第一篇:高等数学教案ch 8.4~8.8
§8 4 多元复合函数的求导法则
设zf(u v) 而u(t) v(t) 如何求dz?
dt
设zf(u v) 而u(x y) v(x y) 如何求z和z?
xy
1 复合函数的中间变量均为一元函数的情形
定理1 如果函数u(t)及v(t)都在点t可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(t) (t)]在点t可导 且有
dzzduzdv
dtudtvdt
简要证明1 因为zf(u v)具有连续的偏导数 所以它是可微的 即有
dzzduzdv
uv又因为u(t)及v(t)都可导 因而可微 即有
dududt dvdvdt
dtdt代入上式得
dzzdudtzdvdt(zduzdv)dt
udtvdtudtvdt从而
dzzduzdv
dtudtvdt
简要证明2 当t取得增量t时 u、v及z相应地也取得增量u、v及z 由zf(u v)、u(t)及v(t)的可微性 有
zzuzvo()z[duto(t)]z[dvto(t)]o()
uvudtvdt
(zduzdv)t(zz)o(t)o()
udtvdtuvzzduzdv(zz)o(t)o()
tudtvdtuvtt令t0 上式两边取极限 即得
dzzduzdv
dtudtvdto()o()(u)2(v)2注limlim0(du)2(dv)20
tdtdtt0tt0推广 设zf(u v w) u(t) v(t) w(t) 则zf[(t) (t) (t)]对t 的导数为
dzzduzdvzdw
dtudtvdtwdt上述dz称为全导数
dt
2 复合函数的中间变量均为多元函数的情形
定理2 如果函数u(x y) v(x y)都在点(x y)具有对x及y的偏导数 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf [(x y) (x y)]在点(x y)的两个偏导数存在 且有
zzuzv zzuzv
xuxvxyuyvy
推广 设zf(u v w) u(x y) v(x y) w(x y) 则
zzuzvzw
zzuzvzw
xuxvxwxyuyvywy
讨论
(1)设zf(u v) u(x y) v(y) 则z?z?
yx
提示 zzu zzuzdv
xuxyuyvdyz
(2)设zf(u x y) 且u(x y) 则z??
yxffff
提示 zu zu
xuxxyuyyf这里z与是不同的 z是把复合函数zf[(x y) x y]中的y看作不变而对x的xxxffz偏导数 是把f(u x y)中的u及y看作不变而 对x的偏导数 与也朋类似
yyx的区别
3.复合函数的中间变量既有一元函数 又有多元函数的情形
定理3 如果函数u(x y)在点(x y)具有对x及对y的偏导数 函数v(y)在点y可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(x y) (y)]在点(x y)的两个偏导数存在 且有
zzuzdv
zzu
xuxyuyvdy
z
例1 设zeusin v uxy vxy 求z和
xy
解 zzuzv
xuxvx
eusin vyeucos v1
ex y[y sin(xy)cos(xy)]
zzuzv
yuyvy
eusin vxeucos v1
exy[x sin(xy)cos(xy)]
例2 设uf(x,y,z)exff
解 uz
xxzx2y2z2 而zx2siny 求u和u
yx
2xex2y2z22zex2y2z22xsiny
2x(12x2siny)ex2y2x4si2nyff
uz
yyzy
2yex2y2z22zex2y2z2x2cosy
2(yx4sinycoys)ex2y2x4si2ny
例3 设zuvsin t 而uet vcos t 求全导数dz
dt
解 dzzduzdvz
dtudtvdtt
vetu(sin t)cos t
etcos te tsin tcos t
et(cos tsin t)cos t
2ww
例4 设wf(xyz xyz) f具有二阶连续偏导数 求及 xzx
解 令uxyz vxyz 则wf(u v)
f(u,v)f(u,v)f22等
引入记号 f1 f12 同理有f2f11uuvwfufvfyzf
2
xuxvx12ff
w(f1yzf2)1yf2yz2
xzzzzxyf12yf2yzf21xy2zf22
f11y(xz)f12yf2xy2zf22
f11f1f1uf1vfffxyf12 22u2vf21xyf22 f11zuzvzzuzvz
例5 设uf(x y)的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式
注
22u
(1)(u)2(u)2
(2)uxyx2y2解 由直角坐标与极坐标间的关系式得
uf(x y)f(cosθ sinθ)F( θ)
其中xcosθ ysinθ x2y2 arctan应用复合函数求导法则 得
uuxuyuuysincos
uu
xxx2uuyuxuucossin
uu
yyy2y x两式平方后相加 得
(u)2(u)2(u)212(u)2
xy再求二阶偏导数 得
2(u)(u)
ux2xxxxu)co)sin susins(ucosusin
(co22222uusincosusinu2sincosusin 222
2cos22同理可得 222222uuusincosucosu2sincosucos 22sin2222y两式相加 得
22222uuu11u1u
222222[()u]
2xy
全微分形式不变性
设zf(u v)具有连续偏导数 则有全微分
dzzduzdv
uv如果zf(u v)具有连续偏导数 而u(x y) v(x y)也具有连续偏导数 则
zz
dzdxdy
xyzuzv)dx(zuzv)dy
(uxvxuyvyzuuzvv
(dxdy)(dxdy)
uxyvxy
zduzdv
uv由此可见 无论z 是自变量u、v的函数或中间变量u、v的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性
例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分
解 dzzduzdv e usin vdu e ucos v dv uv
e usin v(y dxx dy) e ucos v(dxdy)
(ye usin v e ucos v)dx(xe usin v e ucos v)dy
e xy [y sin(xy)cos(xy)]dx e xy [x sin(xy)cos(xy)]dy
§8 5
隐函数的求导法则 一、一个方程的情形
隐函数存在定理1
设函数F(x y)在点P(x0 y0)的某一邻域内具有连续偏导数 F(x0 y0)0 Fy(x0 y0)0 则方程F(x y)0在点(x0 y0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yf(x) 它满足条件y0f(x0) 并有
Fdyx
dxFy
求导公式证明 将yf(x)代入F(x y)0 得恒等式 F(x f(x))0
dy等式两边对x求导得 FF0
xydx由于F y连续 且Fy(x0 y0)0 所以存在(x0 y0)的一个邻域 在这个邻域同Fy 0 于是得 Fdyx
dxFy
例1 验证方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x) 并求这函数的一阶与二阶导数在x0的值
解 设F(x y)x2y21 则Fx2x Fy2y F(0 1)0 Fy(0 1)20 因此由定理1可知 方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x)
Fdydyxx 0
dxFyydxx0yx(x)dyyxyyy2x2d2y13; 1
dx2y2y2y3ydx2x0
2隐函数存在定理还可以推广到多元函数 一个二元方程F(x y)0可以确定一个一元隐函数 一个三元方程F(x y z)0可以确定一个二元隐函数
隐函数存在定理2
设函数F(x y z)在点P(x0 y0 z0)的某一邻域内具有连续的偏导数 且F(x0 y0 z0)0 Fz(x0 y0 z0)0 则方程F(x y z)0在点(x0 y0 z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zf(x y) 它满足条件z0f(x0 y0) 并有
FF
zx zy
xFzyFz
公式的证明 将zf(x y)代入F(x y z)0 得F(x y f(x y))0
将上式两端分别对x和y求导 得
FxFzz0 FyFzz0
yx因为F z连续且F z(x0 y0 z0)0 所以存在点(x0 y0 z0)的一个邻域 使F z0 于是得
FF
zx zy
xFzyFz2z
例2.设xyz4z0 求2
x
解
设F(x y z) x2y2z24z 则Fx2x Fy2z4 222
zFx2xx
xFz2z42z
z(2x)x(x)(2x)x222zx2z(2x)x
x2(2z)2(2z)2(2z)
3二、方程组的情形
在一定条件下 由个方程组F(x y u v)0 G(x y u v)0可以确定一对二元函数uu(x y) vv(x y) 例如方程xuyv0和yuxv1可以确定两个二元函数uyx
v
x2y2x2y2y 事实上
xuyv0 vxuyuxxu1u22
yyxyyvx222x2
yxyxy
如何根据原方程组求u v的偏导数?
隐函数存在定理设F(x y u v)、G(x y u v)在点P(x0 y0 u0 v0)的某一邻域内具有对各个变量的连续偏导数 又F(x0 y0 u0 v0)0 G(x0 y0 u0 v0)0 且偏导数所组成的函数行列
F(F,G)u式:
J(u,v)GuFv Gv在点P(x0 y0 u0 v0)不等于零 则方程组F(x y u v)0 G(x y u v)0在点P(x0 y0 u0 v0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uu(x y) vv(x y) 它们满足条件u0u(x0 y0) v0v(x0 y0) 并有
FxFvFuFxGGGG(F,G)(F,G)
u1xv
v1ux
xJ(x,v)xJ(u,x)FuFvFuFvGuGvGuGv(F,G)(F,G)
u1
v1
yJ(y,v)yJ(u,y)FuFvFuFvGuGvGuGvFyFvGyGvFuFyGuGy
隐函数的偏导数: 设方程组F(x y u v)0 G(x y u v)0确定一对具有连续偏导数的 二元函数uu(x y) vv(x y) 则
FFuFv0,xuxvxuv 偏导数 由方程组确定
uvxxGxGuGv0.xxFFuFv0,yuyvyuv 偏导数 由方程组确定
uvyyGyGuGv0.yyv 例3 设xuyv0 yuxv1 求u v u和
yxxy 解 两个方程两边分别对x 求偏导 得关于u和v的方程组
xxuxuyv0xx uvyvx0xxyuxvxuyv当x2y2 0时 解之得u22 v22
xxyxxy
两个方程两边分别对x 求偏导 得关于u和v的方程组
yyxuvyv0yy uvuyx0yyxvyuxuyv当x2y2 0时 解之得u22 v22
yxyyxy
另解 将两个方程的两边微分得
udxxduvdyydv0xduydvvdyudx
即
udyyduvdxxdv0yduxdvudyvdx解之得 duxuyvxvyudxdy
x2y2x2y dvyuxvxuyvdxdy
x2y2x2y2xuyvxvyu于是
u22 u22
xyxyxyyuxvxuyv
v22 v22 xxyyxy
例 设函数xx(u v) yy(u v)在点(u v)的某一领域内连续且有连续偏导数
又
(x,y)0 (u,v)xx(u,v)
(1)证明方程组
yy(u,v)在点(x y u v)的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uu(x y) vv(x y)
(2)求反函数uu(x y) vv(x y)对x y的偏导数
解(1)将方程组改写成下面的形式
F(x,y,u,v)xx(u,v)0
G(x,y,u,v)yy(u,v)0则按假设
J(F,G)(x,y)0.(u,v)(u,v)由隐函数存在定理3 即得所要证的结论
(2)将方程组(7)所确定的反函数uu(x y)vv(x y)代入(7) 即得
xx[u(x,y),v(x,y)]
yy[u(x,y),v(x,y)]将上述恒等式两边分别对x求偏导数得
1xuxv
uxvx
yy0uvuxvx由于J0 故可解得
yy
u1 v1
JuxJvx
同理 可得
u1xv1x
yJvyJu
§8 6
多元函数微分学的几何应用
一
空间曲线的切线与法平面
设空间曲线的参数方程为
x(t) y(t) z(t)这里假定(t) (t) (t)都在[ ]上可导
在曲线上取对应于tt0的一点M0(x0 y0 z0)及对应于tt0t的邻近一点M(x0+x y0+y z0+z) 作曲线的割线MM0 其方程为
xx0yy0zz0 xyz当点M沿着趋于点M0时割线MM0的极限位置就是曲线在点M0处的切线 考虑 xx0yy0zz0
xyzttt当MM0 即t0时 得曲线在点M0处的切线方程为
xx0yy0zz0 (t0)(t0)(t0)
曲线的切向量 切线的方向向量称为曲线的切向量 向量
T((t0) (t0) (t0))就是曲线在点M0处的一个切向量
法平面 通过点M0而与切线垂直的平面称为曲线在点M0 处的法平面 其法平面方程为
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
例1 求曲线xt yt2 zt3在点(1 1 1)处的切线及法平面方程
解
因为xt1 yt2t zt3t2 而点(1 1 1)所对应的参数t1 所以
T (1 2 3)
于是 切线方程为
x1y1z
123法平面方程为
(x1)2(y1)3(z1)0 即x2y3z6
讨论
1 若曲线的方程为
y(x) z(x)
问其切线和法平面方程是什么形式
提示 曲线方程可看作参数方程 xx y(x) z(x) 切向量为T(1 (x) (x))
2 若曲线的方程为
F(x y z)0 G(x y z)0
问其切线和法平面方程又是什么形式
提示 两方程确定了两个隐函数
y(x) z(x) 曲线的参数方程为
xx y(x) z(x) dydz0FFFxyzdydzdxdx由方程组可解得和 dydzdxdxGxGyGz0dxdxdydz,) dxdx
例2 求曲线x2y2z26 xyz0在点(1 2 1)处的切线及法平面方程
dydz02x2y2zdxdx
解 为求切向量 将所给方程的两边对x求导数 得dy1dz0dxdx切向量为T(1, 解方程组得dyzxdzxy dxyzdxyzdy0 dz1 dxdx从而T (1 0 1)
所求切线方程为
x1y2z1
101法平面方程为
(x1)0(y2)(z1)0 即xz0
在点(1 2 1)处
二 曲面的切平面与法线
设曲面的方程为
F(x y z)0
M0(x0 y0 z0)是曲面上的一点
并设函数F(x y z)的偏导数在该点连续且不同时为零 在曲面上 通过点M0任意引一条曲线 假定曲线的参数方程式为
x(t) y(t) z(t) tt0对应于点M0(x0 y0 z0) 且(t0) (t0) (t0)不全为零 曲线在点的切向量为
T ((t0) (t0) (t0))
考虑曲面方程F(x y z)0两端在tt0的全导数
Fx(x0 y0 z0)(t0)Fy(x0 y0 z0)(t0)Fz(x0 y0 z0)(t0)0
引入向量
n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0))
易见T与n是垂直的 因为曲线是曲面上通过点M0的任意一条曲线 它们在点M0的切线都与同一向量n垂直 所以曲面上通过点M0的一切曲线在点M0的切线都在同一个平面上 这个平面称为曲面在点M0的切平面 这切平面的方程式是
Fx(x0 y0 z0)(xx0)Fy(x0 y0 z0)(yy0)Fz(x0 y0 z0)(zz0)0
曲面的法线 通过点M0(x0 y0 z0)而垂直于切平面的直线称为曲面在该点的法线 法线方程为
xx0yy0zz0
Fx(x0, y0, z0)Fy(x0, y0, z0)Fz(x0, y0, z0)
曲面的法向量 垂直于曲面上切平面的向量称为曲面的法向量 向量
n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0))就是曲面在点M0处的一个法向量
例3 求球面x2y2z214在点(1 2 3)处的切平面及法线方程式
解
F(x y z) x2y2z214
Fx2x Fy2y Fz2z
Fx(1 2 3)2 Fy(1 2 3)4 Fz(1 2 3)6
法向量为n(2 4 6) 或n(1 2 3)
所求切平面方程为
2(x1)4(y2)6(z3)0 即x2y3z140
y2z3法线方程为x1
3讨论 若曲面方程为zf(x y) 问曲面的切平面及法线方程式是什么形式
提示
此时F(x y z)f(x y)z
n(fx(x0 y0) fy(x0 y0) 1)
例4 求旋转抛物面zx2y21在点(2 1 4)处的切平面及法线方程
解
f(x y)x2y21
n(fx fy 1)(2x 2y 1)
n|(2 1 4)(4 2 1)
所以在点(2 1 4)处的切平面方程为
4(x2)2(y1)(z4)0 即4x2yz60
x2y1z4法线方程为
421§8 7
方向导数与梯度
一、方向导数
现在我们来讨论函数zf(x y)在一点P沿某一方向的变化率问题
设l是xOy平面上以P0(x0 y0)为始点的一条射线 el(cos cos )是与l同方向的单位向量 射线l的参数方程为
xx0t cos yy0t cos (t0)
设函数zf(x y)在点P0(x0 y0)的某一邻域U(P0)内有定义 P(x0t cos y0t cos )为l上另一点 且PU(P0) 如果函数增量f(x0t cos y0t cos )f(x0 y0)与P到P0的距离|PP0|t的比值
f(x0tcos, y0tcos)f(x0,y0)
t当P沿着l趋于P0(即tt0)时的极限存在
则称此极限为函数f(x y)在点P0沿方向l的方向导数 记作fl(x0,y0) 即
fl(x0,y0)limt0f(x0tcos, y0tcos)f(x0,y0)
t
从方向导数的定义可知 方向导数
fl(x0,y0)就是函数f(x y)在点P0(x0 y0)处沿方向l的变化率
方向导数的计算
定理
如果函数zf(x y)在点P0(x0 y0)可微分 那么函数在该点沿任一方向l 的方向导数都存在 且有
fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos
其中cos cos 是方向l 的方向余弦
简要证明 设xt cos yt cos 则
f(x0tcos y0tcos)f(x0 y0)f x(x0 y0)tcosf y(x0 y0)tcoso(t)
所以
f(x0tcos, y0tcos)f(x0,y0)
limfx(x0,y0)cosfy(x0,y0)sin
tt0这就证明了方向导数的存在 且其值为
fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos提示 f(x0x,y0y)f(x0,y0)fx(x0,y0)xfy(x0,y0)yo((x)2(y)2)
xt cos yt cos (x)2(y)2t
讨论 函数zf(x y)在点P 沿x轴正向和负向
沿y轴正向和负向的方向导数如何? 提示
ff
沿x轴正向时 cos cos0
lxff 沿x轴负向时 cos1 cos0
lx2y
例1 求函数zxe在点P(1 0)沿从点P(1 0)到点Q(2 1)的方向的方向导数
解 这里方向l即向量PQ(1, 1)的方向 与l同向的单位向量为
el(1, 1)
22 因为函数可微分 且zx所以所求方向导数为
(1,0)e2y1 z(1,0)y(1,0)2xe2y(1,0)2
z112(1)2
l(1,0)22
2对于三元函数f(x y z)来说 它在空间一点P0(x0 y0 z0)沿el(cos cos cos )的方向导数为
fl(x0,y0,z0)limt0f(x0tcos, y0tcos,z0tcos)f(x0,y0,z0)
t
如果函数f(x y z)在点(x0 y0 z0)可微分 则函数在该点沿着方向el(cos cos cos 的方向导数为
fl(x0,y0,z0)fx(x0 y0 z0)cosfy(x0 y0 z0)cosfz(x0 y0 z0)cos
例2求f(x y z)xyyzzx在点(1 1 2)沿方向l的方向导数 其中l的方向角分别为60 45 60
解 与l同向的单位向量为
el(cos60 cos 45 cos60(1, 2, 1)
222因为函数可微分且
fx(1 1 2)(yz)|(1 1 2)3
fy(1 1 2)(xz)|(1 1 2)3
fz(1 1 2)(yx)|(1 1 2)2 所以
fl3132211(532)
2222(1,1,2)
二 梯度
设函数zf(x y)在平面区域D内具有一阶连续偏导数 则对于每一点P0(x0 y0)D 都可确定一个向量
fx(x0 y0)ify(x0 y0)j
这向量称为函数f(x y)在点P0(x0 y0)的梯度 记作grad f(x0 y0) 即
grad f(x0 y0) fx(x0 y0)ify(x0 y0)j
梯度与方向导数
如果函数f(x y)在点P0(x0 y0)可微分 el(cos cos )是与方向l同方向的单位向量 则
fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos
grad f(x0 y0)el
| grad f(x0 y0)|cos(grad f(x0 y0)^ el)
这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系 特别 当向量el与grad f(x0 y0)的夹角0 即沿梯度方向时 方向导数
fl取得
(x0,y0)最大值 这个最大值就是梯度的模|grad f(x0 y0)| 这就是说 函数在一点的梯度是个向量 它的方向是函数在这点的方向导数取得最大值的方向 它的模就等于方向导数的最大值
f
讨论 的最大值
l
结论 函数在某点的梯度是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值
我们知道 一般说来二元函数zf(x y)在几何上表示一个曲面 这曲面被平面zc(c是常数)所截得的曲线L的方程为
zf(x,y)
zc这条曲线L在xOy面上的投影是一条平面曲线L* 它在xOy平面上的方程为
f(x y)c
对于曲线L*上的一切点 已给函数的函数值都是c 所以我们称平面曲线L*为函数zf(x y)的等值线
若f x f y不同时为零 则等值线f(x y)c上任一点P0(x0 y0)处的一个单位法向量为
n1(fx(x0,y0),fy(x0,y0))
22fx(x0,y0)fy(x0,y0)这表明梯度grad f(x0 y0)的方向与等值线上这点的一个法线方向相同 而沿这个方f向的方向导数就等于|grad f(x0 y0)| 于是
nf
grafd(x0,y0)n
n
这一关系式表明了函数在一点的梯度与过这点的等值线、方向导数间的关系 这说是说 函数在一点的梯度方向与等值线在这点的一个法线方向相同 它的指向为从数值较低的等值线指向数值较高的等值线 梯度的模就等于函数在这个法线方向的方向导数
梯度概念可以推广到三元函数的情形 设函数f(x y z)在空间区域G内具有一阶连续偏导数 则对于每一点P0(x0 y0 z0)G 都可定出一个向量
fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k
这向量称为函数f(x y z)在点P0(x0 y0 z0)的梯度 记为grad f(x0 y0 z0) 即
grad f(x0 y0 z0)fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k
结论 三元函数的梯度也是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值
如果引进曲面
f(x y z)c
为函数的等量面的概念 则可得函数f(x y z)在点P0(x0 y0 z0)的梯度的方向与过点P0的等量面 f(x y z)c在这点的法线的一个方向相同 且从数值较低的等量面指向数值较高的等量面 而梯度的模等于函数在这个法线方向的方向导数
1
x2y2 解 这里f(x,y)212
xy 例3 求grad
因为 ff2y22x22 222
xy(xy)(xy)2y所以
gra d21222x22i222j
xy(xy)(xy)
例4 设f(x y z)x2y2z2 求grad f(1 1 2)
解 grad f(fx fy fz)(2x 2y 2z)
于是
grad f(1 1 2)(2 2 4)
数量场与向量场 如果对于空间区域G内的任一点M 都有一个确定的数量f(M) 则称在这空间区域G内确定了一个数量场(例如温度场、密度场等) 一个数量场可用一个数量函数f(M)来确定 如果与点M相对应的是一个向量F(M) 则称在这空间区域G内确定了一个向量场(例如力场、速度场等) 一个向量场可用一个向量函数F(M)来确定 而
F(M)P(M)iQ(M)jR(M)k
其中P(M) Q(M) R(M)是点M的数量函数
利用场的概念 我们可以说向量函数grad f(M)确定了一个向量场——梯度场 它是由数量场f(M)产生的 通常称函数f(M)为这个向量场的势 而这个向量场又称为势场 必须注意 任意一个向量场不一定是势场 因为它不一定是某个数量函数的梯度场
例5 试求数量场m所产生的梯度场 其中常数m>0
rrx2y2z2为原点O与点M(x y z)间的距离 rmx
解 (m)mxrr2xr3my同理
(m)3 (m)mz 3yrrzrrxiyjzk) 从而
gramdm(rrr2rryzx记erijk 它是与OM同方向的单位向量 则gradmme
rrrrr2r
上式右端在力学上可解释为 位于原点O 而质量为m 质点对位于点M而质量为l的质点的引力 这引力的大小与两质点的质量的乘积成正比、而与它们的距平方成反比 这引力的方向由点M指向原点 因此数量场m的势场即梯度场
rgradm称为引力场 而函数m称为引力势
r
r§88
多元函数的极值及其求法
一、多元函数的极值及最大值、最小值
定义
设函数zf(x y)在点(x0 y0)的某个邻域内有定义 如果对于该邻域内任何异于(x0 y0)的点(x y) 都有
f(x y)
则称函数在点(x0 y0)有极大值(或极小值)f(x0 y0)
极大值、极小值统称为极值 使函数取得极值的点称为极值点
例1 函数z3x24y2在点(0 0)处有极小值
当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极小值
例2 函数zx2y2在点(0 0)处有极大值
当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极大值
例3 函数zxy在点(0 0)处既不取得极大值也不取得极小值
因为在点(0 0)处的函数值为零 而在点(0 0)的任一邻域内 总有使函数值为正的点 也有使函数值为负的点
以上关于二元函数的极值概念 可推广到n元函数
设n元函数uf(P)在点P0的某一邻域内有定义 如果对于该邻域内任何异于P0的点P 都有
f(P)
则称函数f(P)在点P0有极大值(或极小值)f(P0)
定理1(必要条件)设函数zf(x y)在点(x0 y0)具有偏导数 且在点(x0 y0)处有极值 则有
fx(x0 y0)0 fy(x0 y0)0
证明 不妨设zf(x y)在点(x0 y0)处有极大值 依极大值的定义 对于点(x0 y0)的某邻域内异于(x0 y0)的点(x y) 都有不等式
f(x y) 特殊地 在该邻域内取yy0而xx0的点 也应有不等式 f(x y0) 这表明一元函数f(x y0)在xx0处取得极大值 因而必有 fx(x0 y0)0 类似地可证 fy(x0 y0)0 从几何上看 这时如果曲面zf(x y)在点(x0 y0 z0)处有切平面 则切平面 zz0fx(x0 y0)(xx0) fy(x0 y0)(yy0)成为平行于xOy坐标面的平面zz0 类似地可推得 如果三元函数uf(x y z)在点(x0 y0 z0)具有偏导数 则它在点(x0 y0 z0)具有极值的必要条件为 fx(x0 y0 z0)0 fy(x0 y0 z0)0 fz(x0 y0 z0)0 仿照一元函数 凡是能使fx(x y)0 fy(x y)0同时成立的点(x0 y0)称为函数zf(x y)的驻点 从定理1可知 具有偏导数的函数的极值点必定是驻点 但函数的驻点不一定是极值点 例如 函数zxy在点(0 0)处的两个偏导数都是零 函数在(0 0)既不取得极大值也不取得极小值 定理2(充分条件) 设函数zf(x y)在点(x0 y0)的某邻域内连续且有一阶及二阶连续偏导数 又fx(x0 y0)0 fy(x0 y0)0 令 fxx(x0 y0)A fxy(x0 y0)B fyy(x0 y0)C 则f(x y)在(x0 y0)处是否取得极值的条件如下 (1)ACB2>0时具有极值 且当A<0时有极大值 当A>0时有极小值 (2)ACB2<0时没有极值 (3)ACB20时可能有极值 也可能没有极值 在函数f(x y)的驻点处如果 fxx fyyfxy2>0 则函数具有极值 且当fxx<0时有极大值 当fxx>0时有极小值 极值的求法 第一步 解方程组 fx(x y)0 fy(x y)0 求得一切实数解 即可得一切驻点 第二步 对于每一个驻点(x0 y0) 求出二阶偏导数的值A、B和C 第三步 定出ACB2的符号 按定理2的结论判定f(x0 y0)是否是极值、是极大值 还是极小值 例4 求函数f(x y)x3y33x23y29x 的极值 fx(x,y)3x26x90 解 解方程组 2f(x,y)3y6y0y求得x1 3 y0 2 于是得驻点为(1 0)、(1 2)、(3 0)、(3 2) 再求出二阶偏导数 fxx(x y)6x6 fxy(x y)0 fyy(x y)6y6 在点(1 0)处 ACB2126>0 又A>0 所以函数在(1 0)处有极小值f(1 0)5 在点(1 2)处 ACB212(6)<0 所以f(1 2)不是极值 在点(3 0)处 ACB2126<0 所以f(3 0)不是极值 在点(3 2)处 ACB212(6)>0 又A<0 所以函数的(3 2)处有极大值 f(3 2)31 应注意的问题 不是驻点也可能是极值点 例如 函数zx2y2在点(0 0)处有极大值 但(0 0)不是函数的驻点 因此 在考虑函数的极值问题时 除了考虑函数的驻点外 如果有偏导数不存在的点 那么对这些点也应当考虑 最大值和最小值问题 如果f(x y)在有界闭区域D上连续 则f(x y)在D上必定能取得最大值和最小值 这种使函数取得最大值或最小值的点既可能在D的内部 也可能在D的边界上 我们假定 函数在D上连续、在D内可微分且只有有限个驻点 这时如果函数在D的内部取得最大值(最小值) 那么这个最大值(最小值)也是函数的极大值(极小值) 因此 求最大值和最小值的一般方法是 将函数f(x y)在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较 其中最大的就是最大值 最小的就是最小值 在通常遇到的实际问题中 如果根据问题的性质 知道函数f(x y)的最大值(最小值)一定在D的内部取得 而函数在D内只有一个驻点 那么可以肯定该驻点处的函数值就是函数f(x y)在D上的最大值(最小值) 例5 某厂要用铁板做成一个体积为8m3的有盖长方体水箱 问当长、宽、高各取多少时 才能使用料最省 8解 设水箱的长为xm 宽为ym 则其高应为m 此水箱所用材料的面积为 xyA2(xyy8x8)2(xy88)(x0, y0) xyxyxy8)0 得x2 y2 A2(x令Ax2(y8)0yy2x 2根据题意可知 水箱所用材料面积的最小值一定存在 并在开区域D{(x y)|x>0 y>0}内取得 因为函数A在D内只有一个驻点 所以 此驻点一定是A的最小值点 即当水箱的长为2m、宽为2m、高为82m时 水箱所用的材料最省 22 因此A在D内的唯一驻点(2 2)处取得最小值 即长为2m、宽为2m、高为82m时 所用材料最省 2从这个例子还可看出 在体积一定的长方体中 以立方体的表面积为最小 例6 有一宽为24cm的长方形铁板 把它两边折起来做成一断面为等腰梯形的水槽 问怎样折法才能使断面的面积最大? 解 设折起来的边长为xcm 倾角为 那末梯形断面的下底长为242x 上底长为242xcos 高为xsin 所以断面面积 A1(242x2xcos242x)xsin 2即A24xsin2x2sinx2sin cos(0 可见断面面积A是x和的二元函数 这就是目标函数 面求使这函数取得最大值的点(x ) 令Ax24sin4xsin2xsin cos0 A24xcos2x2 cosx2(cos2sin2)0 由于sin 0 x0 上述方程组可化为 122xxcos0 2224cos2xcosx(cossin)0解这方程组 得60 x8cm 根据题意可知断面面积的最大值一定存在 并且在D{(x y)|0 二、条件极值 拉格朗日乘数法 对自变量有附加条件的极值称为条件极值 例如 求表面积为a2而体积为最大的长方体的体积问题 设长方体的三棱的长为x y z 则体积Vxyz 又因假定表面积为a2 所以自变量x y z还必须满足附加条件2(xyyzxz)a2 这个问题就是求函数Vxyz在条件2(xyyzxz)a2下的最大值问题 这是一个条件极值问题 对于有些实际问题 可以把条件极值问题化为无条件极值问题 例如上述问题 由条件2(xyyzxz)a2 解得za2xy 于是得 2(xy)2 Vxy(a2xy) 2(xy)只需求V的无条件极值问题 在很多情形下 将条件极值化为无条件极值并不容易 需要另一种求条件极值的专用方法 这就是拉格朗日乘数法 现在我们来寻求函数zf(x y)在条件(x y)0下取得极值的必要条件 如果函数zf(x y)在(x0 y0)取得所求的极值 那么有 (x0 y0)0 假定在(x0 y0)的某一邻域内f(x y)与(x y)均有连续的一阶偏导数 而y(x0 y0)0 由隐函数存在定理 由方程(x y)0确定一个连续且具有连续导数的函数y(x) 将其代入目标函数zf(x y) 得一元函数 zf [x (x)] 于是xx0是一元函数zf [x (x)]的极值点 由取得极值的必要条件 有 dy0 dzxx0fx(x0,y0)fy(x0,y0)dxdxxx0即 fx(x0,y0)fy(x0,y0)x(x0,y0)0 y(x0,y0)从而函数zf(x y)在条件(x y)0下在(x0 y0)取得极值的必要条件是 fx(x0,y0)fy(x0,y0)x(x0,y0)0与(x0 y0)0同时成立 y(x0,y0)fy(x0,y0) 设 上述必要条件变为 y(x0,y0)fx(x0,y0)x(x0,y0)0 fy(x0,y0)y(x0,y0)0 (x0,y0)0 拉格朗日乘数法 要找函数zf(x y)在条件(x y)0下的可能极值点 可以先构成辅助函数 F(x y)f(x y)(x y) 其中为某一常数 然后解方程组 Fx(x,y)fx(x,y)x(x,y)0 Fy(x,y)fy(x,y)y(x,y)0 (x,y)0由这方程组解出x y及 则其中(x y)就是所要求的可能的极值点 这种方法可以推广到自变量多于两个而条件多于一个的情形 至于如何确定所求的点是否是极值点 在实际问题中往往可根据问题本身的性质来判定 例7 求表面积为a2而体积为最大的长方体的体积 解 设长方体的三棱的长为x y z 则问题就是在条件 2(xyyzxz)a2 下求函数Vxyz的最大值 构成辅助函数 F(x y z)xyz(2xy 2yz 2xz a2) 解方程组 Fx(x,y,z)yz2(yz)0Fy(x,y,z)xz2(xz)0F(x,y,z)xy2(yx)0 z22xy2yz2xza得xyz6a 6这是唯一可能的极值点 因为由问题本身可知最大值一定存在 所以最大值就在这个可能的值点处取得 此时V6a3 -----[xn1 , xn],AA1A2An,xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,Aif(i)xi,Af(i)xi.i1n③max{x1 , x2 , , xn}.Alimf(i)xi.0i 1-----高等数学教案----- n2.变速直线运动的路程: 设速度vv(t)是时间间隔[T1 , T2]上t的连续函数,路程记为s.①把区间[T1 , T2]分成n个小区间:,…,[t0 , t1] [tn1 , tn],[t1 , t2],ss1s2sn,tititi1(i1 , 2 , , n).②在每个小区间[ti1 , ti]上任取一点i,siv(i)ti,-----高等数学教案-----sv(i)ti.i1n③max{t1 , t2 , , tn}.slimv(i)ti.0i1n3.定积分定义: 设yf(x)在[a , b]上有界.①把区间[a , b]分成n个小区间:,[x1 , x2],…,[x0 , x1] [xn1 , xn],-----高等数学教案-----xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,f(i)xi.i1n③max{x1 , x2 , , xn}.如果 limf(i)xi 0i1n存在,且此极限不依赖于对区间[a , b]的分法和在[xi1 , xi]上 -----高等数学教案----- 则称此极限为f(x)i点的取法,在[a , b]上的定积分,记为 f(i)xi.af(x)dxlim0bi1n注意:定积分 af(x)dx只与被积函数f(x)﹑积分区间[a , b]有关,而与积分变量用什么字母表示无关,即 b af(x)dx af(t)dt af(u)du b b b.4.(必要条件).如果f(x , y)在D上可积,则f(x , y)在D上 -----高等数学教案-----有界.5.(充分条件): ①如果f(x)在[a , b]上连续,则f(x)在[a , b]上可积.②如果f(x)在[a , b]上有界,且只有有限个间断点,则f(x)在[a , b]上可积.6.定积分的几何意义: ①如果f(x)在[a , b]上连续,且f(x)0,则 b af(x)dxs (S是曲边梯 -----高等数学教案-----形的面积).②.如果f(x)在[a , b]上连续,且f(x)0,则 b af(x)dxs (S是曲边梯形的面积).③如果f(x)在[a , b]上连续,且f(x)的值有正有负,则 b af(x)dx等于x轴上方的曲边梯形面积减去x轴下方的曲边梯形面积.7.规定: -----高等数学教案----- ①当ab时, af(x)dx0.ab ②当时,ba af(x)dxbf(x)dx.7.定积分的性质: ①f(x)g(x)dxf(x)dxg(x)dx.b b② akf(x)dxk af(x)dx.③ b c b af(x)dx af(x)dx cf(x)dx.④如果在[a , b]上f(x)1,则 b b a1dx adxba.b b b b a a a -----高等数学教案-----⑤如果在[a , b]上f(x)0,则 b af(x)dx0.如果在[a , b]上f(x)g(x),则 b b af(x)dx ag(x)dx, af(x)dx af(x)dx.b b⑥设mf(x)M,则 bm(ba) af(x)dxM(b.⑦(积分中值定理)如果f(x) -----高等数学教案-----在[a , b]上连续,则在[a , b]上至少存在一点,使得 b af(x)dxf()(ba).证:由于f(x)在[a , b]上连续,所以存在最大值M和最小值m,使得 mf(x)M,bm(ba) af(x)dxM(ba),f(x)dx amM,ba -----高等数学教案----- b故在[a , b]上至少存在一点,使得 b af(x)dxf()ba即 b af(x)dxf()(ba).b1称为在f(x)dxf(x) aba[a , b]上的平均值.P23511.证: 对任意实数,有 12 0[f(x)]dx0,1 1222 0f(x)dx 0f(x)dx0 -----高等数学教案-----,所以 124 0f(x)dx4 0f(x)dx0,即 0f(x)dx 0f(x)dx.练习1.设f(x)在[a , b]上连续,且f(x)0,证明: 12 121 af(x)dx af(x)dx(ba)b b.§5.2微积分基本公式 1.积分上限的函数(变上限 -----高等数学教案-----积分): f(x)在[a , b]上连续,称 x(x) af(t)dt x[a , b] 为积分上限的函数.2.如果f(x)在[a , b]上连续,x则(x) af(t)dt可导,且 xd(x)f(t)dtf(x) adx.x例1.求F(x) 0tsintdt的导数.解: F(x)xsinx.-----高等数学教案----- sintdtsinx 0例2.lim lim2x0x02xx1.2 x例3.tedtlim xxxe2x x2 0t2elimx2tedtx x2 0t2xlimx(12 xlimx1 2-----高等数学教案----- 3. (x)f(t)dt f[(x)](x)f[(x)](x)(x)1.2.xbd 例4. xaf(t)dt dxf[(xb)]f[(xa)].例 15.( xedt)ee2x xx12xe.lnx2tlnxx22 -----高等数学教案-----例6.设f(x)在[a , b]上连续,且单调增加,证明: x1 F(x)f(t)dt axa在(a , b]内单调增加.证: 当x(a , b)时,f(x)(xa) af(t)dtF(x) 2(xa)f(x)(xa)f()(xa)2(xa)x f(x)f()(xa) -----高等数学教案----- (ax).由于f(x)在[a , b]上单调增加,而ax,所以 f(x)f()F(x)0,(xa)故F(x)在(a , b]内单调增加.4.微积分基本公式(牛顿—莱布尼茨公式): 如果f(x)在[a , b]上连续,且F(x)是f(x)的一个原函数,则 b af(x)dxF(b)F(a)F(.-----高等数学教案----- 为F(x)、x(x) af(t)dt都是f(x)的原函数,所以(x)F(x)C.由于 (a)F(a)C,a(a) af(t)dt0,得 CF(a),(x)F(x)F(a),(b)F(b)F(a),b即 (b) af(x)dx F(b)F(a) F(x).ba -----高等数学教案-----证: 因 1 1例7. 2dxlnx2 xln1ln2 ln2.1 例 2 1 28. 01xdx 0(1x)dx 1(x1)dx 221xx(x)0(x)22 1.例9.设 x , x[0 , 1), f(x)x , x[1 , 2] ,-----高等数学教案-----2求(x) 0f(t)dt在[0 , 2]上的表达式.x解(x) x2 0tdt , x[0 , 1) 12dt x 0t 1tdt , x[1 ,x3 , 31312(x21), x3 , 31-----高等数学教案 6 ,----- : 2] x[0 ,x[1 , 2x[0 , x[1 , 2 例10.求 x f(x)0tdt 在( , )上的表达式.0tdt , x0解: f(x)x tdt , x002x , x02 2x , x0.2x§5.3 定积分的换元法和分部积分法 -----高等数学教案-----1.定积分的换元法: b af(x)dx x(t)f[(t)](其中f(x)连续,(t)有连续的导数,a(),b(),.例1. 0 4x2dx 2x11t232 32t12 x 1 tdt 2t 321 1(t3)dt 2331t(3t)1 3-----高等数学教案-----例 例 223.2. 1dx 34 1x1 x(t22t) 1(2t2)12 t2 1121 (1t)dt 2(tlnt)112 12ln2.3.2 111x 2 x2dx xsint cost 24 -----高等数学教案----- sin2tcostdt 2 例 2 cottdt 4 2(csc2 t1)dt 4(cottt)2 414. 5 02sinxcosxdx 5 02cosxdcosx (166cosx)20 16.-----高等数学教案----- 4.例5. 0x(2x)dx 12421 0(2x)d(2x)2 25111 [(2x)]0 2531 .102.设f(x)在[a , a]上连续且为偶函数,则 a a af(x)dx2 0f(x)dx.证: a 0 a af(x)dx af(x)dx 0f(x)dx.12 4-----高等数学教案----- af(x)dx xt af(t)( 0 0 af(t)dt 0f(t)dt 0f(x)dx.a a 0所 以 a a a af(x)dx 0f(x)dx 0f(x)dx 2 0f(x)dx.a3.设f(x)在[a , a]上连续且 a为奇函数,则 af(x)dx0.xsinxdx.例6.求 242x3x1 2 -----高等数学教案----- 32xsinx解: 由于f(x)42x3x132是 2奇3函2数,所以 xsinxdx0. 242x3x1例7.求 1sinx(arctanx).dx 121x解: 原式1sinx 1(arctanx). 1dxdx22 11x1xsinx由于f(x)2是奇函数,1x -----高等数学教案-----以(arctanx)是偶函数,所g(x)21x(arctanx)原式02 0 dx21x 122 0(arctanx)d(arctanx)122 312[(arctanx)]0 332()3496例8.设f(x)在[0 , a]上连续,-----高等数学教案-----.3证明: 0f(x)dx 0f(ax)dx.a a证 0f(x)dx 0 xat af(at)(dt)a: af(at)dt 0f(at)dt 0f(ax)dx.a 0 a 例9.若f(x)在[0 , 1]上连续,证明: f(sinx)dx -----高等数学教案-----2 0f(cosx)dx.2 0 证: f(sinx)dx xt 2 2 0f(cost)(d 2 0 f(cost)dt 2 0f(cosx)dx.2 0 例10.若f(x)在[0 , 1]上连续,证明: 0xf(sinx)dx .f(sinx)dx 02 -----高等数学教案-----证: 0xf(sinx)dx 0 xt (t)f(sint) 0(t)f(sint)dt 0f(sint)dt 0tf(sint)dt 0f(sinx)dx 0xf(sinx)dx. 解 0 得 .f(sinx)dx 02例11.若f(x)为连续函数,xf(sinx)dx -----高等数学教案-----且ef(xt)dtxe,求f(x)的表达式.xt证: 0ef(xt)dt xt 0x txu xe 0xuf(u)(du) eef(u)du x xue 0ef(u)du.ux 0 x所以eef(u)duxe,得 xu 0ef(u)dux.将上式两边对x求导数,得 x ef(x)1,x x 0ux -----高等数学教案-----即 f(x)e.4.定积分的分部积分法: x auvdx(uv) auvdx.bba b 例12. 1lnxdx(xlnx) 1dx 55ln5x1 55155ln54.例13. 0xedx(xe) 0edx x1ee0 1xx10 1x1.例14.若f(x)是以T为周期的连续函数,证明: -----高等数学教案----- af(x)dx 0f(x)dx 其中a为常数.aT T证: a 0 aTf(x)dx T aT af(x)dx 0f(x)dx T aT Tf(x)dx af(x)dx xuT 0f(uT)du 0f(u)du 0f(x)dx af(x)dx.0 a a所以 a aT 0f(x)dx T 0 af(x)dx 0f(x)dx af(x)dx -----高等数学教案----- 0f(x)dx.T例15.设f(x)在( , )上连续,证明: 1lim[f(xh)f(x)]dxf(b)f(a) bh0h a证: 设f(x)的一个原函数为F(x),则 b1lima [f(xh)f(x)]dx h0h[F(xh)F(x)]lim h0hF(bh)F(b)limh0hF(ah)F(a)limh0h -----高等数学教案----- baF(b)F(a)f(b)f(a).§5.4 反常积分 1.无穷限的反常积分: ①设f(x)在[a , )上连续,存在,f(x)dxta,如果tlim a则称反常义积分 af(x)dx收敛,且 t af(x)dxtlim.f(x)dx a t否则称反常积分 af(x)dx发散. -----高等数学教案-----②设f(x)在( , b]上连续,tb,如果limtf(x)dx存在,tb则称反常义积分f(x)dx收敛,且 b f(x)dxtlim.f(x)dxtb b否则称反常积分f(x)dx发散.③设f(x)在( , )上连 0 续,如果 f(x)dx与 0f(x)dx都收敛,则称反常积分 f(x)dx收敛,且 b -----高等数学教案----- f(x)dx f(x)dx 0f(x)dx.0 否则称反常积分 f(x)dx发散.2.引入记号: F()limF(x),xF()limF(x).x若在[a , )上F(x)f(x),则当F()存在时, af(x)dxF()F(a) [F(x)].a -----高等数学教案-----若在( , b]上F(x)f(x),则当F()存在时,bf(x)dxF(b)F() [F(x)].b若在上( , )F(x)f(x),则当F()与F()都存在时,f(x)dxF()F() [F(x)].例1.判断反常积分 x 0xedx 2-----高等数学教案-----是否收敛,若收敛求其值.x1解: 原式(e)0 2x11 xlim(e) 221 .2 例2.判断反常积分 1 cosxdx 22的敛散性.解: 原式(sinx) 1sin(1)limsinx.xsinx不存在,由于xlim所以反 -----高等数学教案-----常积分 cosxdx发散.例3.讨论反常积分 1 1 1xdx.解: 1 1xdx (lnx)1 , (111x)1 -----高等数学教案----- 1 1的敛散性 , , 1 , 1 11 , 1 1 1xdx,当1时发散.例4.判断反常积分 1 1x2dx.解: 1 1x2dx -----高等数学教案----- 1所以反常积分时收敛,当 的敛散性 (arctanx)0(arctanx)0 22. 1 例5.判断反常积分 1dx 2xx 的敛散性.1dx解: 1 2xx 11 1()dx x1x[lnxln(1x)]1 -----高等数学教案----- x[ln]1 1xx1limlnln x1x2ln2.3.如果f(x)在点a的任一邻域内都无界,那么称点a为f(x)的瑕点.4.无界函数的反常积分(瑕积分): ①设f(x)在(a , b]上连续,点a为f(x)的瑕点,ta.如果limtf(x)dx存在,则称反常积ta -----高等数学教案-----b分 af(x)dx收敛,且 b af(x)dxlimtf(x)dx.b bt a否则称反常积分 af(x)dx发散.②设f(x)在[a , b)上连续,点b为f(x)的瑕点,tb.如果 blimaf(x)dx存在,则称反常积tbt分 af(x)dx收敛,且 b af(x)dxlimaf(x)dx.btt b否则称反常积分 af(x)dx发散.③设f(x)在[a , b]上除点c(acb)外连续,点c为f(x)的 b -----高等数学教案-----瑕点.如果两个反常积分 b c af(x)dx、 cf(x)dx都收敛,则 b称反常积分 af(x)dx收敛,且 b c b af(x)dx af(x)dx cf(x)dx.b否则称反常积分 af(x)dx发散.5.引入记号: ①设F(x)为f(x)在(a , b]上的一个原函数,a为f(x)的瑕点,则 b af(x)dxF(b)limF(x) xa[F(x)].ba -----高等数学教案-----②设F(x)为f(x)在[a , b)上的一个原函数,b为f(x)的瑕点,则 b af(x)dxlimF(x)F(a) xb[F(x)].ba 例6.判断反常积分 0lnxdx的敛散性.1解: 0lnxdx(xlnx)0dx 11010lim(xlnx)x x 0101.-----高等数学教案----- 1例7.讨论反常积分 0dxx 1的敛散性.解: 11 0xdx (lnx)10 , 1(1111 x)0 , 1 0limx 0lnx , 1lim 0(11x11x) -----高等数学教案----- 1 1 , 1 , 11 , 1 , 1 11所以反常积分 0dx,当1x时收敛,当1时发散.11 例8.判断反常积分 12dxx的敛散性.1解: 12dx x 01 11 12dx 02dx xx 1 -----高等数学教案----- ----- 3.余项rnssnun1un2.aqaaqaqaqn2n1: 例1.判断等比级数(几何级数)n0 (a0)的敛散性.aaq解:①q1时,sn,1qna,收敛,和为limsnaqn1qn0a.1q -----高等数学教案----- naaq②q1时,sn,1qlimsn,aq发散; nnn0nsn,③q1时,snna,limnn0aq发散.n④q1时,0 , n为偶数limsn不存在,sn,na , n为奇数n0aq发散.nn1例2判断级数ln是否收nn1 -----高等数学教案-----敛,若收敛求其和.解: sn(ln2ln1)(ln3ln2) [ln(n1)lnn] ln(n1).P②.3225sn,所以原级数发散.由于limnsn11111(1)()23235111()22n12n111(1).22n1 -----高等数学教案----- 1sn,所以原级数收敛 由于limn24.收敛级数的性质: ①如果un收敛和为s,则kunn1n1也收敛,其和为ks;若un发散,n1则kun(k0)也发散.n1②如果un、vn均收敛,其和n1n1n1,分别为s、则(unvn)也收敛,其和为s.-----高等数学教案----- ③在级数中去掉、加上或改变有限项,不会改变级数的收敛性.④如果un收敛,则对这级数n1的项任意加括号后所成的级数(u1un)(un1un) (un1un) 112k1k也收敛,且其和不变.如果一个级数发散,则加括号后所成的级数可能收敛,也可能发散.如果一个正项级数发散,则加 -----高等数学教案-----括号后所成的级数一定发散.⑤级数收敛的必要条件: 若n1un0.un收敛,则limn例3证明调和级数 1111 23n是发散的.证: 假设调和级数收敛,部分 sns.和为sn,和为s,则limnim(s2nsn)ss0.一方面,ln另一方面,-----高等数学教案----- 111s2nsn n1n22n111 2n2n2n1,2(s2nsn)0,矛盾,故调所以limn和级数发散.1P②.由于调和级数发散,n1n1所以也发散.n13n14P225⑤.由于级数n是公比为 n124225 -----高等数学教案-----11q的几何级数,而q1,所2211以n收敛;由于级数n是公比n12n1311为q的几何级数,而q1,331所以n收敛.n1311由于n与n都收敛,所以n12n1311(nn)收敛.n123§12.2 常数项级数的审敛法 -----高等数学教案-----1.正项级数: un(un0).n12.正项级数un的部分和数列 n1sn单调增加.3.正项级数un收敛部分和 n1数列sn有界.4.比较审敛法: 设un、vn都 n1n1是正项级数,且unvn.①若vn收敛,则un收敛; n1n1 ②若un发散,则vn发散.n1n-----高等数学教案-----5.比较审敛法的推论: 设un、n1n1vn都是正项级数.n1 ①若vn收敛,且存在自然数N,使当nN时有unkvn(k0)成立,则un收敛.n1 ②若un发散,且存在自然数n1N,使当nN时有unkvn(k0)成立,则vn发散.n-----高等数学教案-----例1.判断p级数 1111ppp 23n的敛散性.解: ①当p1时,由于1np而1发散,所以n1n1n1np发散.②当p1时,对于级数 11112p3pnp 加括号后: -----高等数学教案----- 1n,1111111(pp)(pppp)234567 它的各项均不大于级数 1111111(pp)(pppp224444 111p1p1 24的对应项,而后一个级数是收敛的几何级数,所以级数 -----高等数学教案-----1111111(pp)(pppp)2345671收敛,故正项级数p收敛.n1n1例2.判断级数lnn的敛散性.n121111解: 由于lnnlogn,而nn1n221发散,所以lnn发散.n121例3.判断级数lnn的敛散性.n13111解:由于lnnln3,而ln3n13n1nn1n1pln31,是p级数,所以ln3n1n1收敛,从而lnn收敛.n13-----高等数学教案-----例4.若正项级数an与bn均 n1n1收敛,则下列级数也收敛.①anbn;②(anbn);③ 2n1n1an.n1n证: ①由于an与bn均收敛,n1n1所以(anbn)收敛,而n1anbn2anbn,故anbn收敛.n1②由于 -----高等数学教案-----(anbn)an2anbnbn,而an、2n1n1bn与anbn均收敛,所以n12(anbn)收敛.n11③由于an与2均收敛,所n1n1n11an以(an2)收敛,而an22,n1nnnan故收敛.n1n例5.若an与bn均收敛,且n1n1ancnbn,求证:cn收敛.n-----高等数学教案----- 证:由于an与bn均收敛,所n1n1以(bnan)收敛.n1由于ancnbn,所以 n1bnancnan0,而(bnan)收敛,故(cnan)收敛,而an收敛,从n1n1而cn收敛.n16.比较审敛法的极限形式: 设n1un、vn均是正项级数,n1 -----高等数学教案----- un0,且vn收敛,则①若limnn1vnun收敛.n1unl(0l),则vn ②若limnn1vn与un同时收敛和同时发散.n1un,且vn发散,③若limnn1vn则un发散.n11例6.判断级数n的敛散 n1nn -----高等数学教案-----性.1n1nn解:由于llim,而1n1n1nn1发散,所以n发散.n1nn1n1例7.判断级数ln的敛 n1n2n散性.1lnn1nn1解:由于llim2,而n12n11n1收敛.2收敛,所以lnn1n2nn2n -----高等数学教案-----例8.判断级数(21)的敛散 nn1性.解: 由于 nn212ln2llimlimln2nn11n,1n而发散,所以(21)发散.n1n1n7.比值审敛法(达朗贝尔判别法): 设un为正项级数,且n1 -----高等数学教案-----un1lim.nun ①若1,则un收敛; n1 ②若1或,则un发 n1散; ③若1,则un可能收敛也 n1可能发散.1例9.判断级数的敛散 n1(n1)!性.-----高等数学教案----- 1n!01解: 由于lim,n1(n1)!1所以收敛.n1(n1)!n!例10.判断级数n的敛散性.n110: 由于(n1)!n1n110limlim,所nn10n!n10n!以n发散.n110 -----高等数学教案-----解8.根值审敛法(柯西判别法): 设un为正项级数,且n1nu.limnn ①若1,则un收敛; n1 ②若1或,则un发 n1散; ③若1,则un可能收敛也 n1可能发散.2n1n例11.判断级数()的n13n1 -----高等数学教案-----敛散性.解: 由于 2n1nn(lim)n3n12n()3n1limnnn3n1,2n1n所以()收敛.n13n110.交错级数: u1u2u3u4,或 u1u2u3u4,其中u1,u2…都是正数.-----高等数学教案-----11.莱不尼兹定理: 如果交错级数(1)un满足条件: n1n1 ①unun1; imun0,②ln则(1)un收敛,其和su1,其余n1n1项的绝对值rnun1.例12.判断级数(1)n1n11的敛 n散性.解: 由于 -----高等数学教案-----11①,即unun1; nn110,即limu0 ②lim,nnnnn11所以(1)收敛.n1n12.绝对收敛: 如果un收敛,n1则称un绝对收敛.n1例如,级数(1)n1n11绝对收 2n敛.13.条件收敛: 如果un收敛,n-----高等数学教案----- 而un发散,则称un条件收敛.n1n1例如,级数(1)n1n11条件收敛.nn114.如果任意项级数un的绝对值收敛,则un收敛.n11 证: 令Vn(unun),21Wn(unun),则unVn0,2unWn0.由于un收敛,所以Vn、Wnn1n1n-----高等数学教案-----均收敛,故(VnWn)un也收 n1n1敛.15.设un是任意项级数,n1un1nu,如果lim或limnnunn1,un发散,则un发散.n1n1n例13.判别级数(1)是n1n1否收敛,若收敛是条件收敛,还 n1是绝对收敛.-----高等数学教案-----解: 由于lim(1)n以(1)n1n1n1n0,所 n1n发散.n11n例14.判别级数nsin是否 5n12收敛,若收敛是条件收敛,还是绝对收敛.1n11n,解: 由于nsin而n 522n121(是公比为q1的几何级数)21n收敛,所以nsin收敛,故 5n1-----高等数学教案-----1nnsin绝对收敛.5n121例15.判别级数(1)ln(1)nn1是否收敛,若收敛是条件收敛,n还是绝对收敛.11解: 由于ln(1)ln(1),而 n1n1limln(1)0,所以交错级数nn1n(1)ln(1)收敛.n1n由于 -----高等数学教案----- 1(1)ln(1)1 nlimlimnln(1)nn1nnn1nlimln(1)nn1,11n而 发散,所以(1)ln(1)发n1nn1n1n散,故(1)ln(1)条件收敛.n1n§12.3 幂级数 1.区间I上的函数项级数: u1(x)u2(x)un(x).-----高等数学教案-----对于xx0I,常数项级数 u1(x0)u2(x0)un(x0) n1收敛,则称x0为un(x)的收敛点.收敛点的全体称为收敛域,发散点的全体称为发散域.2.(xx0)的幂级数: n0an(xx0)na0a1(xx0)a2(xx0) 2nan(xx0) -----高等数学教案-----3.x的幂级数: n0anx2nna0a1xa2xanx.4.阿贝尔定理: 如果anx当 nn0则当xx0xx0(x00)时收敛,时anx绝对收敛.反之,如果nn0n0anx当xx0时发散,则当nxx0时anx发散.nn0 5.阿贝尔定理的推论: 如果 -----高等数学教案-----n0anx不是仅在x0一点收敛,n也不是在整个数轴上收敛,则存在R0,使得 ①当xR时,幂级数绝对收敛; ②当xR时,幂级数发散; ③当xR与xR时,幂级数可能收敛也可能发散.)为 称R为收敛半径,称(R , R)、收敛区间,收敛域是(R , R[R , R)、(R , R]或[R , R]这四 -----高等数学教案-----个区间之一(由xR处的收敛性决定).规定幂级数仅在x0处收敛时R0,幂级数对一切x都收敛时R.6.对于幂级数anx,如果 nn0an1lim,则 nan -----高等数学教案----- 1 , 0且R , 0 ,0 , . (1)x例1.求的收敛域.n1nn(1)n11解: 由于lim,所n1n(1)n1以R1.n1n -----高等数学教案----- (1)x1当x1时,()nnn1n1发散.(1)n1xn(1)n1当x1时,nnn1n1(1)n1xn条件收敛.因此,的收 nn1敛域为(1 , 1].n1例2.求2(3x)的收敛域.n01nnnn13解: 2(3x) 2x.n01nn01nn1n -----高等数学教案----- 321(n1)lim3nn321nn1,1R.31当时,x3(1)nn1(3x) 绝对收敛.22n01nn01n1当时,x3n112(3x) 2收敛.n01nn01nn1因此,的收敛域为(3x)2n01n -----高等数学教案-----11[ , ].33(1)n例3.求2(x3)的收敛n1nn域.解: 令x3t,则 (1)(1)nn2(x3) 2t.n1nn1n(1)nn对于,2tn1nn1(1)2(n1)lim1R1,.nn(1)2n -----高等数学教案----- nn(1)n1当t1时,2t2收n1nn1nn敛.(1)n(1)2t2绝当t1时,n1nn1nn(1)n对收敛.因此,2t的收敛 n1nn(1)n区间为[1 , 1],故2(x3)n1n的收敛域为[2 , 4].2n11例4.求nx 的收敛域.n03nn -----高等数学教案----- 1x2(n1)1n1213x解: lim.n1x2n13n321令x1,得3x3,收3敛半径为R3.发散.散.2n11当x3时,nx 3n03n02n11当x3时,nx 3发n03n02n11因此,nx 的收敛域为n03(3 , 3). -----高等数学教案-----7.幂级数的运算: s(x)anxn0nn0n和(x)bnx的收敛半径分别为R和R,则 n0anxnnn0bnxnn0(anbn)xs(x)(x)的收敛半径为RminR , R.8.幂级数的性质: ①anx的和函数s(x)在其收nn0敛域I上连续.-----高等数学教案----- ②anx的和函数s(x)在其收nn0敛域I上可积,并有逐项积分公式 0s(x)dx0anxdxn0xxn0anxdx nn0xann1x(xIn0n1,ann1nx与anx的收敛半径相n0n0n1同. -----高等数学教案-----③anx的和函数s(x)在其收nn0敛区间(R , R)内可导,并有逐项求导公式 nns(x)anx(anx) n0n0 nanx(xR),n1n1n1nanxn1与anx的收敛半径相 nn0同.n1例5.求x的和函数.n1n -----高等数学教案----- 1n1R1.1解: lim,n1nn1n1当x1时,x(1)收nn1n1n敛.n11当x1时,x发散.因 n1nn1nn1此,x的收敛域为[1 , 1).n1nn1令s(x)x(1x1),则 n1nnn11s(x)x(x)n1nn1n -----高等数学教案-----x n1n11(1x1).1xs(x) x 0s(x)dxs(0) x10dx0 1ln(1xx)(1x1).例6.求1xn1在其收敛n1n1 , 1)上的和函数.解1xn1x1xnx[ln(1x)] n1nn1n -----高等数学教案----- : 域[ xln(1x)x[1 , 1).例7.求(n1)x在其收敛域 nn1(1 , 1)上的和函数.解: 令s(x)(n1)x,则 nn10s(x)dx0(n1)xdx nn1xxx n1n1x 1x(1x1).-----高等数学教案----- 2s(x)[ 0s(x)dx] xx() 1x22xx2(1x)(1x1).2例8.求nx在其收敛域(1 , 1)nn1上的和函数.解: nxnxxx nnnnn1n1n1nn1n(n1)xx n1n1 -----高等数学教案----- 2xxx 2(1x)1xx .(1 , 1)2(1x)2例9.求(n2)x在其收敛区 nn1间(1 , 1)上的和函数.解n1: nn12(n2)x(n1)xx nnn12xx2(1x)x 1x -----高等数学教案----- 3x2x2(1x)2 (1 , 1).§12.4 函数展开成幂级数 1.设f(x)在x0的某一邻域U(x0)内具有各阶导数,幂级数 (x0)f2f(x0)f(x0)(xx0)(xx0) 2!f(x0)n(xx0) n!称为f(x)的泰勒级数.(n) 如果泰勒级数收敛于f(x),则 -----高等数学教案----- 思想汇报 今天是8月8日,距离5月8日已经过去了整整三个月。 三个月前的今天,我正式成为了一名光荣的预备党员;三个月前的今天,我郑重的向党组织承诺,为人民服务将是我一生追求;三个月前的今天,党组织批准我加入中国共产党,成为一名预备党员。 由一名共青团员转变为一名共产党员,到底是一种什么样的变化?三个月来,我一直在苦苦思索。 记得成为预备党员的第二天,我们需要填写一张表,表格中有政治面貌一项。当时和我同时成为预备党员的一个同学便问我说,我们的政治面貌填什么?团员?还是预备党员?我当时就反问他,你是团员,还是预备党员?也许在旁人看来,这仅仅是一个极其微不足道的小事,于我而言却并非如此。这不仅仅是填写什么的问题,而是一个人的态度问题。当他问我这个问题的时候,我就知道他还没有转变自己的身份,还没有做好成为预备党员的准备。要知道,这不仅仅是一个政治面貌的转变,而是一种责任的增加,行为的约束。 在还是积极分子的时候,王正顺老师就经常给我们说,党员不是一种光环,不是一种荣耀,更不代表着你高高在上,而是一种约束,一种责任,一种担当。如果你把他当做一种光环的话,我劝你们尽早打消入党的念头。要知道,冲锋在前的永远是党员。 王老师的这句话我一直铭记在心,也是我一直以来净化我入党动机的准绳。如今,我真的成为了一名光荣的预备党员,我不禁要问自己,我,准备好了吗?我相信,不仅是我,也许每一个预备党员都在问自己这个问题,团员到党员的转变,自己准备好了吗? 成为预备党员以来,我时时刻刻注意着自己的言行,生怕给党组织抹黑。暑假期间无论是去实习工地,还是去外地旅游,我都时时提醒自己是一名预备党员。身边的同学也都时时关注着自己,自己稍有不慎,便会被同学说道,党员同志,这样的行为可不符合党员规范啊!有的人也许感觉这样的生活太累,我却感觉,这正是提高我们的机会。也许,我们在成为一名预备党员的时候,思想上并没有真正的成为一名真正的预备党员。但是,当我们真正成为一名预备党员的时候,我们便会用一名真正党员的标准要求自己,不断推动自己向更高的方向发展。 三个月的时间,说长不长,说短不短,但就是这三个月的时间让我真正的明白了,什么是一名预备党员,作为一名预备党员应该做什么。 三个月过去了,突然回首刚刚成为预备党员的时候,自己真的成长了很多。相信自己,绝对不会辱没党员这个名字。 汇报人:王坦 2013年8月8日 2010年8月8日星期日 市场管理部 工作总结 施平春 尊敬的公司领导: 你们好。现将我一周来的工作汇报如下,并谈谈我的工作体会。 1、工作回顾: 1)望牛墩创样工程协议的起草(见下文详细说明)。2)望牛墩广告牌的跟进 8月3日,我和部门黄友杏、陈杜华两位同事来到望牛墩肉菜市场,与广告公司一起初步了广告牌的位置和内容,我从中学会了创样宣传中应注意的要点,并了解了工作开展的进程。3)市场材料的整理 这是我一周以来都在做的工作,主要是协助黄友杏副主管整理各个市场的半年总结,为市场的半年总结会做准备。从中,我了解到了市场在上半年经营和管理上的基本信息。 4)市场牛皮癣通知的修改 之前草拟的通知,在部门审核的时候没有通过,主要原因是对相关行为的描述比较模糊。经修改和比较以后,我加深了对类似情况的理解,在以后的工作中,我将尽量避免这种情况再发生。5)培训方面的工作 周五早上,部门同事杨超铭对我和简国华进行了下市场前的培训,着重的讲解了如何与场长交流,如何与经营户打交道以及如何与市场管理员打交道的问题。通过此次培训,我在思想上对下市场有了充分的准备。 2、工作感谢:从望牛墩创样工程协议的签订看市场管理 7月31日,方总、沙总以及市场管理部、发展部、工程部在望牛墩肉菜市场召开现场办公会,制定了下一步的创样工程的方案。8月1日,市场管理部将起草好的协议书带到市场,与市场内的七间粮油铺签订了相关协议,明确了在市场整改中市场和经营户的义务。 一、为什么要签订协议 创样工程中,对路面和墙面的整改占据着很重要的分量。同时,瓷砖墙面和大理石路面又是比较容易被弄脏的,进而直接影响到市场的形象。基于这个前提,与经营户签订协议,是为了日后在管理中占据主动。另外,合理的避免了因整改后路面将升高可能造成的水浸灾害给公司带来的损失。基于这两点,协议的签订 2010年8月8日星期日 市场管理部 保证了我们工作的顺利进行。 二、我在其中做的工作 我在此次事件中,主要负责协议的初步起草工作。第二篇:高等数学教案
第三篇:高等数学教案12
第四篇:思想汇报8.8
第五篇:工作总结8.8