比例的应用
教学目标:
1.经历用多种方法解决‘‘物物交换”问题的过程,体会解决问题方法的多样性,提高综合应用知识解决问题的能力。
2.在解决问题的过程中列出含有未知数的等比例,并自治探索解比例的方法,理解根据‘‘两个内项的积等于两个外项的积”求比例中的为知项,会正确解比例。
重难点:
重点:比例的应用
难点:应用比例的基本性质解决问题
教学方法:
教法:引导法,讲解法
学法:合作交流,自主探究,归纳总结
教学过程:
一.理解“以物换物”,揭示课题
师:首先和同学们沟通一下,生活中如果遇到一件你非常喜爱的物品,你通常采用哪种合理的方式得到它?拿着人民币去商店、超市购买。把时间推得遥远些,回到古代,怎么买,你了解吗?使用金银等贵重金属,就连贝壳也充当过货币的作用,在追溯到远古时期,没有货在没有货币的年代怎样进行买卖的过程?的确,那个时代人们采用以物换物,物物交换的独特方式满足各自的生活需求。给大家讲个简短的小故事:(课件)很久很久以前,有户人家养了许许多多的羊,有一天,这家的主人带着一只羊来到集市上转悠,看看能不能用羊能不能换到自家需要的东西。还真有,他看中了锋利的斧子,砍柴、打猎都少不了。他和带着斧子的那个人商量,我能用一只羊换你的两把斧子吗?那人看看小羊,肥嘟嘟的,能够一家子吃几天呢,于是满口答应,一桩买卖就这么成交了,他们各自带着自己需要的物品满意而归。(以现在的市场价值看,这桩买卖不公平,不是远古时期的人多么多么的傻,而是因为时代影响了交易的方式与公平度)过了那么几天,做斧子的人还想吃羊,他带着4把斧子去了集市,这次,他会换回几只羊?以此类推,羊和斧子的数量会紧密相连并不断发生变化。在没有货币的年代,人类就是这样以你所需换我所需。从这两次买卖中,你能找到几个比?这两个比有关系吗?既然比值相等,它们能组成什么?把组成的比例说出来。1:2=2:4看,第一个你,前项指?后项指?,这样,第一次羊的数量比第一次斧子的数量等于.....,这里面有一种对应的关系。还能找出不同的比吗?能不能组合不同的比例?2:1=4:2,这是拿什么和什么比,后面呢?也是拿什么比什么?还有想法吗?(台小萱)像这样,按照一定的比例交换自己所需物品的过程叫做以物换物,这其中蕴含着一定的比例,而且直到现在这种方法有时还在沿用,接下来,我们一同体会体会这种原始的交易方法和过程!齐读今天的课题----比例的应用。
二.讲授例题,教授新知
师:请看大屏幕(课件)当你看到这样的交换场景,你如何理解4个玩具汽车换10本小人书。(2个换5本,8个换20本等)照这样下去,联想到的越来越多!当这个同学有14个玩具汽车时,能换取多少本小人书?知道怎么解决吗?拿出作业纸1,在作业纸上展现你的想法!
1.画图法
师:给同学们说说你的想法。最后一共换得了35本小人书。有同学和他一样画了图吗?你画的什么图?(课件)老师也做了一个类似的交换过程的展现图,从这一过程中,有比的存在吗?(4:10
2:5
14:35)它们有关系吗?
2.算术法
师:画图是对此题的一种解决方式,不一样的方法有吗?你来。读一读算式,再个同学们简单讲解讲解。听得明白吗?回到在们的(课件)中回顾一遍计算过程,第一步是看14里面包含多少个4,3.5个4,也就是说14是4的3.5倍,接着因为交换规则是4个换10本,3.5个4就可以换3.5个10本,或者说换的本数应是10本的3.5倍。这种算法也不错!又和他一样的吗?还有不同的吗?
3.用比例知识解决
①列比例
师:物物交换中蕴含着比例,讲了这么几种方法,我们还没感受出比例所产生的作用,现在这样,(课件)假设14个玩具汽车可以换x本小人书,你能尝试列出相应的比例吗?拿出作业纸2,开始。来交流交流,谁把你列出的比例和同学说说。解释你的想法,说清楚是拿谁比谁等于谁比谁,关系是对应的,没有搞反,这两个比的比值是相等的,因此比例关系就成立了!听得明白吗?非常好!(板书:4:10=14:x)都这样列的?你说,你拿什么比什么?判断这样可以么?也不错(板书4:14=10:x)还有?根据什么行吗,也是一种方案。(随机板书)我们的同学从不同的角度列出了这几种不同的比例,大家也都认同,而且列法还不止这3种是吗?其实不管怎样列,列比例的根据是什么?等号两边比的比值一定是相等,而且前后项代表的意义也一定是对应的。老师相信,每个同学也都列出了自己感受出的比例!
②解比例
师:在这些比例中都含有一个什么数?像这样含有未知数的等式也是方程?方程咱们解过的不少,会不会解这些比例呢?联系学过的有关比例的知识,你能想出什么方法?根据比例的基本性质,把比例转化成方程,再解。可以吗?看黑板一起试一试!(板书解比例过程,注意写“解”字,提醒为了不使内外项弄混淆,可以做做记号,比如在外项下面画条横线,内项下也画横线,嗯,可以用虚线,以示区别,当然,在你很清醒,够熟练的情况下,这一步可以忽略,习惯上,我们总是把含有X的识字写在等号的右边。)有了解这个比例的经验,另外两题还有困难吗?哪位愿意来试一试!其它同学在作业纸上解出自己列的比例。一同浏览解题过程,第一步把比列改写成方程,第二步....,这一题的过程同学们默读检查,都没有问题,好样的!虽然是不同的比例,在解的过程中都使用了什么?这三题在哪一步都使用了比例的基本性质,你们说,我把它们都画出来。诶,发现了什么,比例不同,但到了这一步都转化成了4x=140,最后x都等于35,独立解决时得这个答案的举手!35肯定是对的吗?这是在上课时,列了这么多比例,结果总是一致的,当然没问题啦,当你独立完成联系时,有人帮你订正么?你怎样确定35就能满足这个比例呢?检验,是的,解完方程可以检验,解完比例当然也要检验?怎么检验?把求出的结果代入比例验算,看等式是否成立。先带入,4:10=14:35,等式还成立?你怎么算?看比值,还有什么办法。看内外项的积。他借助什么确定比例成立?A比例的意义B比例的基本性质。其实还有一种办法就在黑板上,对于一道题可以列出两种不同的比例,如果解出来的结果一样,是不是也基本是正确的了。
三.巩固练习,发散思维
1.师:同学们对解比例已经有了这么多的认知,我觉得你们完全有能力完成这两道练习?在作业纸上找到这两题,大展身手把?愿意当老师吗?边说边讲解,和他答案相同的举举手,放下,第二道,你来。这道题是将比例写成了分数的形式,你还能分清内外项,有什么经验吗?写成分数的比例内外项分别在对角线的位置上,只要这样对角相乘,立刻方程就出来了。两题都检验了?有时间可不要忘了检验,给自己一个避免错误的机会!一起检验,这是,还可以怎么检验。
2.发散思维
师:两题都做对了吗,对自己的表现还满意吗?其实我还有一个问题,能不能考考你们呢?愿不愿意接收挑战?好,那我问了,解比例时,只有运用比例的基本性质这一种途径吗?以第二题为例,你会想到不一样的思路吗?(机动)我十分佩服你清晰的思路和有条不紊的解答!能不能听懂?听不懂课下找这位同学请教。
四.课堂回顾,梳理总结(2分)
师:又到了总结回顾的紧要关头,通过这节课的交流与练习,感觉自己学到些什么?(利用比例的意义列比例,运用比例的基本性质解比例,学会验算答案的对错,便于及时纠正等)概括的说:这节课主要学会了利用比例的意义列比例,然后运用比例的基本性质解比例,最后把解得的结果带入比例进行检验,是这样吧!希望咱们的同学能够把学到的知识更多更广泛的应用到生活中,学以致用!
五.布置作业
完成课本20面“练一练”2、3、4、题。
板书设计:
比例的应用
列比例
注意前后对应的顺序
解比例
比例的基本性质
检
验
比例的意义
比例的基本性质