六年级数学下册比例教案(范文模版)

时间:2019-05-12 19:15:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级数学下册比例教案(范文模版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级数学下册比例教案(范文模版)》。

第一篇:六年级数学下册比例教案(范文模版)

比例

1、比例的意义和基本性质 第一课时

教学内容:P32~34 比例的意义和基本性质

教学目的:

1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。教学重点;比例的意义和基本性质

教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。教学过程:

一、回顾旧知,复习铺垫

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来,并注明比的各部分的名称。

2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

12:16 : 4.5:2.7 10:6 学生求出各比的比值后,再提问:哪两个比的比值相等?(4.5:2.7的比值和10:6的比值相等。)

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

二、引导探究,学习新知

1、教学比例的意义。(1)出示P32例1。

每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

5: 2.4:1.6 60:40 15:10 每面国旗长和宽的比值有什么关系?(都相等)5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40 象这样表示两个比相等的式子叫做比例。比例也可以写成: = =(2)我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下: 时间(时)2 5 路程(千米)80 200 指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:

第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12=,35: 42=,所以 10:12=35:42。(以上举例边说边板书。)(3)比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。(4)巩固练习。

①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6 学生判断后,指名说出判断的根据。②做P33“做一做”。

让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。④P36练习六的第1~2题。

对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

2、教学比例的基本性质

1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。指名让学生指出板书中的比例的外项、内项。(2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书: 两个外项的积是80×5=400 两个内项的积是 2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: = “这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。3.巩固练习。

前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断3:4和6:8能不能组成比例。

2)P34“做一做”。

三、巩固深化,拓展思维

1、说说比和比例有什么区别?

2、填空

5:2=80:()2:7=():5 1.2:2.5=():4

3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。

(1)6:9和 9:12(2)1.4:2 和 7:10(3)0.5:0.2和 :

4、下面的四个数可以组成比例吗?把组成的比例写出来。2、3、4和6

四、全课小结,提高认识

通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

五、课堂练习,辅助消化 P36~37第3~6题。

六、课外补充,拓展延伸

1、判断。

(1)如果3×a=5×b,那么5:a=3:b。(2): 和 : 中,能与 : 组成比例的是 :。

(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。

2、用、8、、12四个数分别作为比例的项,你能组成几个比例?

3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。

第二课时 解比例

教学内容:P35~37 解比例

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。教学过程:

一、回顾旧知,复习铺垫

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么? 6:3和8:4 : 和 :

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、引导探索,学习新知

1、什么叫解比例?

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。解:设这座模型的高是X米。(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。根据比例的基本性质可以把它变成什么形式?3x=8×15。这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(4)学生说,教师板书解比例的过程。

成方程,然后用解方程的方法来求未知数x。

3、教学例3。出示例3:解比例 = 提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6 让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

三、巩固深化,拓展思维 P37第7题。

四、全课小结,提高认识

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

五、课堂练习,辅助消化 P37~38第8~11题。

六、课外补充,拓展延伸

1、P38第12、13题。2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。、一个比例的四个项都是大于0的整数,它的两个比的比值都是,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

2、正比例和反比例的意义 第一课时 成正比例的量

教学内容:P39~41 成正比例的量

教学要求:

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.教学过程: 一、四顾旧知,复习铺 垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……(1)出示下表,填表

时间 路程

填表,思考:在填表中你发现了什么? 时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)根据计算,你发现了什么? 相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。用式子表示他们的关系是:路程/时间=速度(一定)(板书)(2)教师小结:

同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价表 数量 1 2 3 4 5 6 7 ……

总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例

1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

3)看书P39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?(3)它们的数量关系式是什么?(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、P41做一做

2、P43~44练习七第1~5题。

第二课时 成反比例的量 教学内容:P42 成反比例的量

教学目的:

1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.教学难点:利用反比例的意义,正确判断两个量是否成反比例.教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么? 购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

2、教学P42例3。

(1)引导学生观察上表内数据,然后回答下面问题: A、表中有哪两种量?这两种量相关联吗?为什么? B、水的高度是否随着底面积的变化而变化?怎样变化的?

C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

D、这个积表示什么?写出表示它们之间的数量关系式(2)从中你发现了什么?这与复习题相比有什么不同? A、学生讨论交流。B、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。(5)小明拿一些钱买铅笔,单价和购买的数量。(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

P45~46练习七第6~11题。第三课时 正比例和反比例的比较 教学内容:正比例和反比例的比较

教学目标:

1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。

2、使学生能正确判断正、反比例。

3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。教学难点:正反比例的联系和区别。教学重点:能判断正、反比例。教学过程:

判断:下面每组中的两个量成什么关系?

1、单价一定,数量和总价。

2、路程一定,速度和时间。

3、正方形的边长和它的面积。

4、时间一定,工效和工作总量。

二、新知:

1、出示课题:

2、教学补充例题 出示表1 路程(千米)5 10 25 50 100 时间(时)1 2 5 10 20 表2 速度(千米/时)100 50 20 10 5 时间(时)1 2 5 10 20 分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。总结路程、速度、时间三个量中每两个量之间的比例关系。速度×时间=路程 路程÷时间=速度 路程÷速度=时间 判断:

(1)速度一定,路程和时间成什么比例?(2)路程一定,速度和时间成什么比例?(3)时间一定,路程和速度成什么比例?

3、比较正比例、反比例的关系

正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。

不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一

种量反而缩小(扩大)相对应的每两个量的积一定。

三、巩固练习

1、做一做

判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么? 单价一定,数量和总价— 总价一定,数量和单价— 数量一定,总价和单价—

2.判断下面一些相关联的量成什么比例?为什么?(1)除数一定,和 成 比例。被除数—定,和 成 比例。(2)前项一定,和 成 比例。(3)后项一定,和 成 比例。

(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。

第二篇:六年级数学下册《比例的应用》精品教案

新人教版六年级数学下册《比例的应用》精品教案

教学目标:

1.结合具体情境,能根据图上距离,实际距离,比例尺中的两个量求第三个量。

2.运用比例尺的有关知识,通过测量,绘图,估算,计算等活动,学会解决生活中的实际问题,进一步体会教学与日常生活的密切联系。

教学重点:应用比例尺的知识,解决生活中实际问题的策略。教学难点:

根据数据,度数准确绘制方位制图的方法。教具准备:

尺子,量角器、三角板、多媒体课件、一幅中国地图等。学具准备:尺子,三角板,量角器等。教学过程:

一、复习引入

师: 同学们,上节课我们学习了比例尺的意义,思考并回答:怎样求比例尺?求比例尺要注意什么?

(根据学生的回答,教师板书:比例尺= 或图上距离:实际距离=比例尺)

(要注意,求比例尺,图上距离与实际距离的单位名称要一致,比例尺不带单位名称,比例尺的前项一般化成是1的整数之比,有时 1 需要化成后项是1的整数之比……只要学生回答的有道理,教师就给予肯定)

师:我们不管是看地图,还是画平面图,都要用到比例尺,这说明比例尺在我们的生活,工作中是很有用的,因此,我们不但要理解和掌握比例尺的意义,还要会用比例尺解决一些生活的实际问题。这节课,我们就来探究、学习比例尺的应用。

板书:比例尺的应用

[设计意图:进一步让学生掌握理解和掌握比例尺的意义和求比例尺时要注意的事项。]

二、解决问题

问题1.多媒体展示中国郑开国际马拉松赛的照片后,出示问题: ① 3月28日,在郑州举行了一场重大的国际体育比赛,你们知道什么比赛吗?(中国郑开国际马拉松赛)你们知道马拉松半程赛的距离是多少千米?(21.0975千米)

② 把21.0975千米近似成21.1千米,把它绘制到图纸上用10厘米表示,这幅图纸的比例尺是多少?(学生读一遍)

师:根据以上信息,谁能说说解决这个问题的办法?(学生说的只要合理,就给予肯定)

③ 学生独立完成,全班交流(多媒体展示解决问题的过程)

[设计意图:生活中处处有数学,选择学生感兴趣的,富有现实意义的,具备一定探索性的数学问题,在课堂上让学生用所学的知识,2 选择合适的策略去解决问题。教学中关注学生对信息的选择,对解决思路的表达。]

问题2:出示一幅中国地图,贴在黑板上。

① 师:同学们,马拉松半程的距离是21.1千米,郑州到你老家的路程有多少千米?你想知道吗?(老家不是郑州的学生请举手)

② 师:我们的同学来自祖国各地,你能在地图上找到自己老家的位置?并说一说在郑州的什么方向上?(学生说,师生评)

③师:指名读出比例尺,并说说它的意思。(展示这幅中国地图的比例尺)

④师:根据这幅地图的比例尺,你能估算出郑州到你老家实际距离有多少千米吗?说说你的估算方法。(师生评价)

⑤师:量一量,算一算,和估算的实际距离比一比。(指名量,其余学生记数据,计算,交流,师生评价)、⑥师:我们计算的路程和实际乘车回家走的路程会一样吗?为什么?(学生说,师生评)

[设计意图:结合实际学情,我校学生大部分来自郑州以外,选择这个问题展开探究,发展学生根据实际情境解决问题的能力,估一估,量一量,说一说,算一算,郑州到某位同学老家实际有多少千米,这个问题激发了学生的兴趣,学生在快乐的课堂氛围中获得新知识,提高了解决问题的能力。]

问题3:

师:①同学们刚才在探究解决问题的策略上很积极、很主动。现在我国的上海正在举行全世界瞩目的盛会,你们知道是什么盛会吗?(上海世博会)每天到上海世博会参观的观众有几十万人,你们想去吗?在去上海之前,我们先估算出郑州到上海的实际距离有多少千米?你会吗?(先说估算方法,再估算,师生评价)

②在这幅地图上,量出郑州到上海的图上距离是()厘米。(学生用尺子量)郑州到上海的实际距离有多少千米?一列客车以每小时90千米的速度开往上海,几小时到达?(得数保留一位小数)(学生独立完成,全班交流,师生评价)

[设计意图:这个环节以地图来呈现信息和呈现问题,鼓励学生动手操作,独立思维,培养学生的估算,测量,笔算的能力。]

问题4:多媒体展示凤凰台小学的校园及教学楼图片。

1.提出问题:,我们的教学楼是一个长方形,长是75米,宽是7米,你能用1:500的比例尺把它绘制到图纸上吗?

2.解决问题:

①想办法

师:解决这个问题,你们打算用什么办法解决?想一想,小组同学说一说。

②全班交流(先根据比例尺和实际的长和宽,求出图上的长和宽,再根据图上的数据画图)

③动手解决,展示交流解决问题的过程。(师生评价)

[设计意图:提供我们美丽的校园平面图和实景,让学生计算出图上的长和宽,并根据图上的数据画图,这是一个让学生巩固应用比例尺的有效途径。]

问题5:多媒体出示问题,进一步提高应用比例尺解决生活中问题的能力。根据下面信息,按1:100000的比例尺绘制方位图。

⒈公共汽车从始发点0向东行驶3千米 到A处。

⒉再从A处向北偏东30°方向行驶2.5千米到B处。

⒊由B处向北偏西45°方向行驶1.5千米到C处。

解决问题:

⑴寻找办法

师:仔细想一想,解决这个问题,你用什么办法,可以向小组同学介绍你的方法。

⑵全班交流(师生评价。)

(先求图上距离,确定方向,找到始发点,按数据绘图,只要学生说的合理,就给予鼓励性的评价)

⑶独立完成解决问题的过程。

⑷全班展示方位图并进行全班交流,教师边与学生交流边绘图,帮助困难学生理解和掌握绘制方法。

[设计意图:问题4的解决这个环节做了很好的铺垫,通过这个问题5的解决,同学们学会了遇到难题小组合作完成更有效,体现了生生互动,师生互动的数学活动。老师处于引导地位,发挥了学生的主体性。]

三、本课小结:

你学到了什么新本领?有什么新收获?还有什么疑问?请讲出来?

[设计意图:师生谈话式总结本节课,真实的反馈了学生掌握比例尺这部分知识的情况,学生如果有想问的问题,这时候也可以提出来,体现了一种平等,和谐,融洽的师生关系。]

四、布置作业:课下找一副中国地图,每位同学都要找到自己家乡的位置,估一估、算一算、郑州到你老家的距离有多少千米?告诉老师。

【设计意图:进一步培养学生的估算意识,提高学生解决问题的能力。】

第三篇:六年级数学比和比例教案

六年级数学比和比例教案

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷ 100×1%

0.25×40 2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

前项

∶(比号)

后项

比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :

24.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例: ∶ =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法

结果

求比值

根据比值的意义,用前项除以后项

是一个商,可以是整数、小数或分数

化简比

根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72 ∶

3(2)化简比.

∶ 0.7∶0.2

5(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是)

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当()一定时,()和()成正比例;

当()一定时,()和()成正比例;

当()一定时,()和()成反比例.

(3)如果 =8,和 成()比例.

如果 =,和 成()比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?

四、课堂练习.

1.填空.

(l)根据右面的线段图,写出下面的比.

①甲数与乙数的比是(). 甲数:

②乙数与甲数的比是(). 乙数:

③甲数与甲乙两数和的比是().

④乙数与甲乙两数和的比是().

(2)()24= =24 ∶()=()%.

(3)∶6的比值是().如果前项乘上3,要使比值不变,后项应该().如果前项和后项都除以2,比值是().

(4)把(1吨):(250千克)化成最简整数比是(),它的比值是().

(5)与3.6的最简整数比是(),比值是().

(6)如果a×3=b×5,那么a∶b=()∶().

(7)如果a∶4=0.2∶7,那么a=().

(8)把线段比例尺 改写成数值比例尺是().

(9)甲数乙数的比是4∶5,甲数就是乙数的().

(10)甲数的 等于乙数的,甲乙两数的比是().

2.选择正确答案的序号填在()里.

(1)1克药放入100克水中,药与药水的比是().

①1∶99 ②1∶100 ③1∶101 ④100∶10

1(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是().

①10∶8 ② 5∶4 ③

4、∶5 ④ ∶

(3)在下面各比中,与 ∶ 能组成比例的是().

①4∶3 ②3∶4 ③ ∶3 ④ ∶

(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是().

①9∶10 ②10∶9 ③1∶9 ④9∶

1(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是().

①1∶5 ②1∶5000 ③1∶500000

(6)用3、5、9、15这四个数组成的比例式是().

①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶1

5(7)在比例尺 的地图上,2厘米表示().

①0.4千米 ②4千米 ③40千米

(8)大小两圆半径的比是3∶2,它们的面积的比是().

①3∶2 ②6∶4 ③9∶

4五、布置作业.

1.化简下面各比.

0.12∶56 ∶

2.写出两个比值都是3的比,并组成比例

3.写出一个比例,使它两个内项的积是12.

4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

六、板书设计

比和比例

第四篇:六年级数学解比例教案

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.=8×9

(二)什么叫做比例?什么叫做比例的基本性质?

(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶

2(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例的意义.

1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3 =8×15.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3=8×1

5=40

(三)教学例

3例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

= ∶ = ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

第五篇:六年级数学下册教案-4.1.3 解比例-人教版

《解比例》教学设计

一、教材分析[来源:学_科_网]

这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。

二、教学目标

1.在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。

2.联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。

3.利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。

三、教学重难点

重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。

难点:灵活运用解比例的方法解决问题。

四、教法与学法

教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。

学法:学生独立探究,全班交流,优化出解比例的方法。

五、教学准备

教师:教材例题投影图。

学生:常规学习用具。

六、教学过程

(一)谈话导入

我们在之前的课程中已经学习了关于“比例”的基本知识,今天让我们来学习《解比例》。(师板书,学生齐读)

1.学生质疑

学生根据课题质疑,提出相关数学问题,助于学习。

2.复习

(1)什么叫做比例?

(2)什么叫做比例的基本性质?

(3)怎样判断两个比是否成比例?

3.根据比例的基本性质,将下列各比例改写成乘法等式。

∶5

=

∶10

=

χ:5=6:2

(二)学习新课

1.你知道什么叫解比例吗?如果不知道请在书42页自己找一找:

(1)解比例是根据哪个知识解决的?

(2)必须知道比例的几项?

(3)什么是解比例?

根据比例的基本性质,如果已知比例中的任何三项,就可以求出另外一个未知项。

求比例中的未知项,叫做解比例。(师板书)

这节课我们就一起来探究解比例的方法。

2.教学例3。

(1)出示教材第42页例3。

=

(2)让学生说说这个比例中的内项和外项分别是什么。

内项是1.5和6,外项是2.5和x。(交叉相乘法)

(3)学生依据提示独立解答

根据比例的基本性质,我们可以把这个比例转化成一般的﹙

﹚。

教师巡视,进行个别辅导。

(4)组织交流订正

=

解:1.5χ=2.5×6

χ=

χ=10

(5)

总结解比例的方法

应用比例的基本性质,把比例转化成一般方程,然后再求出解。

3.教学例2。

(1)投影出示埃菲尔铁塔图片,简介激趣。

(2)出示教材第42页例2。

法国巴黎的埃菲尔铁塔高度约320m,北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10。这座模型高多少米?

学习提示:

小组讨论:

①你是怎样理解1:10的呢?

②根据题意列出等量关系式。[来源:Z*xx*k.Com]

③根据等量关系式列出一个比例式。

④你能解出这个比例吗?[来源:学科网]

(3)阅读与理解

①学生独立读题,找出已知条件和所求问题。

②小组内交流获得的信息。

已知条件:埃菲尔铁塔的高度约320m,埃菲尔铁塔模型的高度与原塔高度的比是1:10。

所求问题:这座模型高多少米?[来源:学科网ZXXK]

(4)教师根据学生的汇报交流情况进行板书。

解:设这座模型高χ米。

χ:320=1:10

10χ=320×1(问:根据什么?)

χ=

χ=32

答:这座模型高32米。

(5)小结

提问:解比例的方法是什么?

①根据问题设χ。

②根据比例的意义列出比例式。

③根据比例的基本性质把比例转化成方程。[来源:学科网]

④解方程。

七、巩固练习

1.教材第42页“做一做”第一题

这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。

2.教材第42页“做一做”第二题

3.解决问题

中午,太阳当头照。小明身高1.5m,他的影子长0.5m。一棵松树的影子长10m,它的高度是多少米呢?

4.教材第44页第12题。

这道题设计书写等量关系式,找准“1”和“10”对应的量。

5.给比例填空。

(1)=

(2)0.63:()=():10

小结:如果要确定一个比例中的两项,答案并不唯一。会有很多答案。

八、课堂小结

通过这节课的学习,你有什么收获?

这节课我们主要学习了解比例。方法是根据比例的基本性质,把比例转化为方程,再解方程。

九、板书设计

解比例

求比例中的未知项,叫做解比例。

解:设这座模型高χ米。

χ:320=1:10

10χ=320×1

χ=

χ=32

答:这座模型高32米。

下载六年级数学下册比例教案(范文模版)word格式文档
下载六年级数学下册比例教案(范文模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    苏教版六年级数学下册《比例的意义》教案

    4 比例 【教学目标】 1.理解比例的意义和基本性质,会解比例。 2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例的实例,能运用比例知识解决简单的实际问题。 3.认识......

    2016苏教版六年级数学下册第四单元《比例》教案

    第四单元 比例 教学内容:图形的放大与缩小,比例的意义与性质。 教材分析: 两个内容分别属于两个知识领域,前者是图形与几何的内容,后者是数与代数的内容。在一个单元里同时教学两......

    XX六年级数学下册比和比例教案[合集5篇]

    XX六年级数学下册比和比例教案 本资料为woRD文档,请点击下载地址下载全文下载地址课题 比和比例 计划课时 教 学 内 容 分 析 本课包含比的意义和性质、按比例分配、比例的意......

    六年级下册《比例的意义》参考教案

    比例的意义1 教学目标: 1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。 2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,......

    六年级数学下册教案-《比例的应用》北师大版

    《比例的应用》教学设计方案一、概述本课程选自北师大版义务教育课程标准实验教科书《数学》六年级下册第二单元“比例”。这节课主要让学生体会解决问题方法的多样性,提高解......

    六年级数学下册 比例的基本性质导学教案

    比例的基本性质导学提纲 展示目标:1、知道组成比例的四个数的名称2、理解并掌握比例的基本性质 3、能利用比例的基本性质判断两个比是否能组成比例 3、:=:4、2:3.5=6:10 3 641111......

    小学数学六年级下册《用比例解决问题》公开课教案

    小学数学六年级下册《用比例解决问题》公开课教案 教案设计 设计说明 本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻......

    新人教版小学数学六年级下册《解比例》精品教案

    《解比例》教学设计 中寨乡九年一贯制学校 马旋 一、教学内容:解比例 二、教学目标: 1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。 2、培养学生运用已学知识解......