因此所给微分方程的通解为

ye2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x)

作业:P340:1(1)(3)(2)(4)(5)(6)(8),2(2)(4)(6)

§7 8 二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程 方程

ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数

二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和

yY(x) y*(x)

当f(x)为两种特殊形式时 方程的特解的求法

一、f(x)Pm(x)ex 型

当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式

三峡大学高等数学课程建设组

高等数学教案

微分方程

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm 并得所求特解

y*Qm(x)ex

(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m1 次多项式

Q(x)xQm(x)

Qm(x)b0xm b1xm1   

bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1   

 bm 并得所求特解

y*xQm(x)ex

(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m2次多项式

Q(x)x2Qm(x)

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm  并得所求特解

y*x2Qm(x)ex

综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如

y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2

例1 求微分方程y2y3y3x1的一个特解

解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)

与所给方程对应的齐次方程为

y2y3y0

三峡大学高等数学课程建设组

高等数学教案

微分方程

它的特征方程为

r22r30

由于这里0不是特征方程的根 所以应设特解为

y*b0xb1

把它代入所给方程 得

3b0x2b03b13x1

比较两端x同次幂的系数 得

3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为

y*x

例2 求微分方程y5y6yxe2x的通解

解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)

与所给方程对应的齐次方程为

y5y6y0

它的特征方程为

r25r 60

特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为

YC1e2xC2e3x 

由于2是特征方程的单根 所以应设方程的特解为

y*x(b0xb1)e2x

把它代入所给方程 得

2b0x2b0b1x

比较两端x同次幂的系数 得

13132b01 2b01 2b0b10 2bb001三峡大学高等数学课程建设组

高等数学教案

微分方程

由此求得b01 b1 于是求得所给方程的一个特解为 121 y*x(x1)e2x

从而所给方程的通解为

yC1e2xC2e3x(x22x)e2x

提示

y*x(b0xb1)e2x(b0x2b1x)e2x

[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x

[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x

y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x

方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式

应用欧拉公式可得

ex[Pl(x)cosxPn(x)sinx]

ex[Pl(x)12ei xei xP(x)ei xei x] n22i

[Pe(i)x[Pe(i)x

l(x)iPn(x)]l(x)iPn(x)]

P(x)e(i)xP(x)e(i)x

其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}

设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x

则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解

其中k按i不是特征方程的根或是特征方程的根依次取0或1

于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为

三峡大学高等数学课程建设组

12121212高等数学教案

微分方程

y*xkQm(x)e(i)xxkQm(x)e(i)x

xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)

xk ex[R(1)m(x)cosxR(2)m(x)sinx]

综上所述 我们有如下结论

如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程

ypyqyf(x)的特解可设为

y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]

其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1

例3 求微分方程yyxcos2x的一个特解

解 所给方程是二阶常系数非齐次线性微分方程

且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)

与所给方程对应的齐次方程为

yy0

它的特征方程为

r210

由于这里i2i 不是特征方程的根 所以应设特解为

y*(axb)cos2x(cxd)sin2x

把它代入所给方程 得

(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x

比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x

提示

y*(axb)cos2x(cxd)sin2x

y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x

三峡大学高等数学课程建设组

134

91349高等数学教案

微分方程

(2cxa2d)cos2x(2ax2bc)sin2x

y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x

(4ax4b4c)cos2x(4cx4a4d)sin2x

y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x

3a13b4c014由 得a b0 c0 d 3c0394a3d0作业:P347:1(1)(2)(5)(9)2(2)(3)(4)

三峡大学高等数学课程建设组

第四篇:第十章____重积分(高等数学教案)

高等数学教案

重积分

重积分

【教学目标与要求】

1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。2.掌握二重积分的(直角坐标、极坐标)计算方法。

3.掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。

4.会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。

【教学重点】

1.二重积分的计算(直角坐标、极坐标);

2.三重积分的(直角坐标、柱面坐标、球面坐标)计算。3.二、三重积分的几何应用及物理应用。

【教学难点】

1.利用极坐标计算二重积分; 2.利用球坐标计算三重积分; 3.物理应用中的引力问题。

【教学课时分配】(10学时)第1 次课

§1

第2 次课

§2

第3 次课

§3 第4 次课

§4

第5次课

习题课

【参考书】

[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

高等数学教案

重积分

§10 1 二重积分的概念与性质

【回顾】定积分

设函数yf(x)在区间[a b]上非负、连续 求直线xa、xb、y0 及曲线yf(x)所围成的曲边梯形的面积

(1)分割:用分点ax0x1x2   xn1xn b把区间[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ] 记xixixi1(i1 2     n)

(2)代替:任取i[xi1 xi] 以[xi1 xi]为底的小曲边梯形的面积可近似为

f(i)xi(i1 2     n)

(3)作和:曲边梯形面积A的近似值为

Af()x iii1nn(4)取极限:记max{x1 x2   xn } 所以曲边梯形面积的精确值为

Alim0f()x

iii1则

baf(x)dxAlimf(i)xi0i1n§10 1 二重积分的概念与性质

一、引例

1 曲顶柱体的体积V 设有一立体 它的底面是xOy面上的闭区域D 其侧面为母线平行于z轴的柱面 其顶是曲面zf(x y)非负连续 称为曲顶柱体

若立体的顶是平行于xoy面的平面。

体积=底面积高

现在我们来讨论如何计算曲顶柱体的体积

(i)分割:用任意曲线网把D分成n个小区域 :

 1  2      n 

分别以这些小闭区域的边界曲线为准线 作母线平行于z轴的柱面 这些柱面把原来的曲顶柱体分为n个细曲顶柱体 高等数学教案

重积分

(ii)代替:在每个 i中任取一点( i   i) 以f( i   i)为高而底为 i的平顶柱体的体积为

f( i   i)i

(i1 2     n)

(iii)近似和: 整个曲顶柱体体积V

Vf(i,i)i

i1n分割得越细, 则右端的近似值越接近于精确值V, 若分割得“无限细”, 则右端近似值会无限接近于精确值V.(iv)取极限: 记 max{i的直径},1in

其中i的直径是指i中相距最远的两点的距离。则

Vlimf(i,i)i 其中(i,i)i

0i1n2平面薄片的质量

当平面薄板的质量是均匀分布时,质量 = 面密度×面积.若平面薄板的质量不是均匀分布的.这时, 薄板的质量不能用上述公式算, 应如何算该薄板的质量M? 设有一平面薄片占有xOy面上的闭区域D 它在点(x y)处的面密度为(x,y) 这里(x,y)非负连续 现在要计算该薄片的质量M

(i)分割:用任意一组曲线网把D分成n个小区域:

 1  2      n 

(ii)代替:把各小块的质量近似地看作均匀薄片的质量

mi( i   i) i 

(iii)近似和: 各小块质量的和作为平面薄片的质量的近似值

M(i,i)i

i1n高等数学教案

重积分

将分割加细 取极限 得到平面薄片的质量(iv)取极限:

记 max{的直径},i1in

Mlim(i,i)i

0i1n两个问题的共性:(1)解决问题的步骤相同:

“分割, 代替,近似和,取极限”

(2)所求量的结构式相同

曲顶柱体体积:

Vlimf(i,i)i

0i1n平面薄片的质量:

Mlim(i,i)i

0i1n二、二重积分的定义及可积性

定义: 设f(x y)是有界闭区域D上的有界函数 将闭区域D任意分成n个小闭区域

 1  2      n 

其中 i表示第i个小区域 也表示它的面积 在每个 i上任取一点( i i) 作和

f(i,i)i

i1n如果当各小闭区域的直径中的最大值趋于零时 这和的极限总存在 则称此极限为函数f(x y)在闭区域D上的二重积分 记作

f(x,y)d 即

D

limf(i,i)i f(x,y)d0i1Dnf(x y)被积函数 f(x y)d被积表达式 d面积元素 x y积分变量 D积分区域 积分和

直角坐标系中的面积元素

如果在直角坐标系中用平行于坐标轴的直线网来划分D 那么除了包含边界点的一些小闭区域外 其余的小闭区域都是矩形闭区域 设矩形闭区域i的边长为xi和yi 则ixiyi 因此在直角坐标系中 有时也把面积元素d 记作dxdy 而把二重积分记作 高等数学教案

重积分

f(x,y)dxdy

D其中dxdy叫做直角坐标系中的面积元素

二重积分的几何意义 如果f(x y)0 被积函数f(x y)可解释为曲顶柱体的在点(x y)处的竖坐标 所以二重积分的几何意义就是柱体的体积 如果f(x y)是负的 柱体就在xOy 面的下方 二重积分的绝对值仍等于柱体的体积 但二重积分的值是负的

说明:当函数f(x y)在闭区域D上连续时 则f(x y)在D上的二重积分必存在。于是我们总假定函数f(x y)在闭区域D上连续,所以f(x y)在D上的二重积分都是存在的。例1.利用二重积分定义计算:三.二重积分的性质

设D为有界闭区域,以下涉及的积分均存在。性质1 xydxdy,其中D{(x,y)|0x1,0y1}。

D[f(x,y)g(x,y)]df(x,y)dg(x,y)d

DDD性质2 设k为常数,则性质3 kf(x,y)dkf(x,y)d

DD1dd|D|,其中(|D|为D的面积)

DD性质4 设DD1D2,且D1,D2无公共内点,则

f(x,y)df(x,y)df(x,y)d

DD1D2性质5.若在D上 f(x y)g(x y) 则

f(x,y)dg(x,y)d

DD特殊:(1)若在D上f(x,y)0,则

f(x,y)d0

D

(2)|f(x,y)d||f(x,y)|d

DD

这是因为|f(x,y)|f(x,y)|f(x,y)|

性质6 设M、m分别是f(x y)在闭区域D上的最大值和最小值 |D|为D的面积 则

高等数学教案

重积分

m|D|f(x,y)dM|D|

D

性质7(二重积分的中值定理)设函数f(x y)在闭区域D上连续  为D的面积 则在D上至少存在一点(,)D,使

例2.比较下列积分的大小:f(x,y)df(,)

D(xy)d,(xy)d,DD23其中D{(x,y)|(x2)2(y1)22}

小结

1.二重积分的定义:

nf(,)f(x,y)dlimD0iii1i),(ddxdy2.二重积分的性质(与定积分性质相似)

教学方式及教学过程中应注意的问题

在教学过程中要注意二重积分的定义,性质以及应用,并且要与定积分的定义、性质进行比较,要结合实例,反复讲解。

师生活动设计

1.比较下列积分值的大小关系:I12xy1|xy|dxdy,I22|x||y|1|xy|dxdy,I31111|xy|dxdy

22(sinxcosy)d2,其中D为0x1,0y1。D2.证明:1讲课提纲、板书设计

作业 P137: 4(1)(3),5(1)(4)

§10 2 二重积分的计算法 高等数学教案

重积分

一、利用直角坐标计算二重积分

X型区域

D 

1(x)y2(x) axb 

Y 型区域 D 

1(x)y2(x) cyd 

混合型区域

设f(x y)0

D{(x y)| 1(x)y2(x) axb}

此时二重积分柱体的体积

对于x0[a b]

曲顶柱体在xx0的截面面积为以区间[1(x0) 2(x0)]为底、以曲线zf(x0 y)为曲边的曲边梯形 所以这截面的面积为

A(x0)2(x0)10f(x,y)d在几何上表示以曲面zf(x y)为顶 以区域D为底的曲顶D(x)1f(x0,y)dy

根据平行截面面积为已知的立体体积的方法 得曲顶柱体体积为

V即

V可记为

aA(x)dxa[(x)b2(x)a1(x)bb2(x)f(x,y)dy]dx

f(x,y)d[Dbf(x,y)dy]dx

f(x,y)dadx(x)D12(x)f(x,y)dy

类似地 如果区域D为Y 型区域

D  1(x)y2(x) cyd 

则有

f(x,y)ddyDcd2(y)1(y)f(x,y)dx

例1 计算xyd 其中D是由直线y

1、x2及yx所围成的闭区域

D

解 画出区域D

方法一

可把D看成是X型区域 1x2 1yx  于是

422y2x1xx1293[]

[x]dx(xx)dxxyd[xydy]dx1112112428212x2D注 积分还可以写成xyddxxydyxdxydy

D11112x2x高等数学教案

重积分

解法2 也可把D看成是Y型区域 1y2 yx2  于是

422y3x22y29xyd1[yxydx]dy1[y2]ydy1(2y2)dy[y8]18 222D

例2 计算yD1x2y2d 其中D是由直线y

1、x1及yx所围成的闭区域

画出区域D 可把D看成是X型区域 1x1 xy1 于是

11[(1x2y2)2]1dx11(|x|31)dx y1xyddxy1xydyx1x3131221122D31(x31)dx

302

也可D看成是Y型区域:1y1 1x

y1x2y2dydyD1D1y11x2y2dx

例3 计算

2xyd 其中D是由直线yx2及抛物线yx所围成的闭区域



解 积分区域可以表示为DD1+D2

其中D, xyx D2: 1x4, 2yx 于是 1: 0x1

xyddxD021xxxydydx14xx2xydy

积分区域也可以表示为D 1y2 y2xy2 于是

xyd1dyyDy222x12[y(y2)2y5]dy

2xydx[y]y2dyy122126y443152y2

[y2y]15

24368讨论积分次序的选择

4求两个底圆半径都等于的直交圆柱面所围成的立体的体积

设这两个圆柱面的方程分别为

x2y2 2及x2z2 2 高等数学教案

重积分

利用立体关于坐标平面的对称性 只要算出它在第一卦限部分的体积V1 然后再乘以8就行了

第一卦限部分是以D{(x y)| 0yR2x2, 0x}为底 以zR2x2顶的曲顶柱体

于是

V8DRxd8dx022RR2x20R2x2dy8[R2x2y]0R0R2x2dx

16R3

22(Rx)dx03 二

利用极坐标计算二重积分

8R

有些二重积分 积分区域D 的边界曲线用极坐标方程来表示比较方便 且被积函数用极坐标变量、 表达比较简单

这时我们就可以考虑利用极坐标来计算二重积分

limf(i,i)i

f(x,y)d 按二重积分的定义f(x,y)d0DnDi

1下面我们来研究这个和的极限在极坐标系中的形式

以从极点O出发的一族射线及以极点为中心的一族同心圆构成的网将区域D分为n个小闭区域 小闭区域的面积为

111222(ii)iiiii

i2其中i表示相邻两圆弧的半径的平均值

在i内取点(i , i) 设其直角坐标为( i  i)

则有

i(ii)2ii2i(2ii)ii

ii cosi ii sini

limf(i cosi,i sini)i ii

f(i,i)i0i1i1nn于是 lim0即

f(x,y)df(cos,sin)dd

DD若积分区域D可表示为 1() 2()

 高等数学教案

重积分

f(cos,sin)dddD2()1()f(cos,sin)d

讨论如何确定积分限?

f(cos,sin)ddd0D2D0()f(cos,sin)d

f(cos,sin)dddxeD2()0f(cos,sin)d

例5 计算域 y2dxdy 其中D是由中心在原点、半径为a 的圆周所围成的闭区

在极坐标系中 闭区域D可表示为

0a  0 2 

于是 exD2y2adxdyedd[ed]d [1e]0d

0002D22a22(1ea)

注 此处积分

122022d(1ea)

dxdy

2exD22y2dxdy也常写成x2y2a2exy2

利用x2y2a2xey2dxdy(1ea)计算广义积分exdx

022

设D1{(x y)|x2y2R2 x0 y0} D2{(x y)|x2y22R2 x0 y0}S{(x y)|0xR 0yR}

显然D1SD2 由于ex

2y20 从则在这些闭区域上的二重积分之间有不等式

2exD12y2dxdyexSy2dxdyexD22y2dxdy

因为

exS2y2dxdyexdxeydy(exdx)2

000R2R2R2又应用上面已得的结果有 高等数学教案

重积分

exD12y2dxdy(1eR)

42exD22y2dxdy(1e2R)

42于是上面的不等式可写成(1eR2)(Rex2dx)2(1e2R2)

404令R 上式两端趋于同一极限

 从而ex2dx

4 02

例6 求球体x2y2z24a2被圆柱面x2y22ax所截得的(含在圆柱面内的部分)立体的体积

由对称性 立体体积为第一卦限部分的四倍

V4D4a2x2y2dxdy

其中D为半圆周y2axx2及x轴所围成的闭区域

在极坐标系中D可表示为

02a cos  0于是

V4 

22acos2d00D4add4224a22d

32322

a22(1sin3)da2()

03323

小结

1.二重积分化为累次积分的方法;

2.积分计算要注意的事项。

教学方式及教学过程中应注意的问题

在教学过程中要注意二重积分化为累次积分的方法:分直角坐标和极坐标,以及在计算时要注意事项,要结合实例,反复讲解。

师生活动设计

1.设f(x)C[0,1],且f(x)dxA,求Idxf(x)f(y)dy。

00x1112.交换积分顺序I22dacos0f(r,)dr,(a0)

讲课提纲、板书设计 高等数学教案

重积分

作业 P154: 1(2),(4);2(1),(3);6(2),(4);12(1),(3);13(3),(4);14(1),(2);15(1)(2)

§103

三重积分 一、三重积分的概念

定义 设f(x y z)是空间有界闭区域上的有界函数 将任意分成n个小闭区域:

v1 v2     vn

其中vi表示第i个小闭区域 也表示它的体积 在每个vi上任取一点(i i i) 作乘积f(

i  i  i)vi(i1 2    n)并作和

f(i,i,i)vi 如果当各小闭区域的直径中的最大值i1n趋于零时

这和的极限总存在

则称此极限为函数f(x y z)在闭区域上的三重积分 记作f(x,y,z)dv

高等数学教案

重积分

limf(i,i,i)vi

f(x,y,z)dv0i1n

三重积分中的有关术语 ——积分号

f(x y z)——被积函数

f(x y z)dv——被积表达式

dv体积元素

x y z——积分变量

——积分区域

在直角坐标系中 如果用平行于坐标面的平面来划分 则vixi yizi  因此也把体积元素记为dv dxdydz 三重积分记作

f(x,y,z)dvf(x,y,z)dxdydz



当函数f(x y z)在闭区域上连续时 极限limf(i,i,i)vi是存在的

0i1n因此f(x y z)在上的三重积分是存在的 以后也总假定f(x y z)在闭区域上是连续的

三重积分的性质 与二重积分类似

比如

[c1f(x,y,z)c2g(x,y,z)]dvc1f(x,y,z)dvc2g(x,y,z)dv



12f(x,y,z)dvf(x,y,z)dvf(x,y,z)dv

12

dvV 其中V为区域的体积 二、三重积分的计算

1 利用直角坐标计算三重积分

三重积分的计算 三重积分也可化为三次积分来计算 设空间闭区域可表为

z1(x y)zz2(x y) y1(x)yy2(x) axb

f(x,y,z)dv[z(x,y)D1z2(x,y)f(x,y,z)dz]d

dxbay(x)[z(x,y)11by2(x)z2(x,y)f(x,y,z)dz]dy f(x,y,z)dz

dxay(x)1y2(x)dyz2(x,y)z1(x,y)高等数学教案

重积分

即 f(x,y,z)dvdxaby2(x)y1(x)dyz2(x,y)z1(x,y)f(x,y,z)dz

其中D : y1(x) y y2(x) axb 它是闭区域在xOy面上的投影区域

提示 设空间闭区域可表为

z1(x y)zz2(x y) y1(x)yy2(x) axb

计算f(x,y,z)dv

基本思想

对于平面区域D

y1(x)yy2(x) axb内任意一点(x y) 将f(x y z)只看作z的函数 在区间[z1(x y)

z2(x y)]上对z积分 得到一个二元函数F(x y)

F(x,y)z2(x,y)1z(x,y)f(x,y,z)dz

然后计算F(x y)在闭区域D上的二重积分 这就完成了f(x y z)在空间闭区域上的三重积分

F(x,y)d[DD1z2(x,y)z1(x,y)f(x,y,z)dz]ddxaby2(x)y1(x)[z2(x,y)z1(x,y)f(x,y,z)dz]dy

则 f(x,y,z)dv[z(x,y)Dz2(x,y)f(x,y,z)dz]d

z2(x,y)

1dxbay(x)[z(x,y)1by2(x)f(x,y,z)dz]dy f(x,y,z)dz

f(x,y,z)dz

dx即

ay(x)1y2(x)dyz2(x,y)z1(x,y)f(x,y,z)dvadxy(x)dyz(x,y)11by2(x)z2(x,y)其中D : y1(x) y y2(x) axb 它是闭区域在xOy面上的投影区域

例1 计算三重积分域

解 作图 区域可表示为:

0z1x2y 0y(1x) 0x1 xdxdydz 其中为三个坐标面及平面x2yz1所围成的闭区12高等数学教案

重积分

于是

xdxdydz 0dx11x1x2y2dyxdz 00

0xdx11x2(1x2y)dy0

111

(x2x2x3)dx4048

讨论 其它类型区域呢?

有时 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分 设空间闭区域{(x y z)|(x y)Dz c1 zc2} 其中Dz是竖坐标为z 的平面截空间闭区域所得到的一个平面闭区域 则有

f(x,y,z)dvcdzf(x,y,z)dxdy

1c2Dz2y2z2x

例2 计算三重积分zdxdydz 其中是由椭球面2221所围成的空间闭

abc2区域

解 空间区域可表为: x2y21z 2 c zc

ab2c2于是

2zzdxdydz zdzdxdyab(12)z2dz4abc3

cc15cD2c2zc

练习:

例3 将三重积分If(x,y,z)dxdydz化为三次积分 其中

(1)是由曲面z1x2y2 z0所围成的闭区域

(2)是双曲抛物面xyz及平面xy10 z0所围成的闭区域

(3)其中是由曲面zx22y2及z2x2所围成的闭区域

例4 将三重积分If(x,y,z)dxdydz化为先进行二重积分再进行定积分的形式

其中由曲面z1x2y2 z0所围成的闭区域

2 利用柱面坐标计算三重积分

设M(x y z)为空间内一点 并设点M在xOy面上的投影P 的极坐标为P( ) 则这样的三个数、、z就叫做点M的柱面坐标 这里规定、、z的变化范围为 高等数学教案

重积分

0< 0 2  

坐标面0   0 zz0的意义

点M 的直角坐标与柱面坐标的关系

xcos

xcos ysin zz  ysin

zz

柱面坐标系中的体积元素 dvdddz

简单来说 dxdydd  dxdydzdxdydzdd dz

柱面坐标系中的三重积分

f(x,y,z)dxdydzf(cos,sin,z)dddz



例5利用柱面坐标计算三重积分围成的闭区域

解 闭区域可表示为

2z4 02 02

于是

zdxdydz 其中是由曲面zxy与平面z4所

2zdxdydzzdddz

1d(164)d ddzdz0020201164

2[826]2026

324222

3 利用球面坐标计算三重积分

设M(x y z)为空间内一点 则点M也可用这样三个有次序的数r、、 来确定 其中 r为原点O与点M间的距离 为OM与z轴正向所夹的角 为从正z轴来看自x轴按逆时针方向转到有向线段OP的角 这里P为点M在xOy面上的投影 这样的三个数r、、 叫做点M的球面坐标 这里r、、 的变化范围为

0r< 0< 0 2

坐标面rr0 0 0的意义,点M的直角坐标与球面坐标的关系

xrsincos

xrsincos yrsinsin zrcos  yrsinsin

zrcos高等数学教案

重积分

球面坐标系中的体积元素

dvr2sindrdd 

球面坐标系中的三重积分

f(x,y,z)dvf(rsincos,rsinsin,rcos)r2sindrdd



例6 求半径为a的球面与半顶角为的内接锥面所围成的立体的体积

解 该立体所占区域可表示为

0r2acos 0 02

于是所求立体的体积为

Vdxdydzr2sindrdddd22acos000r2sindr

20sind2acos0r2dr

316a

33034cossind4a(1cosa)

3提示 球面的方程为x2y2(za)2a2 即x2y2z22az 在球面坐标下此球面的方程为r22arcos 即r2acos

小结

1.三重积分的定义和计算; 2.换元积分公式。

教学方式及教学过程中应注意的问题

在教学过程中要注意三重积分的定义和计算以及换元积分公式的应用,要结合实例,反复讲解。

师生活动设计

1.将If(x,y,z)dv用三次积分表示,其中由六个平面x0,x2,y1,x2y4,zx,z2所围成,f(x,y,z)C()。

2.设由锥面z2I(xyz)dv x2y2和球面x2y2z24所围成,计算讲课提纲、板书设计

作业 P164: 4,5,7,9(1)高等数学教案

重积分

§10 4 重积分的应用

一、曲面的面积

设曲面S由方程 zf(x y)给出 D为曲面S在xOy面上的投影区域 函数f(x y)在D上具有连续偏导数fx(x y)和fy(x y) 现求曲面的面积A 

在区域D内任取一点P(x y) 并在区域D内取一包含点P(x y)的小闭区域d 其面积也记为d 在曲面S上点M(x y f(x y))处做曲面S的切平面T 再做以小区域d的边界曲线为准线、母线平行于z轴的柱面 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值 记为dA 又设切平面T的法向量与z轴所成的角为  则

dAd1f2(x,y)f2(x,y)d

xycos这就是曲面S的面积元素

于是曲面S 的面积为 AD1fx2(x,y)fy2(x,y)d 高等数学教案

重积分

AD1(z)2(z)2dxdy

xy

设dA为曲面S上点M处的面积元素 dA在xOy面上的投影为小闭区域d M在xOy面上的投影为点P(x y) 因为曲面上点M处的法向量为n(fx fy 1) 所以

dA|n|d1fx2(x,y)fy2(x,y)d

提示 dA与xOy面的夹角为(n^ k) dAcos(n^ k)d

nk|n|cos(n^ k)1 cos(n^ k)|n|1

讨论 若曲面方程为xg(y z)或yh(z x) 则曲面的面积如何求?

ADyz1(x)2(x)2dydz

yz1(y2y2)()dzdx

zx或

ADzx其中Dyz是曲面在yOz面上的投影区域

Dzx是曲面在zOx面上的投影区域

例1 求半径为R的球的表面积

提示

yzxzzzR  1()2()2

222222222xyxyRxyRxyRxy

解 球面的面积A为上半球面面积的两倍

上半球面的方程为zR2x2y2 而

yzxz 

222222xyRxyRxy所以

A22xy2R21(z)2(z)2

xy2RdR dxdy2Rd2222200RRxyR0

22xy2R2

4RR22 4R2

例2设有一颗地球同步轨道通讯卫星 距地面的高度为h36000km 运行的角速度与高等数学教案

重积分

地球自转的角速度相同 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R6400km)

二、质心

设有一平面薄片 占有xOy 面上的闭区域D 在点P(x y)处的面密度为(x y) 假定(x y)在D上连续 现在要求该薄片的质心坐标

在闭区域D上任取一点P(x y) 及包含点P(x y)的一直径很小的闭区域d(其面积也记为d) 则平面薄片对x轴和对y轴的力矩(仅考虑大小)元素分别为

dMxy(x y)d dMyx(x y)d

平面薄片对x轴和对y轴的力矩分别为

Mxy(x,y)d Myx(x,y)d

DD

设平面薄片的质心坐标为(x, y)平面薄片的质量为M 则有

xMMy yMMx 

于是

xMyMx(x,y)dD(x,y)dD yMxMy(x,y)dD(x,y)dD

提示 将P(x y)点处的面积元素d看成是包含点P的直径得小的闭区域 D上任取一点P(x y) 及包含的一直径很小的闭区域d(其面积也记为d) 则平面薄片对x轴和对y轴的力矩(仅考虑大小)元素分别为

讨论 如果平面薄片是均匀的 即面密度是常数 则平面薄片的质心(称为形心)如何求?

求平面图形的形心公式为

xd

xDyd

yDdDdD

例3 求位于两圆2sin 和4sin 之间的均匀薄片的质心

解 因为闭区域D对称于y轴 所以质心C(x, y)必位于y轴上 于是x0 高等数学教案

重积分

因为

2ydsinddsindDD4sin02sin2d7

d22123

Dyd所以yDD77 所求形心是C(0, 7)

3d3

3类似地 占有空间闭区域、在点(x y z)处的密度为(x y z)(假宽(x y z)在上连续)的物体的质心坐标是

x1M1 x(x,y,z)dvyM1 y(x,y,z)dvzMz(x,y,z)dv

其中M(x,y,z)dv

例4 求均匀半球体的质心

提示

 0ra 0 02

22adv22d00drsindr2sinddr2dr2a

00003a2zdv02d0242a1a132drcosrsindrsin2ddrdr2

0002420a2

三、转动惯量

设有一平面薄片 占有xOy面上的闭区域D 在点P(x y)处的面密度为(x y) 假定(x y)在D上连续 现在要求该薄片对于x轴的转动惯量和y轴的转动惯量

在闭区域D上任取一点P(x y) 及包含点P(x y)的一直径很小的闭区域d(其面积也记为d) 则平面薄片对于x轴的转动惯量和y轴的转动惯量的元素分别为

dIxy2(x y)d  dI yx2(x y)d 

整片平面薄片对于x轴的转动惯量和y轴的转动惯量分别为

Ixy2(x,y)d Iyx2(x,y)d

DD高等数学教案

重积分

例5 求半径为a 的均匀半圆薄片(面密度为常量)对于其直径边的转动惯量

解 取坐标系如图 则薄片所占闭区域D可表示为

D{(x y)| x2y2a2 y0} 而所求转动惯量即半圆薄片对于x轴的转动惯量Ix 

Ixy2d2sin2dd

DD



其中M0sin d02a4a2dsin d

4031a41Ma2

4241a2为半圆薄片的质量

2类似地 占有空间有界闭区域、在点(x y z)处的密度为(x y z)的物体对于x、y、z轴的转动惯量为

Ix

Iy

Iz(y2z2)(x,y,z)dv

22(zx)(x,y,z)dv (x2y2)(x,y,z)dv

例6 求密度为的均匀球体对于过球心的一条轴l的转动惯量

解 取球心为坐标原点 z轴与轴l重合 又设球的半径为a 则球体所占空间闭区域

{(x y z)| x2y2z2a2}

所求转动惯量即球体对于z轴的转动惯量Iz 

Iz(x2y2) dv

(r2sin2 cos2r2sin2 sin2)r2sindrdd

8a52a2M

4rsindrdddsin drdr0005154323a其中M4a3为球体的质量

3提示

x2y2r2sin2cos2r2sin2 sin2r2sin2

四、引力

我们讨论空间一物体对于物体外一点P0(x0 y0 z0)处的单位质量的质点的引力问题 高等数学教案

重积分

设物体占有空间有界闭区域 它在点(x y z)处的密度为(x y z) 并假定(x y z)在上连续

在物体内任取一点(x y z)及包含该点的一直径很小的闭区域dv(其体积也记为dv) 把这一小块物体的质量dv近似地看作集中在点(x y z)处 这一小块物体对位于P0(x0 y0 z0)处的单位质量的质点的引力近似地为

dF(dFx,dFy,dFz)

(G其中(x,y,z)(xx0)r3dv,G(x,y,z)(yy0)r3dF

dv,G(x,y,z)(zz0)r3dv)

dFx、dFy、dFz为引力元素

在三个坐标轴上的分量

r(xx0)2(yy0)2(zz0)2 G为引力常数 将dFx、dFy、dFz在上分别积分 即可得Fx、Fy、Fz 从而得F(Fx、Fy、Fz)

例7设半径为R的匀质球占有空间闭区域{(x y z)|x2y2z2R2) 求它对于位于点M0(0 0 a)(a>R)处的单位质量的质点的引力

解 设球的密度为0 由球体的对称性及质量分布的均匀性知Fx=Fy=0, 所求引力沿z轴的分量为

FzG0zadv

[x2y2(za)2]3/ G0RRRR(za)dzdxdy 2223/2[xy(za)]x2y2R2z22R2z22

G0(za)dzd0Rd[(za)]23/20

2G011(za)()dz R22azR2aza1R(za)dR22aza2]

aR32R

2G0(2R2R2)

3a4R31GM

G 023aa2

2G0[2R高等数学教案

重积分

其中M4R30为球的质量

3上述结果表明 匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力

小结

1.曲面面积的计算;

2.质心的计算;

3.转动惯量的定义和求解。

教学方式及教学过程中应注意的问题

在教学过程中要注意曲面面积的计算,质心的计算,转动惯量的定义和求解,要结合实例,反复讲解。

师生活动设计 1.设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程2(x2y2),设长度单位为厘米, 时间单位为小时, 已知体积减少的速率与侧zh(t)h(t)面积成正比(比例系数 0.9), 问高度为130 cm 的雪堆全部融化需要多少小时?(2001考研)讲课提纲、板书设计 作业 P175: 1,2,4(1),7(1)

高等数学教案

重积分

习题课

一、重积分计算的基本方法

—— 累次积分法

1.选择合适的坐标系

使积分域多为坐标面(线)围成;被积函数用此坐标表示简洁或变量分离.2.选择易计算的积分序

积分域分块要少, 累次积分易算为妙.3.掌握确定积分限的方法

图示法;列不等式法(从内到外: 面、线、点)

二、重积分计算的基本技巧 1.交换积分顺序的方法

2.利用对称性或重心公式简化计算 3.消去被积函数绝对值符号 4.利用重积分换元公式

三、重积分的应用 1.几何方面

面积(平面域或曲面域), 体积 , 形心 2.物理方面

质量, 转动惯量, 质心, 引力

3.其它方面

四、例题分析

1.在均匀的半径为R的圆形薄片的直径上 , 要接上一个一边与直径等长的同样材料的均匀矩形薄片,使整个薄片的重心恰好落在圆心上 ,问接上去的均匀矩形薄片的另一边长 高等数学教案

重积分

度应为多少? 2.计算积分3.(xy)d,其中D由yD2x2y222x,xy4,xy12所围成。

计算二重积分

DI(xxye)dxdy, 其中

(1)D为圆域 x2y21;(2)D由直线yx,y1,x1围成 P182;6;(1),(3)

第五篇:高等数学教案ch 9 重积分

第九章

重积分

教学目的:

1、理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。

2、掌握二重积分的(直角坐标、极坐标)计算方法。

3、掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。

4、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。教学重点:

1、二重积分的计算(直角坐标、极坐标);

2、三重积分的(直角坐标、柱面坐标、球面坐标)计算。

3、二、三重积分的几何应用及物理应用。教学难点:

1、利用极坐标计算二重积分;

2、利用球坐标计算三重积分;

3、物理应用中的引力问题。

§9 1 二重积分的概念与性质 一、二重积分的概念

1 曲顶柱体的体积

设有一立体 它的底是xOy面上的闭区域D 它的侧面是以D的边界曲线为准线而母线平行于z轴的柱面 它的顶是曲面zf(x y) 这里f(x y)0且在D上连续 这种立体叫做曲顶柱体 现在我们来讨论如何计算曲顶柱体的体积

首先 用一组曲线网把D分成n个小区域:

 1  2      n 

分别以这些小闭区域的边界曲线为准线 作母线平行于z轴的柱面 这些柱面把原来的曲顶柱体分为n个细曲顶柱体 在每个 i中任取一点( i   i) 以f( i   i)为 高而底为 i的平顶柱体的体积为 : f( i   i)i(i1 2     n)

这个平顶柱体体积之和:Vf(i,i)i

i1n可以认为是整个曲顶柱体体积的近似值 为求得曲顶柱体体积的精确值 将分割加密 只需取极限 即 Vlimf(i,i)i

0i1n其中是个小区域的直径中的最大值

2平面薄片的质量

设有一平面薄片占有xOy面上的闭区域D 它在点(x y)处的面密度为(x y) 这里(x y)0且在D上连续 现在要计算该薄片的质量M

用一组曲线网把D分成n个小区域

 1  2      n 

把各小块的质量近似地看作均匀薄片的质量

( i   i) i 

各小块质量的和作为平面薄片的质量的近似值 M(i,i)i

i1nn

将分割加细 取极限 得到平面薄片的质量Mlim(i,i)i

0i1其中是个小区域的直径中的最大值

定义 设f(x y)是有界闭区域D上的有界函数 将闭区域D任意分成n个小闭区域

 1  2      n 

其中 i表示第i个小区域 也表示它的面积 在每个 i上任取一点( i i) 作和

ni1f(i,i)i

如果当各小闭区域的直径中的最大值趋于零时 这和的极限总存在 则称此极限为函数f(x y)在闭区域D上的二重积分 记作f(x,y)d 即

DDf(x,y)dlim0i1f(i,i)i

nf(x y)被积函数 f(x y)d被积表达式 d面积元素 x y积分变量 D积分区域 积分和

直角坐标系中的面积元素

如果在直角坐标系中用平行于坐标轴的直线网来划分D 那么除了包含边界点的一些小闭区域外 其余的小闭区域都是矩形闭区域 设矩形闭区域i的边长为xi和yi 则ixiyi 因此在直角坐标系中 有时也把面积元素d 记作dxdy 而把二重积分记作

Df(x,y)dxdy

其中dxdy叫做直角坐标系中的面积元素

二重积分的存在性 当f(x y)在闭区域D上连续时 积分和的极限是存在的

也就是说函数f(x y)在D上的二重积分必定存在 我们总假定函数f(x y)在闭区域D上连续 所以f(x y)在D上的二重积分都是存在的

二重积分的几何意义 如果f(x y)0 被积函数f(x y)可解释为曲顶柱体的在点(x y)处的竖坐标 所以二重积分的几何意义就是柱体的体积 如果f(x y)是负的 柱体就在xOy 面的下方 二重积分的绝对值仍等于柱体的体积 但二重积分的值是负的

二

二重积分的性质

性质1 设c1、c2为常数 则

[c1f(x,y)c2g(x,y)]dDc1f(x,y)dc2g(x,y)dDD

性质2如果闭区域D被有限条曲线分为有限个部分闭区域 则在D上的二重积分等于在各部分闭区域上的二重积分的和 例如D分为两个闭区域D1与D2 则

Df(x,y)df(x,y)df(x,y)d

D1D

2性质3 1dd(为D的面积)

DD

性质4 如果在D上 f(x y)g(x y) 则有不等式

Df(x,y)dg(x,y)dD

特殊地

|f(x,y)d||f(x,y)|d

DD

性质5 设M、m分别是f(x y)在闭区域D上的最大值和最小值 为D的面积 则有

mDf(x,y)dM

性质6(二重积分的中值定理)设函数f(x y)在闭区域D上连续  为D的面积 则在D上至少存在一点( )使得

Df(x,y)df(,)

§9 2 二重积分的计算法

一、利用直角坐标计算二重积分

X型区域

D 

1(x)y2(x) axb 

Y 型区域

D 

1(x)y2(x) cyd 

混合型区域

设f(x y)0

D{(x y)| 1(x)y2(x) axb}

此时二重积分f(x,y)d在几何上表示以曲面zf(x y)为顶 以区域D为底的D曲顶柱体的体积

对于x0[a b]

曲顶柱体在xx0的截面面积为以区间[1(x0) 2(x0)]为底、以曲线zf(x0 y)为曲边的曲边梯形 所以这截面的面积为

A(x0)2(x0)1(x0)f(x0,y)dy

根据平行截面面积为已知的立体体积的方法 得曲顶柱体体积为

VA(x)dx[aabb2(x)1(x)f(x,y)dy]dx

Vf(x,y)d[Dab2(x)1(x)f(x,y)dy]dx

可记为

Df(x,y)ddxab2(x)1(x)f(x,y)dy

类似地 如果区域D为Y 型区域

D  1(x)y2(x) cyd 

则有

Df(x,y)ddycd2(y)1(y)f(x,y)dx

例1 计算xyd 其中D是由直线y

1、x2及yx所围成的闭区域

D

解 画出区域D

解法1

可把D看成是X型区域 1x2 1yx  于是

xydD21[xydy]dx1x21y2x1x4x22912]1[x]1dx(x3x)dx[2212428x2x

注 积分还可以写成xyddxxydyxdxydy

D1111

2解法2 也可把D看成是Y型区域 1y2 yx2  于是

xydD21[xydx]dyy2212y3y429x222[y]ydy(2y)dy[y]112288

例2 计算y1x2y2d 其中D是由直线y

1、x1及yx所围成的闭区D域

画出区域D 可把D看成是X型区域 1x1 xy1 于是

D1111y1xyddxy1xydy[(1x2y2)2]1dx(|x|31)dx x1x3131222211 2(x31)dx1

301

2也可D看成是Y型区域:1y1 1x

yD1xydydy12211y1x2y2dx

例3 计算xyd 其中D是由直线yx2及抛物线y2x所围成的闭区域

D

解 积分区域可以表示为DD1+D2

其中D1: 0x1, xyx D2: 1x4, 2yx 于是 Dxyddx01xxxydydx14xx2xydy

积分区域也可以表示为D 1y2 y2xy2 于是

Dxyddy12y2y2xydx[121x2y2y]y2dy221[y(y2)22y5]dy

4y621y4352[y2y]1524368

讨论积分次序的选择

4求两个底圆半径都等于的直交圆柱面所围成的立体的体积

设这两个圆柱面的方程分别为

x2y2 2及x2z2 2

利用立体关于坐标平面的对称性 只要算出它在第一卦限部分的体积V1 然后再乘以8就行了

第一卦限部分是以D{(x y)| 0yR2x2, 0x}为底 以zR2x2顶的曲顶柱体 于是

V8Rxd8dx220RR2x20R2x2dy8[R2x2y]0R0R2x2dx

D

8(R2x2)dx16R3

0R3

二

利用极坐标计算二重积分

有些二重积分 积分区域D 的边界曲线用极坐标方程来表示比较方便 且被积函数用极坐标变量、 表达比较简单

这时我们就可以考虑利用极坐标来计算二重积分f(x,y)d

Dn按二重积分的定义f(x,y)dlimD0i1f(i,i)i

下面我们来研究这个和的极限在极坐标系中的形式

以从极点O出发的一族射线及以极点为中心的一族同心圆构成的网将区域D分为n个小闭区域 小闭区域的面积为

i1(ii)2i1i2i1(2ii)ii i(ii)2iiiii

其中i表示相邻两圆弧的半径的平均值

在i内取点(i , i) 设其直角坐标为( i  i)

则有 ii cosi ii sini

nn于是 lim即

0i1f(i,i)ilim0i1f(i cosi,i sini)i ii

Df(x,y)ds,sin)dd

f(coD若积分区域D可表示为

 1() 2()



Df(cos,sin)ddd2()1()f(cos,sin)d

讨论如何确定积分限?

Df(cos,sin)ddd()0f(cos,sin)d

Df(cos,sin)dd220d()0f(cos,sin)d

例5 计算exDy2dxdy 其中D是由中心在原点、半径为a 的圆周所围成的闭区域

在极坐标系中 闭区域D可表示为

0a  0 2  于是 xeD2y2dxdyeddD220[ed]d 0a220[12ae]0d 2221a(1e)d(1ea)

02

注 此处积分exD2y2dxdy也常写成x2y2a2xe2y2dxdy

利用x2y2a2ex2y2dxdy(1ea2)计算广义积分 0exdx

2设D1{(x y)|x2y2R2 x0 y0}

D2{(x y)|x2y22R2 x0 y0}

S{(x y)|0xR 0yR}

显然D1SD2 由于ex

xeD122y20 从则在这些闭区域上的二重积分之间有不等式

2y2dxdyexSy2dxdyexD22y2dxdy

因为

xeS2y2dxdyexdxeydy(exdx)2

000R2R2R2又应用上面已得的结果有

xeD12y2dxdy4(1eR)2

xeD22y2dxdy4(1e2R)

2于是上面的不等式可写成(1eR)(exdx)2(1e2R)

2R22404令R 上式两端趋于同一极限

4 从而exdx

2 02

例6 求球体x2y2z24a2被圆柱面x2y22ax所截得的(含在圆柱面内的部分)立体的体积

由对称性 立体体积为第一卦限部分的四倍

V44a2x2y2dxdy

D其中D为半圆周y2axx2及x轴所围成的闭区域

在极坐标系中D可表示为

02a cos  0 

2于是

V44a22dd42dD02acos04a22d

32a22(1sin3)d32a2(2)

0332§93

三重积分 一、三重积分的概念

定义 设f(x y z)是空间有界闭区域上的有界函数 将任意分成n个小闭区域

v1 v2     vn

其中vi表示第i个小闭区域 也表示它的体积 在每个vi上任取一点(i i i) 作乘积f( i  i  i)vi(i1 2    n)并作和f(i,i,i)vi 如果当各小闭区域的直径

i1n中的最大值趋于零时

这和的极限总存在

则称此极限为函数f(x y z)在闭区域上的三重积分 记作f(x,y,z)dv

f(x,y,z)dvlim0i1f(i,i,i)vi

n

三重积分中的有关术语

——积分号

f(x y z)——被积函数

f(x y z)dv

——被积表达式

dv体积元素

x y z——积分变量

——积分区域

在直角坐标系中 如果用平行于坐标面的平面来划分 则vixi yizi  因此也把体积元素记为dv dxdydz 三重积分记作

f(x,y,z)dvf(x,y,z)dxdydz

当函数f(x y z)在闭区域上连续时 极限limf(i,i,i)vi是存在的

0i1n因此f(x y z)在上的三重积分是存在的 以后也总假定f(x y z)在闭区域上是连续的

三重积分的性质 与二重积分类似

比如

[c1f(x,y,z)c2g(x,y,z)]dvc1f(x,y,z)dvc2g(x,y,z)dv

f(x,y,z)dvf(x,y,z)dvf(x,y,z)dv

1212dvV 其中V为区域的体积 二、三重积分的计算

1 利用直角坐标计算三重积分

三重积分的计算 三重积分也可化为三次积分来计算 设空间闭区域可表为

z1(x y)zz2(x y) y1(x)yy2(x) axb

f(x,y,z)dv[Dz2(x,y)z1(x,y)f(x,y,z)dz]d

dxaby2(x)y1(x)y2(x)y1(x)[z2(x,y)z1(x,y)f(x,y,z)dz]dy f(x,y,z)dz

f(x,y,z)dz

dxabdyz2(x,y)z1(x,y)即 f(x,y,z)dvadxy(x)1by2(x)dyz2(x,y)z1(x,y)其中D : y1(x) y y2(x) axb 它是闭区域在xOy面上的投影区域

提示

设空间闭区域可表为

z1(x y)zz2(x y) y1(x)yy2(x) axb

计算f(x,y,z)dv

基本思想

对于平面区域D

y1(x)yy2(x) axb内任意一点(x y) 将f(x y z)只看作z的函数 在区间[z1(x y)

z2(x y)]上对z积分 得到一个二元函数F(x y)

F(x,y)三重积分

z2(x,y)z1(x,y)f(x,y,z)dz

然后计算F(x y)在闭区域D上的二重积分 这就完成了f(x y z)在空间闭区域上的 DF(x,y)d[Dz2(x,y)z1(x,y)f(x,y,z)dz]ddxaby2(x)y1(x)[z2(x,y)z1(x,y)f(x,y,z)dz]dy

则 f(x,y,z)dv[Dz2(x,y)z1(x,y)f(x,y,z)dz]d

dxaby2(x)y1(x)y2(x)y1(x)[z2(x,y)z1(x,y)f(x,y,z)dz]dy f(x,y,z)dz

dxabdyz2(x,y)z1(x,y)即

f(x,y,z)dvdxaby2(x)y1(x)dyz2(x,y)z1(x,y)f(x,y,z)dz

其中D : y1(x) y y2(x) axb 它是闭区域在xOy面上的投影区域

例1 计算三重积分xdxdydz 其中为三个坐标面及平面x2yz1所围成的闭区域

解 作图 区域可表示为:

0z1x2y 0y1(1x) 0x1

2于是

xdxdydz dx0111x20dy1x2y0xdz

xdx01x20(1x2y)dy2

140(x2x1x3)dx1

讨论 其它类型区域呢?

有时 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分 设空间闭区域{(x y z)|(x y)Dz c1 zc2} 其中Dz是竖坐标为z 的平面截空间闭区域所得到的一个平面闭区域 则有

f(x,y,z)dvdzf(x,y,z)dxdy

c1Dzc

2例2 计算三重积分zdxdydz

222x2y其中是由椭球面22z21所围成的空

abc间闭区域

解 空间区域可表为: 22y2

x221z2 c zc

abc于是

c2cz2dxdydz z2dzdxdyab(1z)z2dz4abc3

2cDzcc1

5练习

1 将三重积分If(x,y,z)dxdydz化为三次积分 其中

(1)是由曲面z1x2y2 z0所围成的闭区域

(2)是双曲抛物面xyz及平面xy10 z0所围成的闭区域

(3)其中是由曲面zx22y2及z2x2所围成的闭区域

2 将三重积分If(x,y,z)dxdydz化为先进行二重积分再进行定积分的形式

其中由曲面z1x2y2 z0所围成的闭区域

2 利用柱面坐标计算三重积分

设M(x y z)为空间内一点 并设点M在xOy面上的投影P 的极坐标为P( ) 则这样的三个数、、z就叫做点M的柱面坐标 这里规定、、z的变化范围为

0< 0 2  

坐标面0   0 zz0的意义

点M 的直角坐标与柱面坐标的关系

xcos ysin zz 

xcosysinzz

柱面坐标系中的体积元素 dvdddz

简单来说 dxdydd  dxdydzdxdydzdd dz

柱面坐标系中的三重积分

f(x,y,z)dxdydzf(cos,sin,z)dddz



例3 利用柱面坐标计算三重积分zdxdydz 其中是由曲面zx2y2与平面z4所围成的闭区域

解 闭区域可表示为

2z4 02 02

于是

zdxdydzzdddz2

42

2ddzdz1d(164)d

00222006 12[8216]2

026

33 利用球面坐标计算三重积分

设M(x y z)为空间内一点 则点M也可用这样三个有次序的数r、、 来确定 其中

r为原点O与点M间的距离 为OM与z轴正向所夹的角 为从正z轴来看自x轴按逆时针方向转到有向线段OP的角 这里P为点M在xOy面上的投影 这样的三个数r、、 叫做点M的球面坐标 这里r、、 的变化范围为

0r< 0< 0 2

坐标面rr0 0 0的意义

点M的直角坐标与球面坐标的关系

xrsincos yrsinsin zrcos 

xrsincosyrsinsinzrcos

球面坐标系中的体积元素

dvr2sindrdd 

球面坐标系中的三重积分

f(x,y,z)dvf(rsincos,rsinsin,rcos)r2sindrdd

例4 求半径为a的球面与半顶角为的内接锥面所围成的立体的体积

解 该立体所占区域可表示为

0r2acos 0 02

于是所求立体的体积为

Vdxdydzrsindrdddd222acos000r2sindr

2sind02acos0r2dr

16a3304a34cossind(1cosa)

提示 球面的方程为x2y2(za)2a2 即x2y2z22az 在球面坐标下此球面的方程为r22arcos 即r2acos

§9 4 重积分的应用

元素法的推广

有许多求总量的问题可以用定积分的元素法来处理 这种元素法也可推广到二重积分的应用中 如果所要计算的某个量U对于闭区域D具有可加性(就是说 当闭区域D分成许多小闭区域时 所求量U相应地分成许多部分量 且U等于部分量之和) 并且在闭区域D内任取一个直径很小的闭区域d时 相应的部分量可近似地表示为f(x y)d 的形式 其中(x y)在d内 则称f(x y)d 为所求量U的元素 记为dU 以它为被积表达式 在闭区域D上积分

Uf(x,y)d

D这就是所求量的积分表达式

一、曲面的面积

设曲面S由方程 zf(x y)给出 D为曲面S在xOy面上的投影区域 函数f(x y)在D上具有连续偏导数fx(x y)和fy(x y) 现求曲面的面积A 

在区域D内任取一点P(x y) 并在区域D内取一包含点P(x y)的小闭区域d 其面积也记为d 在曲面S上点M(x y f(x y))处做曲面S的切平面T 再做以小区域d的边界曲线为准线、母线平行于z轴的柱面 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值 记为dA 又设切平面T的法向量与z轴所成的角为  则

d1fx2(x,y)fy2(x,y)d

dAcos这就是曲面S的面积元素

于是曲面S 的面积为

A1fx2(x,y)fy2(x,y)d

D或

A1(z)2(z)2dxdy

Dxy

设dA为曲面S上点M处的面积元素 dA在xOy面上的投影为小闭区域d M在xOy面上的投影为点P(x y) 因为曲面上点M处的法向量为n(fx fy 1) 所以

dA|n|d1fx2(x,y)fy2(x,y)d

提示 dA与xOy面的夹角为(n^ k) dAcos(n^ k)d

nk|n|cos(n^ k)1 cos(n^ k)|n|1

讨论 若曲面方程为xg(y z)或yh(z x) 则曲面的面积如何求?

ADyz1(x2x)()2dydzyzyx

A1(Dzxyz)2()2dzdx

其中Dyz是曲面在yOz面上的投影区域

Dzx是曲面在zOx面上的投影区域

例1 求半径为R的球的表面积

解 上半球面方程为zR2x2y2 x2y2R2

因为z对x和对y的偏导数在D x2y2R2上无界 所以上半球面面积不能直接求出 因此先求在区域D1 x2y2a2(aR)上的部分球面面积 然后取极限

x2y2a2RRxy222dxdyR02dardrRr220

2R(RR2a2)

于是上半球面面积为lim2R(RR2a2)2R2

aR整个球面面积为

A2A14R2

提示

zxxRxy222 zyyRxy222 1(z)2(z)2xyRRxy222

解 球面的面积A为上半球面面积的两倍

上半球面的方程为zR2x2y2 而

zxxRxy222 zyyRxy222

所以

A2x2y2R21(z2z2)()xyR2R

2x2y2R2R2x2y2R0dxdy2R0ddR220

4RR22 4R2

例2设有一颗地球同步轨道通讯卫星 距地面的高度为h36000km 运行的角速度与地球自转的角速度相同 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R6400km)

解 取地心为坐标原点 地心到通讯卫星中心的连线为z轴 建立坐标系

通讯卫星覆盖的曲面是上半球面被半顶角为的圆锥面所截得的部分 的方程为

zR2x2y2 x2y2R2sin2

于是通讯卫星的覆盖面积为

ADxy1(z2z2)()dxdyxyDxyRRxy222dxdy

其中Dxy{(x y)| x2y2R2sin2}是曲面在xOy面上的投影区域

利用极坐标 得

Ad02RsinRR220d2RRsinR220d2R2(1cos)

由于cosR 代入上式得

Rh

A2R2(1R)2R2hRhRh

由此得这颗通讯卫星的覆盖面积与地球表面积之比为 Ah36106

42.5%

4R22(Rh)2(366.4)106

由以上结果可知 卫星覆盖了全球三分之一以上的面积 故使用三颗相隔23角度的通讯卫星就可以覆盖几乎地球全部表面

二、质心

设有一平面薄片 占有xOy 面上的闭区域D 在点P(x y)处的面密度为(x y) 假定(x y)在D上连续 现在要求该薄片的质心坐标

在闭区域D上任取一点P(x y) 及包含点P(x y)的一直径很小的闭区域d(其面积也记为d) 则平面薄片对x轴和对y轴的力矩(仅考虑大小)元素分别为

dMxy(x y)d dMyx(x y)d

平面薄片对x轴和对y轴的力矩分别为

Mxy(x,y)d Myx(x,y)d

DD

设平面薄片的质心坐标为(x, y)平面薄片的质量为M 则有

xMMy yMMx 

于是

xMMyx(x,y)dD(x,y)dD yMxMy(x,y)dD(x,y)dD

在闭区域D上任取包含点P(x y)小的闭区域d(其面积也记为d) 则

平面薄片对x轴和对y轴的力矩元素分别为

dMxy(x y)d dMyx(x y)d

平面薄片对x轴和对y轴的力矩分别为

Mxy(x,y)d Myx(x,y)d

DD

设平面薄片的质心坐标为(x, y)平面薄片的质量为M 则有

xMMy yMMx 

于是

xMMyx(x,y)dD(x,y)dD yMxMy(x,y)dD(x,y)dD

提示 将P(x y)点处的面积元素d看成是包含点P的直径得小的闭区域 D上任取一点P(x y) 及包含的一直径很小的闭区域d(其面积也记为d) 则平面薄片对x轴和对y轴的力矩(仅考虑大小)元素分别为

讨论 如果平面薄片是均匀的 即面密度是常数 则平面薄片的质心(称为形心)如何求?

求平面图形的形心公式为

xd

xDyd yDdDdD

例3 求位于两圆2sin 和4sin 之间的均匀薄片的质心

解 因为闭区域D对称于y轴 所以质心C(x, y)必位于y轴上 于是x0

因为

ydDD2sinddsind04sin2sin2d7

22d213D

yd所以yDdD777 所求形心是C(0,)

33

3类似地 占有空间闭区域、在点(x y z)处的密度为(x y z)(假宽(x y z)在上连续)的物体的质心坐标是

x1Mx(x,y,z)dv y1My(x,y,z)dv z1Mz(x,y,z)dv

其中M(x,y,z)dv

例4 求均匀半球体的质心

解 取半球体的对称轴为z轴 原点取在球心上 又设球半径为a 则半球体所占空间闭区可表示为

{(x y z)| x2y2z2a2 z0}

显然 质心在z轴上 故xy0

zdvzdv

zdvdv3a8

故质心为(0, 0, 3a)

8提示  0ra 0 02

2

dvd2020drsindrsind020a220da02a3rdr32

zdv02d02da02a1a4123

rcosrsindrsin2ddrdr20024202

三、转动惯量

设有一平面薄片 占有xOy面上的闭区域D 在点P(x y)处的面密度为(x y) 假定(x y)在D上连续 现在要求该薄片对于x轴的转动惯量和y轴的转动惯量

在闭区域D上任取一点P(x y) 及包含点P(x y)的一直径很小的闭区域d(其面积也记为d) 则平面薄片对于x轴的转动惯量和y轴的转动惯量的元素分别为

dIxy2(x y)d  dI yx2(x y)d 

整片平面薄片对于x轴的转动惯量和y轴的转动惯量分别为

Ixy2(x,y)d Iyx2(x,y)d

DD

例5 求半径为a 的均匀半圆薄片(面密度为常量)对于其直径边的转动惯量

解 取坐标系如图 则薄片所占闭区域D可表示为

D{(x y)| x2y2a2 y0} 而所求转动惯量即半圆薄片对于x轴的转动惯量Ix 

Ixy2d2sin2dd

DD

sin d20a0a4d430sin d

2

1a41Ma2

424其中M1a2为半圆薄片的质量

2类似地 占有空间有界闭区域、在点(x y z)处的密度为(x y z)的物体对于x、y、z轴的转动惯量为

Ix(y2z2)(x,y,z)dv

Iy(z2x2)(x,y,z)dv

Iz(x2y2)(x,y,z)dv

例6 求密度为的均匀球体对于过球心的一条轴l的转动惯量

解 取球心为坐标原点 z轴与轴l重合 又设球的半径为a 则球体所占空间闭区域

{(x y z)| x2y2z2a2}

所求转动惯量即球体对于z轴的转动惯量Iz 

Iz(x2y2) dv

2222 cosr2sin sin)r2sindrdd

(r2sin2a82

3r4sindrdddsin3 dr4dra5a2M

000155其中M4a3为球体的质量

3提示

x2y2r2sin2cos2r2sin2 sin2r2sin2

四、引力

我们讨论空间一物体对于物体外一点P0(x0 y0 z0)处的单位质量的质点的引力问题

设物体占有空间有界闭区域 它在点(x y z)处的密度为(x y z) 并假定(x y z)在上连续

在物体内任取一点(x y z)及包含该点的一直径很小的闭区域dv(其体积也记为dv) 把这一小块物体的质量dv近似地看作集中在点(x y z)处 这一小块物体对位于P0(x0 y0 z0)处的单位质量的质点的引力近似地为

dF(dFx,dFy,dFz)

(G(x,y,z)(xx0)r3dv,G(x,y,z)(yy0)r3dv,G(x,y,z)(zz0)r3dv)

其中dFx、dFy、dFz为引力元素dF在三个坐标轴上的分量

r(xx0)2(yy0)2(zz0)2 G为引力常数 将dFx、dFy、dFz在上分别积分 即可得Fx、Fy、Fz 从而得F(Fx、Fy、Fz)

例7设半径为R的匀质球占有空间闭区域{(x y z)|x2y2z2R2) 求它对于位于点M0(0 0 a)(a>R)处的单位质量的质点的引力

解 设球的密度为0 由球体的对称性及质量分布的均匀性知Fx=Fy=0, 所求引力沿z轴的分量为

FzG0zadv[x2y2(za)2]3/2

G0(za)dzRRx2y2R2zdxdy[x2y2(za)2]3/22

G0(za)dzdR0R2R2z22d[(za)]23/20

R

2G0(za)(1R1R2aza22az)dz

2G0[2R1(za)dR22aza2]

aRR

2R32G0(2R2R)

3a24R31MG02G23aa

4R3其中M03为球的质量

上述结果表明 匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力

下载第六章 定积分的应用(三峡大学高等数学教案)[范文模版]word格式文档
下载第六章 定积分的应用(三峡大学高等数学教案)[范文模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    定积分的几何应用教案

    4.3.1 定积分在几何上的应用 教材: 《高等数学》第一册第四版,四川大学数学学院高等数学教研室,2009 第四章第三节 定积分的应用 教学目的: 1. 理解掌握定积分的微元法; 2. 会用......

    ch 6 定积分的应用

    高等数学教案 §6 定积分的应用 第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体......

    高等数学教案(五篇模版)

    第五章 定积分 §5.1 定积分的概念与性质 1.曲边梯形的面积: 设yf(x)在[a , b]上非负、连续.由直线xa、xb、y0及曲线yf(x)所围成的图形称为曲边梯形,其面积记为A. ①把区间[a......

    高等数学教案12

    第十二章 无穷级数 §12.1 常数项级数的概念和性质 1.无穷级数 (级数): u1u2un 记为un. 一般项(第n项)un,部n1分和(前n项和)snu1u2un. sns,则称级数un2.如果limnn1收敛,并写成......

    定积分概念说课稿

    定积分的概念说课稿 一、教材分析 1、教材的地位和作用 本节课选自二十一世纪普通高等教育系列教材《高等数学》第三章第二节定积分的概念与性质,是上承导数、不定积分,下接......

    数学分析教案 (华东师大版)第十章定积分的应用

    《数学分析》教案 第十章 定积分的应用教学要求: 1. 理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分; 2. 熟练地应用本章给出的公式,计算......

    1.7定积分的简单应用 教学设计 教案[5篇范文]

    教学准备 1. 教学目标 (1)知识与技能:解决一些在几何中用初等数学方法难以解决的平面图形面积问题 (2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对定积分几何意义的理......

    定积分的概念说课稿

    定积分的概念说课稿 基础教学部 高黎明 一、教材分析 1、教材的地位和作用 本节课选自同济大学《高等数学》第五章第一节定积分的概念与性质,是上承导数、不定积分,下接定积......