第一篇:第七章 微分方程(三峡大学高等数学教案)
高等数学教案
微分方程
第七章
微分方程
教学目的:
1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)
5. 理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:
1、可分离的微分方程及一阶线性微分方程的解法
(n)
2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)
3、二阶常系数齐次线性微分方程;
4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;
教学难点:
1、齐次微分方程、伯努利方程和全微分方程;
2、线性微分方程解的性质及解的结构定理;
3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
三峡大学高等数学课程建设组
高等数学教案
微分方程
§7 1 微分方程的基本概念
函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程
例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程
解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)
dy2x
(1)
dx此外 未知函数yy(x)还应满足下列条件
x1时 y2 简记为y|x12
(2)把(1)式两端积分 得(称为微分方程的通解)
y2xdx 即yx2C
(3)其中C是任意常数
把条件“x1时 y2”代入(3)式 得
212C
由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)
yx21
例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?
解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式 d2s0.
(4)dt2此外 未知函数ss(t)还应满足下列条件
三峡大学高等数学课程建设组
高等数学教案
微分方程
t0时 s0 vds20 简记为s|=0 s|=20
(5)
t0t0dt
把(4)式两端积分一次 得
vds0.4tC
(6)1dt再积分一次 得
s02t2 C1t C2
(7)这里C1 C2都是任意常数
把条件v|t020代入(6)得
20C1
把条件s|t00代入(7)得0C2
把C1 C2的值代入(6)及(7)式得
v04t 20
(8)
s02t220t
(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间
t2050(s)
0.4再把t50代入(9) 得到列车在制动阶段行驶的路程
s025022050500(m)
几个概念
微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程
常微分方程 未知函数是一元函数的微分方程 叫常微分方程
偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程
微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶
x3 yx2 y4xy3x2
y(4)4y10y12y5ysin2x
y(n)10
一般n阶微分方程
F(x y y
y(n))0
y(n)f(x y y
y(n1))
三峡大学高等数学课程建设组
高等数学教案
微分方程
微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上
F[x (x) (x) (n)(x)]0
那么函数y(x)就叫做微分方程F(x y y y(n))0在区间I上的解
通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解
初始条件 用于确定通解中任意常数的条件 称为初始条件 如
xx0 时 yy0 y y0
一般写成
yxx0y0 yxx0y0
特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解
初值问题 求微分方程满足初始条件的解的问题称为初值问题
如求微分方程yf(x
y)满足初始条件yxx0y0的解的问题 记为
yf(x,y)
yxx0y0
积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线
d2xk2x0
例3 验证 函数 xC1cos ktC2 sin kt是微分方程
的解
dt
2解 求所给函数的导数
dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)
1212dt2d2x将2及x的表达式代入所给方程 得 dt
k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0
d2xk2x0
这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解
dt三峡大学高等数学课程建设组
高等数学教案
微分方程
例4 已知函数xC1cosktC2sinkt(k0)是微分方程
x| t0 A x| t0 0 的特解
解
由条件x| t0 A及xC1 cos ktC2 sin kt 得
C1A
再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得
C20
把C1、C2的值代入xC1cos ktC2sin kt中 得
xAcos kt
作业:P298:4
d2xk2x0的通解 求满足初始条件 2dt
§7 2 可分离变量的微分方程
观察与分析
1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C
一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)
2 求微分方程y2xy2 的通解
因为y是未知的 所以积分2xy2dx无法进行 方程两边直
接积分不能求出通解
为求通解可将方程变为
1dy2xdx 两边积分 得
y21x2C1 或y2yxC三峡大学高等数学课程建设组 高等数学教案
微分方程
可以验证函数y1是原方程的通解
x2C
一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx
形式 则两边积分可得一个不含未知函数的导数的方程
G(y)F(x)C
由方程G(y)F(x)C所确定的隐函数就是原方程的通解
对称形式的一阶微分方程
一阶微分方程有时也写成如下对称形式
P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的
若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有
dyP(x,y)
dxQ(x,y)dxQ(x,y)
dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有
可分离变量的微分方程
如果一个一阶微分方程能写成
g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程
讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy
是 y1dy2xdx (2)3x25xy0
是 dy(3x25x)dx(3)(x2y2)dxxydy=0
不是
(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy
是 10ydy10xdx(6)yxy
不是 yx三峡大学高等数学课程建设组
高等数学教案
微分方程
可分离变量的微分方程的解法
第一步
分离变量 将方程写成g(y)dy f(x)dx的形式
第二步
两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C
第三步
求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解
例1 求微分方程dy2xy的通解
dx
解
此方程为可分离变量方程 分离变量后得
1dy2xdx
y1dy2xdx
y两边积分得
即
ln|y|x2C1
从而
yex2C1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解
yCex
例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律
解 铀的衰变速度就是M(t)对时间t的导数2dM
dtdMM
dtdM0
dt
由于铀的衰变速度与其含量成正比 故得微分方程其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为 M|t0M0
将方程分离变量得
dMdt
M三峡大学高等数学课程建设组
高等数学教案
微分方程
两边积分 得dM()dt
M即
lnMtlnC 也即MCet
由初始条件 得M0Ce0C
所以铀含量M(t)随时间t变化的规律MM0et
例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系
解
设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为
mdvmgkv
dt初始条件为
v|t00
方程分离变量 得
dvdt
mgkvm两边积分 得mgkvm
tC
m1dvdt
ln(mgkv)1kkC1ktmgCem(Ce即
v)
kkmg将初始条件v|t00代入通解得C
kktmg(1em)
于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解
例4 求微分方程dx
解 方程可化为
dy(1x)(1y2)
dx分离变量得
三峡大学高等数学课程建设组
高等数学教案
微分方程
1dy(1x)dx
1y21dy(1x)dx 即1x2xC
arctany1y22两边积分得
于是原方程的通解为ytan(x2xC)
作业:P304:1(1)(2)(3)(7)(9)(10),2(2)(4),3
§7 3 齐次方程
齐次方程
如果一阶微分方程12dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程
xx
下列方程哪些是齐次方程?
dyyy2x2dyyy
(1)xyyyx0是齐次方程()21
dxxdxxx22dy1y
2(2)1xy1y不是齐次方程
dx1x222dyx2y2dyxy
(3)(xy)dxxydy0是齐次方程 dxxydxyx22
(4)(2xy4)dx(xy1)dy0不是齐次方程
(5)(2xshdy2xy4
dxxy1yyy3ych)dx3xchdy0是齐次方程
xxx三峡大学高等数学课程建设组
高等数学教案
微分方程
yy2xsh3ychdyxxdy2thyy
ydxdx3xx3xchx
齐次方程的解法
在齐次方程
ux分离变量 得
ydyy()中 令u 即yux 有 dxxxdu(u)
dxdudx (u)uxdudx(u)ux 两端积分 得
求出积分后 再用y代替u 便得所给齐次方程的通解
xdydyxy
dxdx
例1 解方程y2x2
解
原方程可写成
y2()dyyx
2ydxxyx1x2因此原方程是齐次方程 令
yux 于是原方程变为
ux即
xyu 则 xdyuxdu
dxdxduu2
dxu1duu
dxu1分离变量 得
三峡大学高等数学课程建设组
高等数学教案
微分方程
(1)du1udx
x两边积分 得uln|u|Cln|x|
或写成ln|xu|uC
以y代上式中的u 便得所给方程的通解 x
ln|y|yC
x
例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程
解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM
因为
OAAPOPPMcotOP而
OMx2y2
于是得微分方程
yx
yyxx2y2 y整理得dxx(x)21 这是齐次方程
dyyydxx(x)21
dyyy
问题归结为解齐次方程
令即
yxvdvvv21 即xyv 得vy
dyydvv21 dy分离变量 得dvdy
v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21三峡大学高等数学课程建设组
高等数学教案
微分方程
y22yv1
C2C以yvx代入上式 得y22C(xC)
2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为
y2z22C(xC) 2这就是所求的旋转曲面方程
例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程
解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度
v(vx, vy)(dx, dy) 故有dxvx
dyvydtdtx, y) v(abx, by)
x2y2x2y2x2y2x2y2另一方面 vab(a, 0)b(因此dxvxa(x)21x 即dxa(x)21x
dybyydyvybyydxa(x)21x
dybyy
问题归结为解齐次方程
令
yxu 即xyu 得 yduau21 dyb分离变量 得duady
u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]
将u代入上式并整理 得xy2C三峡大学高等数学课程建设组
aa高等数学教案
微分方程
以x|yh0代入上式 得C1 故鸭子游过的轨迹方程为 haay1by1bh()] 0yh
x[()2hhb将ux代入arshu(lnylnC)后的整理过程
yaarshxb(lnylnC)
yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bby1b1b1aax[(Cy)(Cy)]x[(Cy)a(Cy)a]
2C2bbb作业:P309:1(1)(3)(5),2
§7.4 线性微分方程
一、线性方程
线性方程
方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程
dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0 则方程称为齐次线性方程 否则方程称为非齐次线性方程
方程
下列方程各是什么类型方程?
(1)(x2)
(2)3x25x5y0y3x25x 是非齐次线性方程
(3)yy cos xesin x 是非齐次线性方程
(4)dy10xy 不是线性方程 dx三峡大学高等数学课程建设组
高等数学教案
微分方程
3dy3(y1)2dydxxx00或
(5)(y1) 不是线性方程
dxdydx(y1)2x
32齐次线性方程的解法
齐次线性方程
dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx
y两边积分 得
ln|y|P(x)dxC1
P(x)dx(CeC1)
或
yCe这就是齐次线性方程的通解(积分中不再加任意常数)
例
1求方程(x2)dyy的通解
dx
解
这是齐次线性方程 分离变量得
dydx
yx2两边积分得
ln|y|ln|x2|lnC
方程的通解为
yC(x2)
非齐次线性方程的解法
将齐次线性方程通解中的常数换成x的未知函数u(x) 把
P(x)dx
yu(x)e
设想成非齐次线性方程的通解 代入非齐次线性方程求得
P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)
u(x)e化简得
u(x)Q(x)eP(x)dx
三峡大学高等数学课程建设组
高等数学教案
微分方程
u(x)Q(x)eP(x)dxdxC
于是非齐次线性方程的通解为
P(x)dxP(x)dx
ye[Q(x)edxC] P(x)dxP(x)dxP(x)dx或
yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和
5dy2y(x1)2的通解
例2 求方程dxx1
解
这是一个非齐次线性方程
先求对应的齐次线性方程分离变量得
dy2y0的通解
dxx1dy2dx
yx1两边积分得
ln y2ln(x1)ln C
齐次线性方程的通解为
yC(x1)2
用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得
52u(x1)2(x1)2
u(x1)2u(x1)x12
1u(x1)2
两边积分 得 u(x1)2C
3再把上式代入yu(x1)2中 即得所求方程的通解为 32
y(x1)[(x1)2C]
323
例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)
三峡大学高等数学课程建设组
高等数学教案
微分方程
解
由电学知道 当电流变化时 L上有感应电动势L
EL即
di 由回路电压定律得出 dtdiiR0
dtdiRiE
dtLLdiRiEmsin t
dtLL
把EEmsin t代入上式 得
初始条件为
i|t00
diRiEmsin t为非齐次线性方程 其中
dtLLER t
P(t) Q(t)msinLL
方程由通解公式 得
i(t)eP(t)dtdtdtEP(t)dt[Q(t)edtC]eL(msin teLdtC)
LRRRttEmReL(sinteLdtC)
LRtEm(Rsin t Lcos t)CeL
222RL其中C为任意常数
将初始条件i|t00代入通解 得C因此 所求函数i(t)为
t LEmREmLe(Rsin t Lcos t)
i(t)2R2L2R22L2 LEm
R22L
2二、伯努利方程
伯努利方程 方程
dyP(x)yQ(x)yn(n0 1)dx叫做伯努利方程
三峡大学高等数学课程建设组
高等数学教案
微分方程
下列方程是什么类型方程?
(1)
(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy
1(3)y yyxy1 是伯努利方程 yxx
(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx
伯努利方程的解法 以yn除方程的两边 得
yn令z y1n 得线性方程
dz(1n)P(x)z(1n)Q(x)
dxdyya(lnx)y2的通解
例4 求方程dxx
解 以y2除方程的两端 得
y2dy11yalnx
dxxd(y1)11yalnx
即
dxx令zy1 则上述方程成为
dz1zalnx
dxxa2这是一个线性方程 它的通解为
zx[C(lnx)2]
以y1代z 得所求方程的通解为
yx[C(lnx)2]1
经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程
例
5解方程 a2dy1
dxxy三峡大学高等数学课程建设组 高等数学教案
微分方程
解
若把所给方程变形为
dxxy
dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程
令xyu 则原方程化为
du11 即duu1
dxudxu分离变量 得
ududx
u1两端积分得
uln|u1|xln|C|
以uxy代入上式 得
yln|xy1|ln|C| 或xCeyy1
作业:P315:1(1)(3)(5)(7)(9),2(1)(3)(5),7(1)(2)
§7 5可降阶的高阶微分方程
一、y(n)f(x)型的微分方程
解法 积分n 次
y(n1)f(x)dxC1
y(n2)[f(x)dxC1]dxC2
例1 求微分方程ye2xcos x 的通解
解 对所给方程接连积分三次 得
ye2xsinxC1
三峡大学高等数学课程建设组
12高等数学教案
微分方程
ye2xcosxC1xC2
ye2xsinxC1x2C2xC3
这就是所给方程的通解
或
ye2xsinx2C1
ye2xcosx2C1xC2
ye2xsinxC1x2C2xC3
这就是所给方程的通解
例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律
解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为
2dx
m2F(t)
dt141812121418由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而
F(t)F0(1)
于是质点运动的微分方程又写为 tTd2xF0(1t)
Tdt2mdx|0 其初始条件为x|t00
dtt0
把微分方程两边积分 得
dxF0(tt2)C
1
dtm2T再积分一次 得
F012t x(t)C1tC2
m26T由初始条件x|t00 得C1C20
三峡大学高等数学课程建设组
dx|0
dtt0高等数学教案
微分方程
于是所求质点的运动规律为
x
二、y f(x y)型的微分方程
解法 设yp则方程化为
pf(x p)
设pf(x p)的通解为p(xC1) 则
F012t3(t) 0tT
m26Tdy(x,C1)
dx原方程的通解为
y(x,C1)dxC2
例3 求微分方程
(1x2)y2xy 满足初始条件
y|x01 y|x03 的特解
解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有
dp2xdx
p1x2两边积分 得
ln|p|ln(1x2)C
即
pyC1(1x2)(C1eC)
由条件y|x03 得C13
所以
y3(1x2)
两边再积分 得 yx33xC2
又由条件y|x01 得C21
于是所求的特解为
yx33x1
例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?
三、yf(y y)型的微分方程
解法 设yp有
三峡大学高等数学课程建设组
高等数学教案
微分方程
y原方程化为 dpdpdydpp
dxdydxdydpf(y,p)
dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy
p
dy(y,C1)xC2
dp
dy
例5 求微分yyy20的通解
解 设yp 则yp代入方程 得
ypdp2p0
dy
在y0、p0时 约去p并分离变量 得
dpdy
py两边积分得
ln|p|ln|y|lnc
即
pCy或yCy(Cc)
再分离变量并两边积分 便得原方程的通解为
ln|y|Cxlnc1
或
yC1eCx(C1c1)
作业:P323:1(1)(3)(5)(7)(9),2(1)(3)(5)
三峡大学高等数学课程建设组
高等数学教案
微分方程
§7 6 高阶线性微分方程 一、二阶线性微分方程举例
例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点
给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)
设弹簧的弹性系数为c 则恢复力fcx
又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则
Rdx
dt
由牛顿第二定律得
md2xcxdx
2dtdt
移项 并记2nc k2
mmd2x2ndxk2x0则上式化为
dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程
如果振动物体还受到铅直扰力
FHsin pt 的作用 则有
d2x2ndxk2xhsinpt
dtdt2H其中h 这就是强迫振动的微分方程
m
例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数
设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL 由电学知道
iqdqdi uc ELL
Cdtdt三峡大学高等数学课程建设组
高等数学教案
微分方程
根据回路电压定律 得
ELdiqRi0
dtCd2ucducRCucEmsint
即
LC2dtdt或写成
d2ucducEm22usint
0c2dtLCdtR 1 这就是串联电路的振荡方程 其中02LLC
如果电容器经充电后撤去外电源(E0) 则上述成为
d2ucduc220uc0
2dtdt
二阶线性微分方程 二阶线性微分方程的一般形式为
yP(x)yQ(x)yf(x)
若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的
二、线性微分方程的解的结构
先讨论二阶齐次线性方程
d2ydyQ(x)y0
yP(x)yQ(x)y0 即2P(x)dxdx
定理
1如果函数y1(x)与y2(x)是方程
yP(x)yQ(x)y0的两个解 那么
yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数
齐次线性方程的这个性质表明它的解符合叠加原理
证明 [C1y1C2y2]C1 y1C2 y2
[C1y1C2y2]C1 y1C2 y2
因为y1与y2是方程yP(x)yQ(x)y0 所以有
y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20
从而
[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]
三峡大学高等数学课程建设组
高等数学教案
微分方程
C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000
这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解
函数的线性相关与线性无关
设y1(x) y2(x) yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2 kn 使得当xI 时有恒等式
k1y1(x)k2y2(x)
knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关
判别两个函数线性相关性的方法
对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关
例如 1 cos2x sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无关的
定理2 如果如果函数y1(x)与y2(x)是方程
yP(x)yQ(x)y0 的两个线性无关的解 那么
yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解
例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解
解 因为
y1y1cos xcos x0
y2y2sin xsin x0
所以y1cos x与y2sin x都是方程的解
因为对于任意两个常数k1、k2 要使
k1cos xk2sin x0
只有k1k20 所以cos x与sin x在(, )内是线性无关的
因此y1cos x与y2sin x是方程yy0的线性无关解
方程的通解为yC1cos xC2sin x
例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解
解 因为
三峡大学高等数学课程建设组
高等数学教案
微分方程
(x1)y1xy1y10xx0
(x1)y2xy2y2(x1)exxexex0
所以y1x与y2ex都是方程的解
因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的
因此y1x 与y2ex是方程(x1)yxyy0的线性无关解
方程的通解为yC1xC2e x
推论 如果y1(x) y2(x) yn(x)是方程
y(n)a1(x)y(n1) an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为
yC1y1(x)C2y2(x) Cnyn(x)
其中C1 C2 Cn为任意常数
二阶非齐次线性方程解的结构
我们把方程
yP(x)yQ(x)y0 叫做与非齐次方程
yP(x)yQ(x)yf(x)对应的齐次方程
定理3 设y*(x)是二阶非齐次线性方程
yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么
yY(x)y*(x)是二阶非齐次线性微分方程的通解
证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]
[Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]
0 f(x) f(x)
例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此
yC1cos xC2sin xx22 是方程yyx2的通解
定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如
三峡大学高等数学课程建设组
高等数学教案
微分方程
yP(x)yQ(x)yf1(x) f2(x)
而y1*(x)与y2*(x)分别是方程
yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解
证明提示
[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]
[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]
f1(x)f2(x)
作业:P331:1(1)(3)(5)(7),4(1)(3)(5)
§7 7 二阶常系数齐次线性微分方程
二阶常系数齐次线性微分方程 方程 ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数
如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解
我们看看
能否适当选取r 使yerx
满足二阶常系数齐次线性微分方程 为此将yerx代入方程
ypyqy0 得
(r 2prq)erx 0
由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解
特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式
pp24q
r 1,22求出
三峡大学高等数学课程建设组
高等数学教案
微分方程
特征方程的根与通解的关系
(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解
这是因为
函数y1er1x、y2er2x是方程的解 又因此方程的通解为
yC1er1xC2er2x
(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分方程的两个线性无关的解
这是因为 y1er1x是方程的解 又
r1xr1x2r1x
(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x
2er1x(2r1p)xe(r1pr1q)0
y1er1x(r1r2)x不是常数
ey2er2xy2xer1xx不是常数
所以y2xe也是方程的解 且y1er1xr1x
因此方程的通解为
yC1er1xC2xer1x
(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解
函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得
y1e(i)xex(cosxisinx)
y2e(i)xex(cosxisinx)
1y1y22excosx excosx(y1y2)
2三峡大学高等数学课程建设组
高等数学教案
微分方程
1y1y22iexsinx exsinx(y1y2)
2i故excosx、y2exsinx也是方程解
可以验证 y1excosx、y2exsinx是方程的线性无关解
因此方程的通解为
yex(C1cosxC2sinx)
求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为
第一步
写出微分方程的特征方程
r2prq0 第二步
求出特征方程的两个根r1、r2
第三步
根据特征方程的两个根的不同情况 写出微分方程的通解
例1 求微分方程y2y3y0的通解
解 所给微分方程的特征方程为
r22r30 即(r1)(r3)0
其根r11 r23是两个不相等的实根 因此所求通解为
yC1exC2e3x
例2 求方程y2yy0满足初始条件y|x0
4、y| x02的特解
解 所给方程的特征方程为
r22r10 即(r1)20
其根r1r21是两个相等的实根 因此所给微分方程的通解为
y(C1C2x)ex
将条件y|x04代入通解 得C14 从而
y(4C2x)ex
将上式对x求导 得
y(C24C2x)ex
再把条件y|x02代入上式 得C22 于是所求特解为
x(42x)ex
例 3 求微分方程y2y5y 0的通解
解 所给方程的特征方程为
三峡大学高等数学课程建设组
高等数学教案
微分方程
r22r50
特征方程的根为r112i r212i 是一对共轭复根
因此所求通解为
yex(C1cos2xC2sin2x)
n 阶常系数齐次线性微分方程 方程
y(n)p1y(n1)p2 y(n2) pn1ypny0
称为n 阶常系数齐次线性微分方程 其中 p1
p2 pn1 pn都是常数
二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去
引入微分算子D 及微分算子的n次多项式
L(D)=Dn p1Dn1p2 Dn2 pn1Dpn 则n阶常系数齐次线性微分方程可记作
(Dn p1Dn1p2 Dn2 pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy Dnyy(n)
分析 令yerx 则
L(D)yL(D)erx(rn p1rn1p2 rn2 pn1rpn)erxL(r)erx
因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解
n 阶常系数齐次线性微分方程的特征方程
L(r)rn p1rn1p2 rn2 pn1rpn0 称为微分方程L(D)y0的特征方程
特征方程的根与通解中项的对应
单实根r 对应于一项 Cerx
一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)
k重实根r对应于k项 erx(C1C2x Ck xk1)
一对k 重复根r1 2 i 对应于2k项
ex[(C1C2x Ck xk1)cosx(D1D2x Dk xk1)sinx]
例4 求方程y(4)2y5y0 的通解
解
这里的特征方程为
r42r35r20 即r2(r22r5)0
三峡大学高等数学课程建设组
高等数学教案
微分方程
它的根是r1r20和r3 412i
因此所给微分方程的通解为
yC1C2xex(C3cos2xC4sin2x)
例5 求方程y(4) 4y0的通解 其中0
解
这里的特征方程为
r4 40
它的根为r1,22(1i) r3,42(1i)
因此所给微分方程的通解为
ye2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x)
作业:P340:1(1)(3)(2)(4)(5)(6)(8),2(2)(4)(6)
§7 8 二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微分方程 方程
ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数
二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和
yY(x) y*(x)
当f(x)为两种特殊形式时 方程的特解的求法
一、f(x)Pm(x)ex 型
当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式
三峡大学高等数学课程建设组
高等数学教案
微分方程
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式
Qm(x)b0xmb1xm1 bm1xbm
通过比较等式两边同次项系数 可确定b0 b1 bm 并得所求特解
y*Qm(x)ex
(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
成立 Q(x)应设为m1 次多项式
Q(x)xQm(x)
Qm(x)b0xm b1xm1
bm1xbm
通过比较等式两边同次项系数 可确定b0 b1
bm 并得所求特解
y*xQm(x)ex
(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
成立 Q(x)应设为m2次多项式
Q(x)x2Qm(x)
Qm(x)b0xmb1xm1 bm1xbm
通过比较等式两边同次项系数 可确定b0 b1 bm 并得所求特解
y*x2Qm(x)ex
综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如
y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2
例1 求微分方程y2y3y3x1的一个特解
解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)
与所给方程对应的齐次方程为
y2y3y0
三峡大学高等数学课程建设组
高等数学教案
微分方程
它的特征方程为
r22r30
由于这里0不是特征方程的根 所以应设特解为
y*b0xb1
把它代入所给方程 得
3b0x2b03b13x1
比较两端x同次幂的系数 得
3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为
y*x
例2 求微分方程y5y6yxe2x的通解
解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)
与所给方程对应的齐次方程为
y5y6y0
它的特征方程为
r25r 60
特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为
YC1e2xC2e3x
由于2是特征方程的单根 所以应设方程的特解为
y*x(b0xb1)e2x
把它代入所给方程 得
2b0x2b0b1x
比较两端x同次幂的系数 得
13132b01 2b01 2b0b10 2bb001三峡大学高等数学课程建设组
高等数学教案
微分方程
由此求得b01 b1 于是求得所给方程的一个特解为 121 y*x(x1)e2x
从而所给方程的通解为
yC1e2xC2e3x(x22x)e2x
提示
y*x(b0xb1)e2x(b0x2b1x)e2x
[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x
[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x
y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x
方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式
应用欧拉公式可得
ex[Pl(x)cosxPn(x)sinx]
ex[Pl(x)12ei xei xP(x)ei xei x] n22i
[Pe(i)x[Pe(i)x
l(x)iPn(x)]l(x)iPn(x)]
P(x)e(i)xP(x)e(i)x
其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}
设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x
则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解
其中k按i不是特征方程的根或是特征方程的根依次取0或1
于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为
三峡大学高等数学课程建设组
12121212高等数学教案
微分方程
y*xkQm(x)e(i)xxkQm(x)e(i)x
xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)
xk ex[R(1)m(x)cosxR(2)m(x)sinx]
综上所述 我们有如下结论
如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程
ypyqyf(x)的特解可设为
y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]
其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1
例3 求微分方程yyxcos2x的一个特解
解 所给方程是二阶常系数非齐次线性微分方程
且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)
与所给方程对应的齐次方程为
yy0
它的特征方程为
r210
由于这里i2i 不是特征方程的根 所以应设特解为
y*(axb)cos2x(cxd)sin2x
把它代入所给方程 得
(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x
比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x
提示
y*(axb)cos2x(cxd)sin2x
y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x
三峡大学高等数学课程建设组
134
91349高等数学教案
微分方程
(2cxa2d)cos2x(2ax2bc)sin2x
y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x
(4ax4b4c)cos2x(4cx4a4d)sin2x
y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x
3a13b4c014由 得a b0 c0 d 3c0394a3d0作业:P347:1(1)(2)(5)(9)2(2)(3)(4)
三峡大学高等数学课程建设组
第二篇:第六章 定积分的应用(三峡大学高等数学教案)[范文模版]
高等数学教案
定积分的应用
教学目的 第六章
定积分的应用
1、理解元素法的基本思想;
2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:
1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:
1、截面面积为已知的立体体积。
2、引力。
§6 1 定积分的元素法
回忆曲边梯形的面积
设yf(x)0(x[a b]) 如果说积分
Aaf(x)dx
b是以[a b]为底的曲边梯形的面积 则积分上限函数
A(x)af(t)dt
x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素
以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分
Aaf(x)dx
b
一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得
Uaf(x)dx
b
用这一方法求一量的值的方法称为微元法(或元素法)
三峡大学高等数学课程建设组
高等数学教案
定积分的应用
§6 2 定积分在几何上的应用
一、平面图形的面积
1.直角坐标情形
设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为
Sa[f上(x)f下(x)]dx
类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为
Sc[右(y)左(y)]dy
例1 计算抛物线y2x、yx2所围成的图形的面积
解(1)画图
(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2
(4)计算积分 db1
S(xx)dx[2x21x3]10033321
3例2 计算抛物线y22x与直线yx4所围成的图形的面积
解(1)画图
(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4
2(4)计算积分418
S2(y41y2)dy[1y24y1y3]426222y 例3 求椭圆x221所围成的图形的面积
ab 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx
所以 2S40ydx a椭圆的参数方程为: xa cos t yb sin t
于是
S40ydx4bsintd(acost)
2a0三峡大学高等数学课程建设组
高等数学教案
定积分的应用
4absintdt2ab02(1cos2t)dt2abab
2202
2.极坐标情形
曲边扇形及曲边扇形的面积元素
由曲线()及射线 围成的图形称为曲边扇形 曲边扇形的面积元素为 dS1[()]2d 2曲边扇形的面积为
S1[()]2d 2
例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积
224a23
解: S01(a)2d1a2[13]02332
例5.计算心形线a(1cos)(a>0)所围成的图形的面积
解: S201[a(1cos]2da20(12cos1cos2)d
22232
a2[32sin1sin2]0a
242
二、体 积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴
常见的旋转体 圆柱、圆锥、圆台、球体
旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体
设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx
于是体积元素为
dV [f(x)]2dx
旋转体的体积为
Va[f(x)]2dx
例
1连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积
解: 直角三角形斜边的直线方程为yrx
h
所求圆锥体的体积为
三峡大学高等数学课程建设组
b高等数学教案
定积分的应用
22hrr1hr2
V0(x)dx2[1x3]0h3h32y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积
ab
解: 这个旋转椭球体也可以看作是由半个椭圆 h
yba2x2
a及x轴围成的图形绕x轴旋转而成的立体 体积元素为dV y 2dx
于是所求旋转椭球体的体积为
22a2 Vb2(a2x2)dxb2[a2x1x3]aaab
a33aa
例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积
解
所给图形绕x轴旋转而成的旋转体的体积为
Vx0y2dx0a2(1cost)2a(1cost)dt
a30(13cost3cos2tcos3t)dt
5 2a 3
所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则
22(y)dy0x1(y)dy
Vy0x22a2a22a2
2a2(tsint)2asintdt0a2(tsint)2asintdt
a30(tsint)2sintdt6 3a 3
2.平行截面面积为已知的立体的体积
设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx 立体的体积为
VaA(x)dx
例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积
解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为
三峡大学高等数学课程建设组
b2高等数学教案
定积分的应用
A(x)1(R2x2)tan 于是所求的立体体积为
2RR2R3tan
VR1(R2x2)tandx1tan[R2x1x3]R223
3例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积
解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(R A(x)hyhR2x2 于是所求正劈锥体的体积为 VRhR2x2dx2R2h2co2sd1R2h 02R 三、平面曲线的弧长 设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2 Mi1 Mi Mn1 MnB 并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为曲线弧AB的弧长 并称此曲线i1n弧AB是可求长的 定理 光滑曲线弧是可求长的 1.直角坐标情形 设曲线弧由直角坐标方程 yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度 取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为 (dx)2(dy)21y2dx 从而得弧长元素(即弧微分) ds1y2dx 以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为 sa1y2dx 三峡大学高等数学课程建设组 b高等数学教案 定积分的应用 在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此 例1 计算曲线y2x2上相应于x从a到b的一段弧的长度 3解 yx2 从而弧长元素 13ds1y2dx1xdx 因此 所求弧长为 sab2221xdx[2(1x)2]ba[(1b)(1a)] 3333 3例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度 c 解 yshx 从而弧长元素为 cds1sh2xdxchxdx cc因此 所求弧长为 bbb sbchxdx20chxdx2c[shxdx]b02cshcccc 2.参数方程情形 设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数 dy(t)因为 dx(t)d t 所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt (t)所求弧长为 s2(t)2(t)dt 例3 计算摆线xa(sin) ya(1cos)的一拱(0 2)的长度 解 弧长元素为 dsa2(1cos)2a2sin2da2(1cos)d2asind 2所求弧长为 2s02asind2a[2cos]08a 222三峡大学高等数学课程建设组 高等数学教案 定积分的应用 3.极坐标情形 设曲线弧由极坐标方程 ()( )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得 x()cos y()sin( ) 于是得弧长元素为 dsx2()y2()d2()2()d 从而所求弧长为 s2()2()d 例4 求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长 解 弧长元素为 dsa22a2da12d 于是所求弧长为 2s0a12da[2142ln(2142)] 作业:P284:2(2)(4),3,4,5(1),10,12,15(2),18,22,23,29,30 三峡大学高等数学课程建设组 高等数学教案 定积分的应用 §6 3 功 水压力和引力 一、变力沿直线所作的功 例 1把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为 Fkq(k是常数) r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a 解: 在r轴上 当单位正电荷从r移动到r+dr时 电场力对它所作的功近似为k即功元素为dWk于是所求的功为 qdr r2qdr r2bkq2Wa11drkq[1]bakq() rabr 例2 在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀 把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功 解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k 即 pVk 或pk V 在点x处 因为VxS 所以作在活塞上的力为 FpSkSk xSx当活塞从x移动到xdx时 变力所作的功近似为kdx x即功元素为dWkdx x于是所求的功为 bbWakdxk[lnx]bakln xa 例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功? 解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为 三峡大学高等数学课程建设组 高等数学教案 定积分的应用 dW882xdx 此即功元素 于是所求的功为 225(kj) xW088.2xdx88.2[]5088.222 5二、水压力 从物理学知道 在水深为h处的压强为ph 这里 是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为 PpA 如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算 例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为 计算桶的一个端面上所受的压力 解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图 在水深x处于圆片上取一窄条 其宽为dx 得压力元素为 dP2xR2x2dx 所求压力为 P02 xRxdx(R03R2rR3 [2(R2x2)2]033R22R2122x)d(R2x2) 三、引力 从物理学知道 质量分别为m 1、m 2 相距为r的两质点间的引力的大小为 FGm1m2 r2其中G为引力系数 引力的方向沿着两质点连线方向 如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算 例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力 解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量为dy 与M相距ra2y2 于2222是在水平方向上 引力元素为 dFxGmdyamdya Ga2y2a2y2(a2y2)3/2三峡大学高等数学课程建设组 高等数学教案 定积分的应用 引力在水平方向的分量为 Fx2lG2l2Gmlamdy1 223/222a(ay)4al 作业:P292:3(2),6 三峡大学高等数学课程建设组 -----[xn1 , xn],AA1A2An,xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,Aif(i)xi,Af(i)xi.i1n③max{x1 , x2 , , xn}.Alimf(i)xi.0i 1-----高等数学教案----- n2.变速直线运动的路程: 设速度vv(t)是时间间隔[T1 , T2]上t的连续函数,路程记为s.①把区间[T1 , T2]分成n个小区间:,…,[t0 , t1] [tn1 , tn],[t1 , t2],ss1s2sn,tititi1(i1 , 2 , , n).②在每个小区间[ti1 , ti]上任取一点i,siv(i)ti,-----高等数学教案-----sv(i)ti.i1n③max{t1 , t2 , , tn}.slimv(i)ti.0i1n3.定积分定义: 设yf(x)在[a , b]上有界.①把区间[a , b]分成n个小区间:,[x1 , x2],…,[x0 , x1] [xn1 , xn],-----高等数学教案-----xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,f(i)xi.i1n③max{x1 , x2 , , xn}.如果 limf(i)xi 0i1n存在,且此极限不依赖于对区间[a , b]的分法和在[xi1 , xi]上 -----高等数学教案----- 则称此极限为f(x)i点的取法,在[a , b]上的定积分,记为 f(i)xi.af(x)dxlim0bi1n注意:定积分 af(x)dx只与被积函数f(x)﹑积分区间[a , b]有关,而与积分变量用什么字母表示无关,即 b af(x)dx af(t)dt af(u)du b b b.4.(必要条件).如果f(x , y)在D上可积,则f(x , y)在D上 -----高等数学教案-----有界.5.(充分条件): ①如果f(x)在[a , b]上连续,则f(x)在[a , b]上可积.②如果f(x)在[a , b]上有界,且只有有限个间断点,则f(x)在[a , b]上可积.6.定积分的几何意义: ①如果f(x)在[a , b]上连续,且f(x)0,则 b af(x)dxs (S是曲边梯 -----高等数学教案-----形的面积).②.如果f(x)在[a , b]上连续,且f(x)0,则 b af(x)dxs (S是曲边梯形的面积).③如果f(x)在[a , b]上连续,且f(x)的值有正有负,则 b af(x)dx等于x轴上方的曲边梯形面积减去x轴下方的曲边梯形面积.7.规定: -----高等数学教案----- ①当ab时, af(x)dx0.ab ②当时,ba af(x)dxbf(x)dx.7.定积分的性质: ①f(x)g(x)dxf(x)dxg(x)dx.b b② akf(x)dxk af(x)dx.③ b c b af(x)dx af(x)dx cf(x)dx.④如果在[a , b]上f(x)1,则 b b a1dx adxba.b b b b a a a -----高等数学教案-----⑤如果在[a , b]上f(x)0,则 b af(x)dx0.如果在[a , b]上f(x)g(x),则 b b af(x)dx ag(x)dx, af(x)dx af(x)dx.b b⑥设mf(x)M,则 bm(ba) af(x)dxM(b.⑦(积分中值定理)如果f(x) -----高等数学教案-----在[a , b]上连续,则在[a , b]上至少存在一点,使得 b af(x)dxf()(ba).证:由于f(x)在[a , b]上连续,所以存在最大值M和最小值m,使得 mf(x)M,bm(ba) af(x)dxM(ba),f(x)dx amM,ba -----高等数学教案----- b故在[a , b]上至少存在一点,使得 b af(x)dxf()ba即 b af(x)dxf()(ba).b1称为在f(x)dxf(x) aba[a , b]上的平均值.P23511.证: 对任意实数,有 12 0[f(x)]dx0,1 1222 0f(x)dx 0f(x)dx0 -----高等数学教案-----,所以 124 0f(x)dx4 0f(x)dx0,即 0f(x)dx 0f(x)dx.练习1.设f(x)在[a , b]上连续,且f(x)0,证明: 12 121 af(x)dx af(x)dx(ba)b b.§5.2微积分基本公式 1.积分上限的函数(变上限 -----高等数学教案-----积分): f(x)在[a , b]上连续,称 x(x) af(t)dt x[a , b] 为积分上限的函数.2.如果f(x)在[a , b]上连续,x则(x) af(t)dt可导,且 xd(x)f(t)dtf(x) adx.x例1.求F(x) 0tsintdt的导数.解: F(x)xsinx.-----高等数学教案----- sintdtsinx 0例2.lim lim2x0x02xx1.2 x例3.tedtlim xxxe2x x2 0t2elimx2tedtx x2 0t2xlimx(12 xlimx1 2-----高等数学教案----- 3. (x)f(t)dt f[(x)](x)f[(x)](x)(x)1.2.xbd 例4. xaf(t)dt dxf[(xb)]f[(xa)].例 15.( xedt)ee2x xx12xe.lnx2tlnxx22 -----高等数学教案-----例6.设f(x)在[a , b]上连续,且单调增加,证明: x1 F(x)f(t)dt axa在(a , b]内单调增加.证: 当x(a , b)时,f(x)(xa) af(t)dtF(x) 2(xa)f(x)(xa)f()(xa)2(xa)x f(x)f()(xa) -----高等数学教案----- (ax).由于f(x)在[a , b]上单调增加,而ax,所以 f(x)f()F(x)0,(xa)故F(x)在(a , b]内单调增加.4.微积分基本公式(牛顿—莱布尼茨公式): 如果f(x)在[a , b]上连续,且F(x)是f(x)的一个原函数,则 b af(x)dxF(b)F(a)F(.-----高等数学教案----- 为F(x)、x(x) af(t)dt都是f(x)的原函数,所以(x)F(x)C.由于 (a)F(a)C,a(a) af(t)dt0,得 CF(a),(x)F(x)F(a),(b)F(b)F(a),b即 (b) af(x)dx F(b)F(a) F(x).ba -----高等数学教案-----证: 因 1 1例7. 2dxlnx2 xln1ln2 ln2.1 例 2 1 28. 01xdx 0(1x)dx 1(x1)dx 221xx(x)0(x)22 1.例9.设 x , x[0 , 1), f(x)x , x[1 , 2] ,-----高等数学教案-----2求(x) 0f(t)dt在[0 , 2]上的表达式.x解(x) x2 0tdt , x[0 , 1) 12dt x 0t 1tdt , x[1 ,x3 , 31312(x21), x3 , 31-----高等数学教案 6 ,----- : 2] x[0 ,x[1 , 2x[0 , x[1 , 2 例10.求 x f(x)0tdt 在( , )上的表达式.0tdt , x0解: f(x)x tdt , x002x , x02 2x , x0.2x§5.3 定积分的换元法和分部积分法 -----高等数学教案-----1.定积分的换元法: b af(x)dx x(t)f[(t)](其中f(x)连续,(t)有连续的导数,a(),b(),.例1. 0 4x2dx 2x11t232 32t12 x 1 tdt 2t 321 1(t3)dt 2331t(3t)1 3-----高等数学教案-----例 例 223.2. 1dx 34 1x1 x(t22t) 1(2t2)12 t2 1121 (1t)dt 2(tlnt)112 12ln2.3.2 111x 2 x2dx xsint cost 24 -----高等数学教案----- sin2tcostdt 2 例 2 cottdt 4 2(csc2 t1)dt 4(cottt)2 414. 5 02sinxcosxdx 5 02cosxdcosx (166cosx)20 16.-----高等数学教案----- 4.例5. 0x(2x)dx 12421 0(2x)d(2x)2 25111 [(2x)]0 2531 .102.设f(x)在[a , a]上连续且为偶函数,则 a a af(x)dx2 0f(x)dx.证: a 0 a af(x)dx af(x)dx 0f(x)dx.12 4-----高等数学教案----- af(x)dx xt af(t)( 0 0 af(t)dt 0f(t)dt 0f(x)dx.a a 0所 以 a a a af(x)dx 0f(x)dx 0f(x)dx 2 0f(x)dx.a3.设f(x)在[a , a]上连续且 a为奇函数,则 af(x)dx0.xsinxdx.例6.求 242x3x1 2 -----高等数学教案----- 32xsinx解: 由于f(x)42x3x132是 2奇3函2数,所以 xsinxdx0. 242x3x1例7.求 1sinx(arctanx).dx 121x解: 原式1sinx 1(arctanx). 1dxdx22 11x1xsinx由于f(x)2是奇函数,1x -----高等数学教案-----以(arctanx)是偶函数,所g(x)21x(arctanx)原式02 0 dx21x 122 0(arctanx)d(arctanx)122 312[(arctanx)]0 332()3496例8.设f(x)在[0 , a]上连续,-----高等数学教案-----.3证明: 0f(x)dx 0f(ax)dx.a a证 0f(x)dx 0 xat af(at)(dt)a: af(at)dt 0f(at)dt 0f(ax)dx.a 0 a 例9.若f(x)在[0 , 1]上连续,证明: f(sinx)dx -----高等数学教案-----2 0f(cosx)dx.2 0 证: f(sinx)dx xt 2 2 0f(cost)(d 2 0 f(cost)dt 2 0f(cosx)dx.2 0 例10.若f(x)在[0 , 1]上连续,证明: 0xf(sinx)dx .f(sinx)dx 02 -----高等数学教案-----证: 0xf(sinx)dx 0 xt (t)f(sint) 0(t)f(sint)dt 0f(sint)dt 0tf(sint)dt 0f(sinx)dx 0xf(sinx)dx. 解 0 得 .f(sinx)dx 02例11.若f(x)为连续函数,xf(sinx)dx -----高等数学教案-----且ef(xt)dtxe,求f(x)的表达式.xt证: 0ef(xt)dt xt 0x txu xe 0xuf(u)(du) eef(u)du x xue 0ef(u)du.ux 0 x所以eef(u)duxe,得 xu 0ef(u)dux.将上式两边对x求导数,得 x ef(x)1,x x 0ux -----高等数学教案-----即 f(x)e.4.定积分的分部积分法: x auvdx(uv) auvdx.bba b 例12. 1lnxdx(xlnx) 1dx 55ln5x1 55155ln54.例13. 0xedx(xe) 0edx x1ee0 1xx10 1x1.例14.若f(x)是以T为周期的连续函数,证明: -----高等数学教案----- af(x)dx 0f(x)dx 其中a为常数.aT T证: a 0 aTf(x)dx T aT af(x)dx 0f(x)dx T aT Tf(x)dx af(x)dx xuT 0f(uT)du 0f(u)du 0f(x)dx af(x)dx.0 a a所以 a aT 0f(x)dx T 0 af(x)dx 0f(x)dx af(x)dx -----高等数学教案----- 0f(x)dx.T例15.设f(x)在( , )上连续,证明: 1lim[f(xh)f(x)]dxf(b)f(a) bh0h a证: 设f(x)的一个原函数为F(x),则 b1lima [f(xh)f(x)]dx h0h[F(xh)F(x)]lim h0hF(bh)F(b)limh0hF(ah)F(a)limh0h -----高等数学教案----- baF(b)F(a)f(b)f(a).§5.4 反常积分 1.无穷限的反常积分: ①设f(x)在[a , )上连续,存在,f(x)dxta,如果tlim a则称反常义积分 af(x)dx收敛,且 t af(x)dxtlim.f(x)dx a t否则称反常积分 af(x)dx发散. -----高等数学教案-----②设f(x)在( , b]上连续,tb,如果limtf(x)dx存在,tb则称反常义积分f(x)dx收敛,且 b f(x)dxtlim.f(x)dxtb b否则称反常积分f(x)dx发散.③设f(x)在( , )上连 0 续,如果 f(x)dx与 0f(x)dx都收敛,则称反常积分 f(x)dx收敛,且 b -----高等数学教案----- f(x)dx f(x)dx 0f(x)dx.0 否则称反常积分 f(x)dx发散.2.引入记号: F()limF(x),xF()limF(x).x若在[a , )上F(x)f(x),则当F()存在时, af(x)dxF()F(a) [F(x)].a -----高等数学教案-----若在( , b]上F(x)f(x),则当F()存在时,bf(x)dxF(b)F() [F(x)].b若在上( , )F(x)f(x),则当F()与F()都存在时,f(x)dxF()F() [F(x)].例1.判断反常积分 x 0xedx 2-----高等数学教案-----是否收敛,若收敛求其值.x1解: 原式(e)0 2x11 xlim(e) 221 .2 例2.判断反常积分 1 cosxdx 22的敛散性.解: 原式(sinx) 1sin(1)limsinx.xsinx不存在,由于xlim所以反 -----高等数学教案-----常积分 cosxdx发散.例3.讨论反常积分 1 1 1xdx.解: 1 1xdx (lnx)1 , (111x)1 -----高等数学教案----- 1 1的敛散性 , , 1 , 1 11 , 1 1 1xdx,当1时发散.例4.判断反常积分 1 1x2dx.解: 1 1x2dx -----高等数学教案----- 1所以反常积分时收敛,当 的敛散性 (arctanx)0(arctanx)0 22. 1 例5.判断反常积分 1dx 2xx 的敛散性.1dx解: 1 2xx 11 1()dx x1x[lnxln(1x)]1 -----高等数学教案----- x[ln]1 1xx1limlnln x1x2ln2.3.如果f(x)在点a的任一邻域内都无界,那么称点a为f(x)的瑕点.4.无界函数的反常积分(瑕积分): ①设f(x)在(a , b]上连续,点a为f(x)的瑕点,ta.如果limtf(x)dx存在,则称反常积ta -----高等数学教案-----b分 af(x)dx收敛,且 b af(x)dxlimtf(x)dx.b bt a否则称反常积分 af(x)dx发散.②设f(x)在[a , b)上连续,点b为f(x)的瑕点,tb.如果 blimaf(x)dx存在,则称反常积tbt分 af(x)dx收敛,且 b af(x)dxlimaf(x)dx.btt b否则称反常积分 af(x)dx发散.③设f(x)在[a , b]上除点c(acb)外连续,点c为f(x)的 b -----高等数学教案-----瑕点.如果两个反常积分 b c af(x)dx、 cf(x)dx都收敛,则 b称反常积分 af(x)dx收敛,且 b c b af(x)dx af(x)dx cf(x)dx.b否则称反常积分 af(x)dx发散.5.引入记号: ①设F(x)为f(x)在(a , b]上的一个原函数,a为f(x)的瑕点,则 b af(x)dxF(b)limF(x) xa[F(x)].ba -----高等数学教案-----②设F(x)为f(x)在[a , b)上的一个原函数,b为f(x)的瑕点,则 b af(x)dxlimF(x)F(a) xb[F(x)].ba 例6.判断反常积分 0lnxdx的敛散性.1解: 0lnxdx(xlnx)0dx 11010lim(xlnx)x x 0101.-----高等数学教案----- 1例7.讨论反常积分 0dxx 1的敛散性.解: 11 0xdx (lnx)10 , 1(1111 x)0 , 1 0limx 0lnx , 1lim 0(11x11x) -----高等数学教案----- 1 1 , 1 , 11 , 1 , 1 11所以反常积分 0dx,当1x时收敛,当1时发散.11 例8.判断反常积分 12dxx的敛散性.1解: 12dx x 01 11 12dx 02dx xx 1 -----高等数学教案----- ----- 3.余项rnssnun1un2.aqaaqaqaqn2n1: 例1.判断等比级数(几何级数)n0 (a0)的敛散性.aaq解:①q1时,sn,1qna,收敛,和为limsnaqn1qn0a.1q -----高等数学教案----- naaq②q1时,sn,1qlimsn,aq发散; nnn0nsn,③q1时,snna,limnn0aq发散.n④q1时,0 , n为偶数limsn不存在,sn,na , n为奇数n0aq发散.nn1例2判断级数ln是否收nn1 -----高等数学教案-----敛,若收敛求其和.解: sn(ln2ln1)(ln3ln2) [ln(n1)lnn] ln(n1).P②.3225sn,所以原级数发散.由于limnsn11111(1)()23235111()22n12n111(1).22n1 -----高等数学教案----- 1sn,所以原级数收敛 由于limn24.收敛级数的性质: ①如果un收敛和为s,则kunn1n1也收敛,其和为ks;若un发散,n1则kun(k0)也发散.n1②如果un、vn均收敛,其和n1n1n1,分别为s、则(unvn)也收敛,其和为s.-----高等数学教案----- ③在级数中去掉、加上或改变有限项,不会改变级数的收敛性.④如果un收敛,则对这级数n1的项任意加括号后所成的级数(u1un)(un1un) (un1un) 112k1k也收敛,且其和不变.如果一个级数发散,则加括号后所成的级数可能收敛,也可能发散.如果一个正项级数发散,则加 -----高等数学教案-----括号后所成的级数一定发散.⑤级数收敛的必要条件: 若n1un0.un收敛,则limn例3证明调和级数 1111 23n是发散的.证: 假设调和级数收敛,部分 sns.和为sn,和为s,则limnim(s2nsn)ss0.一方面,ln另一方面,-----高等数学教案----- 111s2nsn n1n22n111 2n2n2n1,2(s2nsn)0,矛盾,故调所以limn和级数发散.1P②.由于调和级数发散,n1n1所以也发散.n13n14P225⑤.由于级数n是公比为 n124225 -----高等数学教案-----11q的几何级数,而q1,所2211以n收敛;由于级数n是公比n12n1311为q的几何级数,而q1,331所以n收敛.n1311由于n与n都收敛,所以n12n1311(nn)收敛.n123§12.2 常数项级数的审敛法 -----高等数学教案-----1.正项级数: un(un0).n12.正项级数un的部分和数列 n1sn单调增加.3.正项级数un收敛部分和 n1数列sn有界.4.比较审敛法: 设un、vn都 n1n1是正项级数,且unvn.①若vn收敛,则un收敛; n1n1 ②若un发散,则vn发散.n1n-----高等数学教案-----5.比较审敛法的推论: 设un、n1n1vn都是正项级数.n1 ①若vn收敛,且存在自然数N,使当nN时有unkvn(k0)成立,则un收敛.n1 ②若un发散,且存在自然数n1N,使当nN时有unkvn(k0)成立,则vn发散.n-----高等数学教案-----例1.判断p级数 1111ppp 23n的敛散性.解: ①当p1时,由于1np而1发散,所以n1n1n1np发散.②当p1时,对于级数 11112p3pnp 加括号后: -----高等数学教案----- 1n,1111111(pp)(pppp)234567 它的各项均不大于级数 1111111(pp)(pppp224444 111p1p1 24的对应项,而后一个级数是收敛的几何级数,所以级数 -----高等数学教案-----1111111(pp)(pppp)2345671收敛,故正项级数p收敛.n1n1例2.判断级数lnn的敛散性.n121111解: 由于lnnlogn,而nn1n221发散,所以lnn发散.n121例3.判断级数lnn的敛散性.n13111解:由于lnnln3,而ln3n13n1nn1n1pln31,是p级数,所以ln3n1n1收敛,从而lnn收敛.n13-----高等数学教案-----例4.若正项级数an与bn均 n1n1收敛,则下列级数也收敛.①anbn;②(anbn);③ 2n1n1an.n1n证: ①由于an与bn均收敛,n1n1所以(anbn)收敛,而n1anbn2anbn,故anbn收敛.n1②由于 -----高等数学教案-----(anbn)an2anbnbn,而an、2n1n1bn与anbn均收敛,所以n12(anbn)收敛.n11③由于an与2均收敛,所n1n1n11an以(an2)收敛,而an22,n1nnnan故收敛.n1n例5.若an与bn均收敛,且n1n1ancnbn,求证:cn收敛.n-----高等数学教案----- 证:由于an与bn均收敛,所n1n1以(bnan)收敛.n1由于ancnbn,所以 n1bnancnan0,而(bnan)收敛,故(cnan)收敛,而an收敛,从n1n1而cn收敛.n16.比较审敛法的极限形式: 设n1un、vn均是正项级数,n1 -----高等数学教案----- un0,且vn收敛,则①若limnn1vnun收敛.n1unl(0l),则vn ②若limnn1vn与un同时收敛和同时发散.n1un,且vn发散,③若limnn1vn则un发散.n11例6.判断级数n的敛散 n1nn -----高等数学教案-----性.1n1nn解:由于llim,而1n1n1nn1发散,所以n发散.n1nn1n1例7.判断级数ln的敛 n1n2n散性.1lnn1nn1解:由于llim2,而n12n11n1收敛.2收敛,所以lnn1n2nn2n -----高等数学教案-----例8.判断级数(21)的敛散 nn1性.解: 由于 nn212ln2llimlimln2nn11n,1n而发散,所以(21)发散.n1n1n7.比值审敛法(达朗贝尔判别法): 设un为正项级数,且n1 -----高等数学教案-----un1lim.nun ①若1,则un收敛; n1 ②若1或,则un发 n1散; ③若1,则un可能收敛也 n1可能发散.1例9.判断级数的敛散 n1(n1)!性.-----高等数学教案----- 1n!01解: 由于lim,n1(n1)!1所以收敛.n1(n1)!n!例10.判断级数n的敛散性.n110: 由于(n1)!n1n110limlim,所nn10n!n10n!以n发散.n110 -----高等数学教案-----解8.根值审敛法(柯西判别法): 设un为正项级数,且n1nu.limnn ①若1,则un收敛; n1 ②若1或,则un发 n1散; ③若1,则un可能收敛也 n1可能发散.2n1n例11.判断级数()的n13n1 -----高等数学教案-----敛散性.解: 由于 2n1nn(lim)n3n12n()3n1limnnn3n1,2n1n所以()收敛.n13n110.交错级数: u1u2u3u4,或 u1u2u3u4,其中u1,u2…都是正数.-----高等数学教案-----11.莱不尼兹定理: 如果交错级数(1)un满足条件: n1n1 ①unun1; imun0,②ln则(1)un收敛,其和su1,其余n1n1项的绝对值rnun1.例12.判断级数(1)n1n11的敛 n散性.解: 由于 -----高等数学教案-----11①,即unun1; nn110,即limu0 ②lim,nnnnn11所以(1)收敛.n1n12.绝对收敛: 如果un收敛,n1则称un绝对收敛.n1例如,级数(1)n1n11绝对收 2n敛.13.条件收敛: 如果un收敛,n-----高等数学教案----- 而un发散,则称un条件收敛.n1n1例如,级数(1)n1n11条件收敛.nn114.如果任意项级数un的绝对值收敛,则un收敛.n11 证: 令Vn(unun),21Wn(unun),则unVn0,2unWn0.由于un收敛,所以Vn、Wnn1n1n-----高等数学教案-----均收敛,故(VnWn)un也收 n1n1敛.15.设un是任意项级数,n1un1nu,如果lim或limnnunn1,un发散,则un发散.n1n1n例13.判别级数(1)是n1n1否收敛,若收敛是条件收敛,还 n1是绝对收敛.-----高等数学教案-----解: 由于lim(1)n以(1)n1n1n1n0,所 n1n发散.n11n例14.判别级数nsin是否 5n12收敛,若收敛是条件收敛,还是绝对收敛.1n11n,解: 由于nsin而n 522n121(是公比为q1的几何级数)21n收敛,所以nsin收敛,故 5n1-----高等数学教案-----1nnsin绝对收敛.5n121例15.判别级数(1)ln(1)nn1是否收敛,若收敛是条件收敛,n还是绝对收敛.11解: 由于ln(1)ln(1),而 n1n1limln(1)0,所以交错级数nn1n(1)ln(1)收敛.n1n由于 -----高等数学教案----- 1(1)ln(1)1 nlimlimnln(1)nn1nnn1nlimln(1)nn1,11n而 发散,所以(1)ln(1)发n1nn1n1n散,故(1)ln(1)条件收敛.n1n§12.3 幂级数 1.区间I上的函数项级数: u1(x)u2(x)un(x).-----高等数学教案-----对于xx0I,常数项级数 u1(x0)u2(x0)un(x0) n1收敛,则称x0为un(x)的收敛点.收敛点的全体称为收敛域,发散点的全体称为发散域.2.(xx0)的幂级数: n0an(xx0)na0a1(xx0)a2(xx0) 2nan(xx0) -----高等数学教案-----3.x的幂级数: n0anx2nna0a1xa2xanx.4.阿贝尔定理: 如果anx当 nn0则当xx0xx0(x00)时收敛,时anx绝对收敛.反之,如果nn0n0anx当xx0时发散,则当nxx0时anx发散.nn0 5.阿贝尔定理的推论: 如果 -----高等数学教案-----n0anx不是仅在x0一点收敛,n也不是在整个数轴上收敛,则存在R0,使得 ①当xR时,幂级数绝对收敛; ②当xR时,幂级数发散; ③当xR与xR时,幂级数可能收敛也可能发散.)为 称R为收敛半径,称(R , R)、收敛区间,收敛域是(R , R[R , R)、(R , R]或[R , R]这四 -----高等数学教案-----个区间之一(由xR处的收敛性决定).规定幂级数仅在x0处收敛时R0,幂级数对一切x都收敛时R.6.对于幂级数anx,如果 nn0an1lim,则 nan -----高等数学教案----- 1 , 0且R , 0 ,0 , . (1)x例1.求的收敛域.n1nn(1)n11解: 由于lim,所n1n(1)n1以R1.n1n -----高等数学教案----- (1)x1当x1时,()nnn1n1发散.(1)n1xn(1)n1当x1时,nnn1n1(1)n1xn条件收敛.因此,的收 nn1敛域为(1 , 1].n1例2.求2(3x)的收敛域.n01nnnn13解: 2(3x) 2x.n01nn01nn1n -----高等数学教案----- 321(n1)lim3nn321nn1,1R.31当时,x3(1)nn1(3x) 绝对收敛.22n01nn01n1当时,x3n112(3x) 2收敛.n01nn01nn1因此,的收敛域为(3x)2n01n -----高等数学教案-----11[ , ].33(1)n例3.求2(x3)的收敛n1nn域.解: 令x3t,则 (1)(1)nn2(x3) 2t.n1nn1n(1)nn对于,2tn1nn1(1)2(n1)lim1R1,.nn(1)2n -----高等数学教案----- nn(1)n1当t1时,2t2收n1nn1nn敛.(1)n(1)2t2绝当t1时,n1nn1nn(1)n对收敛.因此,2t的收敛 n1nn(1)n区间为[1 , 1],故2(x3)n1n的收敛域为[2 , 4].2n11例4.求nx 的收敛域.n03nn -----高等数学教案----- 1x2(n1)1n1213x解: lim.n1x2n13n321令x1,得3x3,收3敛半径为R3.发散.散.2n11当x3时,nx 3n03n02n11当x3时,nx 3发n03n02n11因此,nx 的收敛域为n03(3 , 3). -----高等数学教案-----7.幂级数的运算: s(x)anxn0nn0n和(x)bnx的收敛半径分别为R和R,则 n0anxnnn0bnxnn0(anbn)xs(x)(x)的收敛半径为RminR , R.8.幂级数的性质: ①anx的和函数s(x)在其收nn0敛域I上连续.-----高等数学教案----- ②anx的和函数s(x)在其收nn0敛域I上可积,并有逐项积分公式 0s(x)dx0anxdxn0xxn0anxdx nn0xann1x(xIn0n1,ann1nx与anx的收敛半径相n0n0n1同. -----高等数学教案-----③anx的和函数s(x)在其收nn0敛区间(R , R)内可导,并有逐项求导公式 nns(x)anx(anx) n0n0 nanx(xR),n1n1n1nanxn1与anx的收敛半径相 nn0同.n1例5.求x的和函数.n1n -----高等数学教案----- 1n1R1.1解: lim,n1nn1n1当x1时,x(1)收nn1n1n敛.n11当x1时,x发散.因 n1nn1nn1此,x的收敛域为[1 , 1).n1nn1令s(x)x(1x1),则 n1nnn11s(x)x(x)n1nn1n -----高等数学教案-----x n1n11(1x1).1xs(x) x 0s(x)dxs(0) x10dx0 1ln(1xx)(1x1).例6.求1xn1在其收敛n1n1 , 1)上的和函数.解1xn1x1xnx[ln(1x)] n1nn1n -----高等数学教案----- : 域[ xln(1x)x[1 , 1).例7.求(n1)x在其收敛域 nn1(1 , 1)上的和函数.解: 令s(x)(n1)x,则 nn10s(x)dx0(n1)xdx nn1xxx n1n1x 1x(1x1).-----高等数学教案----- 2s(x)[ 0s(x)dx] xx() 1x22xx2(1x)(1x1).2例8.求nx在其收敛域(1 , 1)nn1上的和函数.解: nxnxxx nnnnn1n1n1nn1n(n1)xx n1n1 -----高等数学教案----- 2xxx 2(1x)1xx .(1 , 1)2(1x)2例9.求(n2)x在其收敛区 nn1间(1 , 1)上的和函数.解n1: nn12(n2)x(n1)xx nnn12xx2(1x)x 1x -----高等数学教案----- 3x2x2(1x)2 (1 , 1).§12.4 函数展开成幂级数 1.设f(x)在x0的某一邻域U(x0)内具有各阶导数,幂级数 (x0)f2f(x0)f(x0)(xx0)(xx0) 2!f(x0)n(xx0) n!称为f(x)的泰勒级数.(n) 如果泰勒级数收敛于f(x),则 -----高等数学教案----- 大学生数学竞赛训练五—微分方程 一、(15分)设函数在上可导,且,对任给的满足等式 1)求导数; 2)证明:当时,成立不等式:。 解:1)设,则有 当时有 两边关于求导得 解微分方程得 由条件可得,因此 2)当时,所以此时有; 又因为,当时,所以此时有,因此当时,有 二、(15分)设微分方程的两个解满足求此微分方程的通解。 解:1)如果为常数,则有 因为,所以,由此可得,此时方程变为 令,则有 2)如果不是常数,则有,代入原方程可得 (1) (2) 由(1)、(2)可得 令,则有,解得,因为它们是线性无关的,所求通解为 三、(15分)有一个攀岩爱好者要攀登一个表面为的山岩,在攀岩时他总是沿着最陡峭的路线攀登,他的出发点在山下的一点处,求他攀登的路线方程。 解:设所求曲线在面上的投影为,则其切向量与函数的梯度平行,因此有 此为一阶齐次方程,解得,由可得,再由题意得到 所求曲线方程为。 四、(15分)求方程的通解。 解:设,则有,原方程化为 解得 五、(15分)设,求在上的连续函数使得其在上满足方程 及初值条件。 解:解方程得 当时,当时,由的连续性可得,又因为可得,所求函数为。 六、(15分)已知二元函数有二阶连续的偏导数,并且满足 证明:。 证明:因为二元函数有二阶连续的偏导数,所以 由此可得。 七、第三篇:高等数学教案
第四篇:高等数学教案12
第五篇:大学 高等数学 竞赛训练 微分方程