第一篇:八年级上册《平均数》教案
八年级上册《平均数》教案
本(节)题
平均数
第
时/共 1时
教学目标(含重点、难点)及
设置依据、知识目标:理解并会计算平均数、加权平均数.
2、能力目标:会视具体问题用适当的方法秋平均数,会用样本的平均数来估计总体的平均数.
3、情感目标:在具体的问题情景中去感受计算平均数,关注社会问题,培养一种社会责任感。
教学重点:本节教学的重点是平均数的计算
教学难点:例2的问题情境比较复杂,还涉及加权平均数的计算是本节教学难点
教学准备
教
学
过
程
内容与环节预设
个人二度备
一、创设情境,提出问题、王大爷为了估计某水库中鱼的条数,第一次捕捞出120条鱼,做上标记后放回水库中,过了一段时间后,第二次又捕捞出300条鱼,发现其中带有记号的鱼有10条。你能帮他估计这个水库中共有多少条鱼吗?在这个问题中,你运用了怎样的统计方法?
2、水果在收获前,果农常会先估计果园里果树的产量,你认为应该怎样估计呢?
二、启发诱导,探索新知
、合作学习
某果农种植的100棵苹果树即将收获果品公司在付给果农定金前,需要对这些果树的苹果总产量进行估计
果农任意摘下20个苹果,称得这20个苹果的总质量为4千克这20个苹果的平均质量是多少千克?
果农从100棵苹果树中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据:
4,10,1,1,19,10,12,1,13,17你能估计出平均每棵树的苹果个数吗?
根据上述两个问题,你能估计出这100棵苹果树的苹果总产量吗?
2、引出平均数的概念,平均数用符号
表示,读做“拔”,计算平均数公式:
=
指出:在实践中,常用样本的平均数来估计总体的平均数例如,在上面的例子中,用20个苹果的平均质量02千克来估计100棵苹果树上苹果的平均质量,用10棵树的平均苹果个数14个来估计100棵树的平均苹果个数
3、做一做p78
练一练:为了调查某一路口某路段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:
星
期
一
二
三
四
五
六
日
汽车辆数
00
00
那么这一星期在该时段通过该路段的汽车平均每天为
辆。
三、学以以致用,体验成功
、讲解p78例1
方法:直接根据平均数的意义来计算,这里的,…指的是什么?等于多少?
方法:1个数据中有几个6,几个7,几个8,几个9,几个10?
=1与这些相同数的个数之间有什么关系?所求的平均数的算式还可以写成怎样的算式?
2、由上例中的方法概括出加权平均数的概念和权的意义
3、讲解p79例2
分析:第题只需求一般的平均数,学生容易理解
第题涉及加权平均数,不妨以801班为例,表中相应的3个数据为=80,=84,=87,给定三个项目的权的比为1:3:0,即表示::=1:3:0,因此可设=1,=3,=0,加权平均数
×80+3×84+0×87_
×80+3×84+0×87
=
4、本内练习第1,2
四、总结回顾,反思内化
通过这节的学习,你有什么收获?
知识小结,这节我们学习了平均数、加权平均数的概念,会计算平均数和加权平均数
2会用样本的平均数来估计总体的平均数
板书设计
求平均数和加权平均数的公式
例题和学生板演练习
作业布置或设计
本作业题1,2,3,4,6和作业本上作业
教后整体反思
第二篇:八年级数学上册 6.1平均数教案 (新版)北师大版
第六章 数据的分析
6.1平均数
(一)教学目标:
(一)知识目标:
1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数。
(二)能力目标:
1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。
2、根据有关平均数的问题的解决,培养学生的合作意识和能力。
(三)情感目标:
1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系。教学重点:算术平均数,加权平均数的概念及计算。教学难点:加权平均数的概念及计算。教学方法:讨论与启发性。教学过程:
一、引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
二、讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92 甲小组:X= =91(分)
甲小组做得对吗?有不同求法吗?
乙小组:X= × × × × × × ×
= 91(分)
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为: 5、9、-3、0、0、-
4、„„、2、2 求出以上新的一组数的平均数X'=1 所以原数组的平均数为X=X'+90=91 想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
(1)X=(X1+X2+„+Xn)——算术平均数
(2)X=(f1+f2+„fk=n)——利用加权求平均数
(3)X=X'+a ——利用基准求平均数
问:以上几种求法各有什么特点呢?
公式(1)适用于数据较小,且较分散。
公式(2)适用于出现较多重复数据。
公式(3)适用于数据较为接近于某一数据。
3、练习:P213 利用计算器
(1)计算两支球队的平均身高,哪支球队队员的身材更为高大?
(2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻?
4、加权平均数:
例1,某广告公司欲招聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?
(2)根据实际需要,公司将创新,综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?
小结:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称 为A的三项测试成绩的加权平均数。
三、练一练:P216 随堂练习
四、小结:通过本节课的学习,你有哪些收获与体会?
五、作业:
书P220习题 8.1 教后感:通过小组合作的活动,让学生体会数学与生活的密切联系, 掌握算术平均数,加权平均数的概念,培养学生的合作意识和能力。
§6.1平均数
(二)教学目标:
(一)知识目标:
1、会求加权平均数,并体会权的差异对结果的影响。
2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。
(二)能力目标:
1、通过利用平均数解决实际问题,发展学生的数学应用能力。
2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。
(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。教学难点:探索算术平均数和加权平均数的联系和区别。教学方法:探讨教学 教学过程:
一、引入新课:
1、什么是算术平均数?加权平均数?
2、算术平均数与加权平均数有什么联系与区别吗?(引入)
二、讲授新课:
1、例题讲解:
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。
一天,三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。解:(1)一班的卫生成绩为:
95×15%+90×10%+90×35%+85×40%=88.75 二班的卫生成绩为: 90×15%+95×10%+85×35%+90×40%=88.75 三班的卫生成绩为: 85×15%+90×10%95×35%+90×40%=91 因此,三班的成绩最高。
(2)分组讨论交流
小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。
2、议一议:
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?
问:如何求今年的总支出比去年总支出的百分比呢?
百分比=今年总支出—去年总支出
去年总支出 以下是小明和小亮的两种解法?谁做得对?
小明:(9%+30%+6%)=15% 小亮: =9.3% 由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。
三、课堂练习:
1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
2、某市七月中旬各天的最高气温统计如下:
求该市七月中旬的最高气温的平均数。
四、小结
1、加权平均数受什么因素的影响? 权的差异对结果有影响。
2、算术平均数与加权平均数有哪些联系与区别?
五、作业:
P223习题8.2 试一试
教后感:过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。会求加权平均数,并体会权的差异对结果的影响。
第三篇:三年级上册《求平均数》教案
三年级上册《求平均数》教案
教学目标
1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。
2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题能力。
教学重难点
教学重点:灵活选用“求平均数”的方法解决实际问题。
教学难点:平均数的意义
教学准备:多媒体、秒表、绳子
教学流程
(一)创设情境,激发兴趣
师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?
生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。
师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?
生:6人一起跳,分组数数。
师:哦,好主意!那就按你的方法比赛吧!
(二)解决问题,探求新知
1、引出“平均数”,体验“平均数”产生价值。
6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:
第一组:82、86、81
第二组:78、83、82
师:请同学们以最快的口算算出结果,并汇报补充板书如下:
第一组:82+86+81=249
第二组:78+83+82=243
师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)
师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)
师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?
生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。
师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的办法来比较这两组总体跳绳水平的高低了吗?
(全班寂然无声,学生思索着,半晌,有学生举手了)
生:我在电视上看到过这种类似的情况,比较平均数就可以了。
(这时有很多学生表示赞同,并投去了赞赏的目光)
师:(赞赏)哦,你知道的知识真多,老师佩服你!
2、探索求平均数的方法
师:怎样计算每个组跳绳的平均数呢?
(在老师的引导下,学生提出了方法,师要求任选一组说想法)
生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83
生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83
师:谁听明白了吗?(再指5名学生说)
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法
移多补少法
师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
。。。
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。。。
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县1999—XX年家庭电脑拥有量的统计图。
图略:1999年350台,XX年600台,XX年1000台,XX年1600台,XX年2500台
(1)
求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2)
估计一下,到XX年这个县的家庭电脑拥有量是多少?为什么?
(3)
从图上你还知道些什么?
2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
b、辩论交流得出正确答案(2)
c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法
移多补少法)
第一组:(82+86+81)/3=83
第二组:(78+83+82+83)/4~81
当人数不相等,比总数不公平时,我们就得看“平均数”。
“平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势。
第四篇:《平均数》教案(模版)
《
平
均
数
》
教
案
教学目标: 1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.教学重点:会求一组数据的算术平均数和加权平均数.教学难点:体会平均数在不同情境中的应用.教学方法:引导-讨论-交流.教学手段:多媒体 教学过程: 创设情景,引入新课(出示篮球比赛的一些画面)在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗? 上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的? 活动1:前后桌四人交流.找同学回答后,给出算术平均数的定义.一般地,对于n个数x1,x2,…,xn我们把 叫做这个n数的算术平均数,简称平均数,记为.读作“x拔”.活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小? 想一想: 小明是这样计算东方大鲨鱼队的平均年龄的: 年龄/岁 16 18 21 23 24 26 29 34 相应队员数 1 2 4 1 3 1 2 1平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)你能说说小明这样做的道理吗?找同学回答.巩固练习一: 1.某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)10,12,13.5,21,40.8,19.5,20.8,25,16,30.这10名同学平均捐款
元.(课本P216随堂练习1)2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中
环(精确到0.1)3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗? A 93分 B 95分 C 92.5分 D 94分 例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示: 测试项目 测试成绩 A B C 创新 72; 85; 67 综合知识 50; 74; 70 语言 88; 45; 67(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用? 解:(1)A的平均成绩为(分).B的平均成绩为(分).C的平均成绩为(分).因此候选人A将被录用.(2)根据题意,3人的测试成绩如下: A的测试成绩为(分)B的测试成绩为(分)C的测试成绩为(分)因此候选人B将被录用.思考:(1)(2)的结果不一样说明了什么? 实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称 为A的三项测试成绩的加权平均数.巩固练习二: 1.某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少? 变形训练:(小组交流)1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克
元; 2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为
.小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.布置书面作业:课本P216习
第五篇:《平均数》教案
《平均数》教学设计
教学内容:人教版小学数学教材第90~91页的例
1、例2及相关内容。教学目标:
1.使学生理解平均数的含义,知道平均数的求法。2.了解平均数在统计学上的意义。
3.学习解决生活中有关平均数的问题,增强应用数学知识解决问题的能力。教学重点:理解平均数的意义,掌握求平均数的方法。教学难点:理解平均数的意义。
教、学具准备:多媒体课件、计算器等。学习过程:
(一)激情导入,诱发活力 1.组容展示 2.导入课题
教师:同学们,你们听过《小马过河》的故事吗?今天,小马又帮妈妈驮一袋麦子过河去对岸磨面。瞧,小马身高1.5米,河水平均水深为1.1米,你们说小马过河会有危险吗?
教师:大家说得好像都挺有道理的,那到底有没有危险,相信学完这节课,大家就一定可以找到答案。今天我们来学习《平均数》。(板书:平均数)
3.解读目标
(教师:李老师所在的学校为了丰富学生的课外生活,成立了各种兴趣小组。看,环保小组的同学正利用课余时间收集废弃的矿泉水瓶呢!我们来看一看他们收集的数量是多少吧!)4.出示自学指导
(1)自学书本90页,从图中得到哪些数学信息?(2)他们收集的瓶子一样多吗?
(3)如果要求他们平均每人收集多少个,怎样算呢?有哪些方法呢?
(二)自主探究,孕育活力
1.教学例1,初步理解平均数的意义和求平均数的方法(1)根据自学指导进行自学
教师:从图中你知道了那些数学信息? 教师:他们收集的瓶子一样多吗?
/ 5
教师:如果要求他们平均每人收集多少个,怎样算呢?有哪些方法呢?(2)汇报交流,理解求平均数的两种方法。教师:这个小组平均每人收集多少个? 学生:13个。
教师:大家都同意这个答案吗?13是怎么来的? ①“移多补少”的方法。
结合学生口述,用课件演示“移多补少”的过程。教师:这种方法对吗?
教师:同学们想到了用多的补给少的这个方法,使每个人的瓶子数量同样多,这种方法可以叫“移多补少”法。(板书:移多补少)这里平均每人收集了13个,这个“13”是他们真实收集到的矿泉水瓶吗?
引导学生初步体会13不是每个人真正收集到的瓶数,而是4个人的总体水平。②先合并再平均分的计算方法。教师:还有不一样的方法吗?
结合学生口述,用多媒体课件演示“先合并再平均分”的过程。教师:怎样列式计算呢?
学生:(14+12+11+15)÷4=13(个)
教师:谁看懂这个方法了?能再说一说这个算式的每一部分是什么意思吗?
教师:像这样先把每个人收集的瓶子数量合起来,再除以4,也能算出这个小队平均每人收集了多少个。这种方法叫“先合并再平均分”。
教师:谁再来说一说,这个13表示什么意思?(3)对比异同,体会解决问题策略的多样化。教师:这两种方法有什么相同的地方和不同的地方?
教师小结:无论是通过移多补少,还是先合并再平均分,其目的只有一个,就是使原来几个不同的数变得同样多,这样得到的数就是这组数据的平均数。
(4)引入概念,揭示“平均数”这一课题。教师:13就是这4个数的平均数。
教师:我们知道了“13”是环保小组同学收集矿泉水瓶的平均数,那平均数代表什么?你是怎样理解平均数的?
/ 5
教师小结:平均数并不是每个学生收集到的瓶子的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到的数。可能有的同学收集到的比这个数量多,有的比这个数量少。平均数是为了代表这组数据的总体水平。
(三)合作展示、外显活力 教学例2,体会平均数的作用(1)承上启下,调动学生参与热情。
教师:操场上正在进行激烈的踢毽比赛,让我们用所学的知识看看哪个队赢了吧。学生:哪个队能赢。
教师:第一场男女生队各派一名代表,看看谁赢了。(2)旧知再现,比较单人的比赛。出示表一:
教师:哪个队赢了?你是怎么知道的? 学生:因为19>18,所以男生队赢了。(3)新旧联系,比较人数相同的两个队成绩。出示表二:
教师:第二场,男女生队各派4名代表,看看谁赢了。
引导学生体会,在人数相同的情况下,我们可以用求总数的方法比较输赢。
/ 5
教师:还有其他的方法吗?
学生:也可以比较两组队员踢毽个数的平均数。教师:哪个队求平均数比较简单,你是用什么方法求的?
学生:女生队比较简单,用移多补少的方法可以得到19这个平均数。学生:还可以用计算的方法(18+20+19+19)÷4=19(个)
教师:男生队数据计算比较麻烦,我用计算器已经算好了,(19+15+16+20)÷4=17.5(个),这个17.5是小数,可以吗?为什么?
教师:现在谁赢了?怎么比出来的? 学生:因为19>17.5,所以女生队赢了,教师:为什么用求平均数的方法也能比较两队的输赢呢?
引导学生用平均数的意义来说明道理,求几个数据的平均数,就相当于把这些数据的总和平均分成这么多份,每份都同样多,平均数可以代表这组数据的总体水平。
(4)巧设矛盾,比较人数不同的两个队成绩。
教师:第三场,男生队不服气,又增加了一名队员,我们再看看哪个队赢了。并说出你是怎么想的?
预设学生会进行争论,有的认为看总数,第一组应该领先,有的认为在人数不同的时候,用总量来比不公平,只能用平均数来比较。
教师:为什么不公平?谁再来说一说?
引导学生通过对不公平的深入思考,体会平均数是解决这个问题的好办法。教师:谁来完整地说说这道题的解法? 引导学生说计算的方法,教师完成板书。
/ 5
教师:在这种情况下,是谁帮我们解决了这个问题? 3.回顾小结
(1)体会平均数的意义。
教师:回忆一下,我们学习了什么? 学生:平均数。
教师:用自己的话说一说,平均数是一个什么样的数? 引导学生用自己的话说出平均数的意义和作用。(2)回顾求平均数的方法。
教师:你是用什么方法求出平均数的?为什么要选择这种方法?
预设大部分学生会采用计算的方法,一部分学生会认为用移多补少的方法求平均数比较简便。引导学生体会:求平均数的两种方法各有各的长处,我们可以根据数据的特点来灵活选择。
(四)检测矫正,展现活力
出示ppt(五)延伸迁移,创造活力
小马身高1.5米,河水平均水深为1.1米,你们说小马过河会有危险?
(六)通过本节学习,你有什么收获?
教师:同学们回顾一下本节课学习的内容,说说学到了哪些知识?
(七)课堂作业
第93页练习二十二,第1题、第2题。
/ 5