第一篇:苏教版六年级数学下册《比例的意义》教案
比例
【教学目标】
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的正比例关系数据在有坐标的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺,会根据比例尺求图上距离或实际距离。5.认识放大与缩小现象,能根据一定的比将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的教育。【重点难点】
重点:理解比例的意义和基本性质。难点:判断两个比能否组成比例。【教学指导】
1.重视基本概念教学。
比例、正比例、反比例是本单元学习的几个基本概念,十分重要。学习比例的相关知识以及比例的应用都有赖于对这些概念的理解和掌握。如解答含正反比例关系的实际问题,首先要对两个量成比例做出判断,然后依据正比例和反比例的数量关系的特点解答。再如,比例尺的应用及图形的放大与缩小,都要依据比例的意义进行相关的计算。教学中要通过观察、比较、判断、归纳等方法帮助学生建立明晰的概念,把握概念的内涵。同时通过应用,不断加深对这些概念的理解和掌握。
2.提高学生综合运用知识的能力。
本单元的知识综合性比较强,如比例的概念与比,除法、分数等相关知识解比例以及用比例方法解决问题,都要用到方程相关知识,所以学习既要注意与旧知识的联系,又要注意强化学生综合运用知识的能力,教材的编写也注意体现知识的综合应用,例如比例尺的一些练习,不仅限于计算图上距离和实际距离,而且涉及到测量图形方向与位置的知识以及根据实际设计比例尺等。
【课时安排】建议共分13课时:
1.比例的意义和基本性质„„„„„„„„„„„„„„„„„„3课时 2.正比例和反比例„„„„„„„„„„„„„„„„„„„„„3课时 3.比例的应用„„„„„„„„„„„„„„„„„„„„„„„6课时 整理和复习„„„„„„„„„„„„„„„„„„„„„„„„1课时 【知识结构】
1.比例的意义和基本性质 第1课时 比例的意义
【教学内容】
比例的意义(教材第40页的内容)。【教学目标】
1.理解比例的意义,会根据比例的意义组成比例。
2.培养学生的分析概括能力,经历引导学生参与知识的形成过程,发现过程和运用过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系。
3.感受生活中处处有数学,激发学习的兴趣,体会事物间的相对联系,培养探究精神。
【重点难点】
1.认识比例,理解比例的意义。2.在已有知识的基础上,结合实例引出新的知识。【教学准备】
情境图、投影仪、多媒体课件。【复习导入】
1.教师:请同学们回忆一下上学期我们学过的比的知识,谁能说一说什么叫做比?举例说明什么叫做比的前项、后项、比值。
教师把学生举的例子板书出来,并注明各部分的名称。2.求下面各比的比值。
学生独立求出各比的比值。
(1)教师:在求比值的时候你们发现了什么吗? 学生:有两个比的比值相等。教师:哪两个比的比值相等呢?
学生回答后,教师把这两个比画上横线。
师:是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连接起来,写成一种新的式子,如:4.5∶2.7=10∶6。课件显示:“10∶6”和“4.5∶2.7”同时闪烁,接着两个比下面的比值隐去,再用等号连接起来。
(2)前面的两个比能用等号连接起来吗?为什么? 教师将课件后面的两个比隐去。学生:不能,比值不相等。
教师小结:数学中规定,像这样的一些式子就叫做比例。教师板书:比例。【新课讲授】
1.师:今天这节课我们就来一起研究比例,你想研究哪些内容呢? 生:比的意义,学比例有什么用?比例有什么特点?
师:那好,我们就来研究比例的意义吧,到底什么是比例呢?根据下面的问题自学例1。
①找出每面红旗长与宽的比。②求出每个比的比值。③哪几个比的比值相等?
2.学生自学完以后,教师逐个问题指名学生回答,并板书在黑板上:2.4∶1.6=;60∶40=。两面国旗的长和宽的比值相等。板书:2.4∶1.6=60∶40,也可以写成。
师:像这样的式子就叫做比例。观察这些式子,你能说出什么叫做比例吗? 根据学生的回答,教师抓住关键点板书:两个比比值相等
教师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。教师用课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
3.找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例? 过程要求:
学生猜想另外两面国旗长、宽的比值。求出国旗长、宽的比值,并组成比例。【课堂作业】
1.完成教材第40页“做一做”第1题。学生独立完成,再在小组中相互交流、订正。2.完成教材第40页“做一做”第2题。组织学生议一议,加深对比例意义的理解。答案:
1.(1)能组成比例,6∶10=9∶15。(2)不能组成比例。
(3)能组成比例,12∶13=6∶4。(4)能组成比例,0.6∶0.2=34∶14。2.可以组成8个比例。即 3∶1.5=4∶2 3∶4=1.5∶2 2∶1.5=4∶3 2∶4=1.5∶3 1.5∶3=2∶4 1.5∶2=3∶4 4∶3=2∶1.5 4∶2=3∶1.5 【课堂小结】
通过这节课的学习,你知道“比”和“比例”这两个概念的联系与区别吗?学生各抒己见,之后师生共同归纳。
【课后作业】
1.教材第43页练习八第1、2题。2.完成练习册中本课时的练习。答案:
1.第1题:(从左往右)不能组成比例;能组成比例,30∶2=120∶8;不能组成比例;能组成比例,100∶5=200∶10。
第2题:(1)可以组成比例
4∶5=12∶15 4∶12=5∶15 15∶5=12∶4 15∶12=5∶4 5∶15=4∶ 125∶4=15∶12 12∶15=4∶5 12∶4=15∶5(2)不能组成比例;(3)不能组成比例;(4)能组成比例
1.让学生自己观察比较,总结得出比例的意义,并从正反两方面进一步认识比例的概念,教学更好地发挥了引导的作用。
2.引导学生探究比例的特点时,通过观察比较,小组交流,多方验证,学生的思维从先前的不知所向变成了最后的豁然明朗。
第二篇:六年级下册《比例的意义》参考教案
比例的意义1 教学目标: 1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。教学过程:
一、创设情境
1、播放国歌
师:听了音乐,你知道他们在干什么?
生:升国旗。
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们知道在哪些地方可以看到国旗呢?(生自由回答)师:同学们都说不错,老师收集几张出现在不同地方的国旗。
2、媒体出示国旗画面,学生观察,激发爱国情操,并分别说出是什么地方。a)天安门升国旗仪式 b)校园升旗仪 c)教室场景 d)签约仪式
师:四幅不同的场景,都有共同的标志——国旗,国旗是中华人民共和国的象征;这些国旗有大有小,你想不想知道这些国旗的长和宽是多少吗?
3、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。签约仪式:长15厘米,宽10厘米。师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
4、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。师:通过计算,大家发现它们的比值都相等,我国国旗法规定:任何一面国旗的长宽之比都是3:2,这是对国旗的尊重。
二、认识比例,理解含义
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4:1.6 =3|2 60:40=3|2 师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:
2.4:1.6 =60:40 ⑴学生照样子从中任选两个比组成一个等式 师指着这些等式说:“在数学中,像这样的等式就叫做比例 ⑵学生尝试说说什么叫比例。
得出结论:表示两个比相等的式子叫做比例。(板书)师这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读。
2、判断两个比是否能够组成比例,关键是什么?(学生讨论)生:看比值是否相等。
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生演板)师:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
三、巩固应用
(一)数的比例
课本第33页做一做(1)(学生汇报比值是否相等,所以成不成比例。教师板书比例式)(二)形的比例
做一做(2)师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)(三)生活中的比例
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本36第1题(课件演示 学生独立完成,小组订正交流。)
(四)拓展练习(课件演示)
四、总结
师:这节课,大家学得都非常的认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
比例的意义2 教学内容:P32~33 教学目的:
1、使学生理解比例的意义,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。教学重点:比例的意义
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
二、引导探究,学习新知
1、同学们我们上学期学比的时候我们了解到人体的黄金比,还记得黄金比是什么吗(1:0.618)?人体的黄金比表现出一个人的结构美,接下来我们要看到的图也有它严格的比才能显示它的庄严,我们一起来看大屏幕。
2、教学比例的意义:出示P32例1。
(1)每面国旗的长和宽的比分别是多少? 5: 10/3 2.4:1.6 60:40 15:10(2)你们能分别写出一面国旗长和宽的比,并求出它们的比值吗?(指名板演)
(3)同学们观察一下每面国旗长和宽的比值有什么关系?(都相等)教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。
5:10/3 =2.4:1.6 60:40=15:10 2.4:1.6=60:40 像这样表示两个比相等的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
比例也可以写成:5/10/3=2.4/1.6 60/40 = 15/10 2.4/1.6=60/40(4)在这句话里,你认为哪些字很重要?对你理解这句话有帮助?(两个比相等的式子)
根据学生的回答,做出温馨提示:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
三、巩固深化,拓展思维(1)填空。
①如果两个比的比值相等,那么这两个比就()比例。②一个比例,等号左边的比和等号右边的比一定是()的。(2)判断。
①比例是由任意两个比组成的。()②表示两个比的式子叫比例。()③6 : 2 = 3 是比例。()④只有自然数可以组成比例式。()⑤组成比例的两个比一定是最简单的整数比。()⑥7:1 =21:3是比例,但 7/1=21/3不是比例。()(3)出示课本“做一做”第1题:下面哪组中的两个比可以组成比例?把组成的比例写出来。
6∶10 和 9∶15 20∶5 和 1∶4 1/2:1/3 和 6:4 0.6:0.2 和 1/4:3/4 请同学们先独立思考做练习,然后和你的学习小组一起讨论这题应该注意什么?然后全班汇报。
四、巩固练习。
1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。(1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
(2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
2、写出比值是0.5的两个比,并组成比例。
五、课堂小结
这节课你学会了什么?有什么收获?可以和大家一起分享吗?
教师再强化总结: 通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。
第三篇:六年级数学下册比例教案(范文模版)
比例
1、比例的意义和基本性质 第一课时
教学内容:P32~34 比例的意义和基本性质
教学目的:
1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16 : 4.5:2.7 10:6 学生求出各比的比值后,再提问:哪两个比的比值相等?(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5: 2.4:1.6 60:40 15:10 每面国旗长和宽的比值有什么关系?(都相等)5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40 象这样表示两个比相等的式子叫做比例。比例也可以写成: = =(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下: 时间(时)2 5 路程(千米)80 200 指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12=,35: 42=,所以 10:12=35:42。(以上举例边说边板书。)(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6 学生判断后,指名说出判断的根据。②做P33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
2、教学比例的基本性质
1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。指名让学生指出板书中的比例的外项、内项。(2)教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书: 两个外项的积是80×5=400 两个内项的积是 2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: = “这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80:()2:7=():5 1.2:2.5=():4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1)6:9和 9:12(2)1.4:2 和 7:10(3)0.5:0.2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。2、3、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化 P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)如果3×a=5×b,那么5:a=3:b。(2): 和 : 中,能与 : 组成比例的是 :。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用、8、、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
第二课时 解比例
教学内容:P35~37 解比例
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。教学过程:
一、回顾旧知,复习铺垫
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么? 6:3和8:4 : 和 :
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、引导探索,学习新知
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。根据比例的基本性质可以把它变成什么形式?3x=8×15。这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(4)学生说,教师板书解比例的过程。
成方程,然后用解方程的方法来求未知数x。
3、教学例3。出示例3:解比例 = 提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6 让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固深化,拓展思维 P37第7题。
四、全课小结,提高认识
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、课堂练习,辅助消化 P37~38第8~11题。
六、课外补充,拓展延伸
1、P38第12、13题。2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。、一个比例的四个项都是大于0的整数,它的两个比的比值都是,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。
2、正比例和反比例的意义 第一课时 成正比例的量
教学内容:P39~41 成正比例的量
教学要求:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.教学过程: 一、四顾旧知,复习铺 垫
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
二、引导探索,学习新知
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……(1)出示下表,填表
时间 路程
填表,思考:在填表中你发现了什么? 时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)根据计算,你发现了什么? 相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。用式子表示他们的关系是:路程/时间=速度(一定)(板书)(2)教师小结:
同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、教学例2:
(1)花布的米数和总价表 数量 1 2 3 4 5 6 7 ……
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
3、抽象概括正比例的意义。
(1)比较例
1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
3)看书P39,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? x/y=k(一定)
(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?
4、看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?(3)它们的数量关系式是什么?(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、P41做一做
2、P43~44练习七第1~5题。
第二课时 成反比例的量 教学内容:P42 成反比例的量
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.教学难点:利用反比例的意义,正确判断两个量是否成反比例.教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么? 购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题: A、表中有哪两种量?这两种量相关联吗?为什么? B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式(2)从中你发现了什么?这与复习题相比有什么不同? A、学生讨论交流。B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。(5)小明拿一些钱买铅笔,单价和购买的数量。(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。第三课时 正比例和反比例的比较 教学内容:正比例和反比例的比较
教学目标:
1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。教学难点:正反比例的联系和区别。教学重点:能判断正、反比例。教学过程:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题 出示表1 路程(千米)5 10 25 50 100 时间(时)1 2 5 10 20 表2 速度(千米/时)100 50 20 10 5 时间(时)1 2 5 10 20 分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。总结路程、速度、时间三个量中每两个量之间的比例关系。速度×时间=路程 路程÷时间=速度 路程÷速度=时间 判断:
(1)速度一定,路程和时间成什么比例?(2)路程一定,速度和时间成什么比例?(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一
种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习
1、做一做
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么? 单价一定,数量和总价— 总价一定,数量和单价— 数量一定,总价和单价—
2.判断下面一些相关联的量成什么比例?为什么?(1)除数一定,和 成 比例。被除数—定,和 成 比例。(2)前项一定,和 成 比例。(3)后项一定,和 成 比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
第四篇:六年级数学下册比例的意义公开课教案设计
六年级数学下册比例的意义公开课教案
教学内容:
人教版六年级数学下册第40页 教学目标:
1.知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。
2.过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
3.情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。教学重点:
理解比例的意义,能正确判断两个比能否组成比例。教学难点:
自主探究比和比例的意义。教学过程
(一)复习旧知
师:同学们还记得我们以前学过的比的相关知识吗?
生:记得。
师:好的,让我们随着下面几个问题一起来回顾。(出示课件)
师:同学们对比的知识掌握的真不错,我们知道数学知识之间的联系是非常紧密的,那这节课我们就在比的基础上来一起学习比例。(板书比例)
师:看到这个课题你有什么想问的吗?
生:.......师:同学们真爱动脑筋,提出了这么多有价值的问题。那这节课让我们一起来探讨这些问题。
(二)探索新知
师:国旗大家不陌生吧?国旗是我们中华人民共和国的标志,我们来看看这些地方的国旗(出示课件)
师:这三幅国旗有什么共同点和不同点?
生:形状相同,大小不同。
师:对于后面两面国旗我们是比较熟悉的,那你们知道这两面国旗的长和宽吗?
生:不知道。
师:通过测量我们知道了他们的长和宽。(出示课件)
师:那你们能分别写出操场上的国旗的长和宽的比和教师里的国旗的长和宽的比吗?
师:那你能求出这两面国旗的长和宽的比值吗?
生:比值都是1.5.师:通过计算你发现了什么?
生:两面国旗的长和宽的比值都是1.5.师:那天安门广场的国旗的长和宽的比值是不是也是1.5呢?请大家动手算算。
生:也是。
师:是的,其实(出示课件)所以所有的国旗都是大小不同,形状相同。
师:那我们再回到刚刚我们熟悉的两面国旗上来,我们知道了这两面国旗的长和宽的比值相等,所以我们可以用一个等号将这两个比连接起来。就是(板书)也可以写成(板书)
师:像这样的表示两个比相等的式子叫做比例,这就是比例的意义。(补充课题板书)
师:根据比例的概念,你觉得要组成比例必须具备哪些条件?
生:两个比,比值相等。
师:比值相等的两个比才能组成比例。
师:这些知识你们都理解了吗?
生:理解了。
师:我们一起来做个小小的检测。(出示课件练习)
师:看来大部分同学已经理解了比例,那你能区分比和比例吗?(出示课件)
师:通过练习和比较我们对比有了更深的认识,那你知道在上面三幅图中还有哪些比可以组成比例吗?
师:同学们真会找,找出了这么多比例,我们知道我们学习知识是为了用知识来解决问题,那让我们一起去解决下面的问题吧!
(三)巩固练习
出示课件题目。
(四)课堂小结
师:同学们这节课你们都有哪些收获呢?
(五)板书设计
比例的意义
表示两个比相等的式子叫做比例。
2.4︰1.6=60︰40或2.4=60
1.640
汪
灵
枝
2016年4月7日
第五篇:六年级数学下册教案-4.1.1 比例的意义7-人教版
第1课时
比例的意义
审核人:
审核日期:
授课人:
授课日期:
教学内容
教材P40页比例的意义。
教学目标
知识与技能:
使学生理解比例的意义,能正确判断两个比是否能组成比例。
过程与方法:
通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
情感态度与价值观:
使学生初步感知事物之间是相互联系、不断变化发展的。
教学重点
理解比例的意义。
教学难点
应用比例的意义判断两个比能否组成比例。
教法学法
教法:教师通过指导学生从情境中理解比例的意义,自主学习掌握比
例各部分名称。
学法:学生通过观察比较、交流讨论学习本科知识。
教学准备
PPT课件国旗图片和学生课前量出不同大小国旗的长与宽
课型与课时
新授课
1课时
教学过程
学
案
导
案
群备修改
二次修改
课前三分钟
自
学
指
导
1、学生独立完成。[来源:Zxxk.Com]
2、学生举例子,并注明比的各部分的名称。
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
2、如何求比值
启
智
探
究
1.(1)这几幅图中都有中华人民共和国国旗。不同之处是这几面国旗的长、宽各不相等。
(2)这三幅图中国旗长
和宽的比都是3∶2。国旗不是想做多大就做多大。
(3)学生写出长和宽的比,发现比都是3∶2。
2.师生共同研讨,发现其中的规律。
[来源:学_科_网Z_X_X_K]
3.学生认真听教师谈话,进入新课学习。
(1)学生理解比例的意义。
(2)学生在纸上试写。
(3)学生写出其他的比例。学生独立完成后同桌交流。
(4)比例是由两个比组成。这两个比必须具备的条件是:它们比值相等。
1.出示教材第40页的三幅国旗图片。
(1)提出问题:这几幅国旗有什么相同的地方和不同的地方?
(2)这三幅国旗除此之外还有什么关系?是不是国旗想做多大就做多大呢?
(3)提出探究要求:请同学们根据老师给出的数据,写一写,算一算,看看背后到底隐藏着什么?
学生独立探究,教师巡视。
2.组织研讨:通过研究,你发现了什么?
3.教师根据学生的回答板书:2.4∶1.6=
60∶40=
5∶=
师:这些比中任意两个比,我们都可以用等号连接。(课件展示:“2.4∶1.6”和“60∶40”同时闪烁,接着两个比后面的比值隐去,再用等号连接起来。)你知道像这样的式子叫什么吗?本节课我们就一起来学习比例。
(1)师:这两面国旗的长和宽的比值相等,中间可以用等号连接,像这样表示两个比相等的式子叫做比例。
板书:2.4∶1.6=60∶40
(2)比可以写成分数的形式,那么,比例也能写成分数的形式吗?怎么写例?
教师指名板演。
(3)结合黑板上的比,你还能说出其他的比例吗?
汇报交流学生所写的比例。
(4))探究比和比例的区别。
学生小组交流后全班汇报。
教师小结:比表示两个数相除;比例表示两个比相等,是一个等式。
[来源:学|科|网Z|X|X|K]
反馈矫正
学生独立完成,同桌间互相检查,集体订正。
1.完成教材第40页“做一做”。
2.完成教材第43页第1题。
拓展运用
学生认真审题后做题,然后在组内进行交流。
比例的两个外项是6和0.3,两个内项是1.2和1.5,组成的比例是():()=():()
[来源:学科网]
作业布置
教材第43页1、2、3题。
板书设计
比例的意义
2.4:1.6=3:2
60:40=3:2
2.4:1.6=60:40或2.4:1.6=60:40
表示两个比相等的式子叫做比例。
课后反思