第一篇:正切函数教案
函数y=Asin(wx+φ)的图象作法 §1.4.2正弦函数余弦函数的性质教案
吴平原
【教材分析】
《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。【教学目标】
1.会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦的值域来求函数和函数 的值域
2.在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.
3.在解决问题的过程中,体验克服困难取得成功的喜悦.
【教学重点难点】
教学重点:正弦函数和余弦函数的性质。
教学难点:应用正、余弦的定义域、值域来求含有的函数的值域
【学情分析】
知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。
心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生考虑问题不深入,往往会造成错误的结果。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】
1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。【课时安排】1课时 【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复习导入、展示目标。
(一)问题情境 复习:如何作出正弦函数、余弦函数的图象?
生:描点法(几何法、五点法),图象变换法。并要求学生回忆哪五个关键点 引入:研究一个函数的性质从哪几个方面考虑? 生:定义域、值域、单调性、周期性、对称性等 提出本节课学习目标——定义域与值域
(二)探索研究
给出正弦、余弦函数的图象,让学生观察,并思考下列问题:
1.定义域
正弦函数、余弦函数的定义域都是实数集(或).2.值域(1)值域
因为正弦线、余弦线的长度不大于单位圆的半径的长度, 所以 , 即
也就是说,正弦函数、余弦函数的值域都是.(2)最值 正弦函数
①当且仅当时,取得最大值 ②当且仅当时,取得最小值 余弦函数
①当且仅当时,取得最大值 ②当且仅当时,取得最小值 3.周期性 由知: 正弦函数值、余弦函数值是按照一定规律不断重复地取得的.定义:对于函数 ,如果存在一个非零常数 ,使得当取定义域内的每一个值时, 都有 ,那么函数就叫做周期函数,非零常数叫做这个函数的周期.由此可知,都是这两个函数的周期.对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,都是它的周期,最小正周期是.4.奇偶性 由
可知:()为奇函数,其图象关于原点对称()为偶函数,其图象关于轴对称 5.对称性 正弦函数的对称中心是 , 对称轴是直线;余弦函数的对称中心是 , 对称轴是直线
(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴(中轴线)的交点).6.单调性
从的图象上可看出: 当时,曲线逐渐上升,的值由增大到 当时,曲线逐渐下降,的值由减小到 结合上述周期性可知: 正弦函数在每一个闭区间上都是增函数,其值从增大到;在每一个闭区间上都是减函数,其值从减小到.余弦函数在每一个闭区间上都是增函数,其值从增加到;余弦函数在每一个闭区间上都是减函数,其值从减小到.三、例题分析
例
1、求函数y=sin(2x+)的单调增区间.
解析:求函数的单调增区间时,应把三角函数符号后面的角看成一个整体,采用换元的方法,化归到正、余弦函数的单调性.
解:令z=2x+,函数y=sinz的单调增区间为[,]. 由 ≤2x+≤得
≤x≤
故函数y=sinz的单调增区间为 [,](k∈Z)点评:“整体思想”解题
变式训练1.求函数y=sin(-2x+)的单调增区间
解:令z=-2x+,函数y=sinz的单调减区间为[,] 故函数sin(-2x+)的单调增区间为[,](k∈Z).
例2:判断函数的奇偶性
解析:判断函数的奇偶性,首先要看定义域是否关于原点对称,然后再看与的关系,对(1)用诱导公式化简后,更便于判断.
解:∵ =,∴
所以函数为偶函数.
点评:判断函数的奇偶性时,判断“定义域是否关于原点对称”是必须的步骤. 变式训练2.)解:函数的定义域为R,=
=== 所以函数)为奇函数.
00例3.比较sin250、sin260的大小
解析:通过诱导公式把角度化为同一单调区间,利用正弦函数单调性比较大小 解:∵y=sinx在[,](k∈Z),上是单调减函数,0000
又
250<260 ∴ sin250>sin260
点评:比较同名的三角函数值的大小,找到单 调区间,运用单调性即可,若比较复杂,先化间;比较不同名的三角函数值的大小,应先化为同名的三角函数值,再进行比较. 变式训练3.cos 解:cos 由学生分析,得到结论,其他学生帮助补充、纠正完成。
五、反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。课堂小结:
1、数学知识:正、余弦函数的图象性质,并会运用性质解决有关问题
2、数学思想方法:数形结合、整体思想。
七、板书设计
正弦函数和余弦函数的性质
一、正弦函数的性质
例1
二、余弦函数的性质
例2 定义域、值域、单调、奇偶、周期对称
例3
八、教学反思
(1)根据学生学习知识的发展过程,在推导性质的过程中让学生自己先独思考,然后小组交流,再来纠正学生错误结论,充分体现了学生的主体性,让学生活起来。
(2)关注学生的表达,表现,学生的情感需求,课堂明显就活跃,学生的积极性完全被调动起来,很多学生想表达自己的想法。这对这些学生的后续学习的积极性是非常有帮助的。(3)判断题、例题的选择都是根据我们以往对学生的了解而设置的,帮助学生辨析,缩短认识这些知识的时间,减少再出现类似错误的人数,在学生学习困惑时给与帮助。
第二篇:正切函数的性质与图像教案
1.4.3 正切函数的性质和图像
一、教学目标
1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;
二、课时 1课时
三、教学重点 正切函数的性质与图象的简单应用.四、教学难点 正切函数性质的深刻理解及其简单应用.五、教具
多媒体、实物投影仪
六、教学过程 导入新课
思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课 新知探究 提出问题
①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?
你能类比“五点法”也用几个字总结出作正切简图的方法吗?
活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性 由诱导公式tan(x+π)=tanx,x∈R,x≠
+kπ,k∈Z
2可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性 由诱导公式 tan(-x)=-tanx,x∈R,x≠
+kπ,k∈Z 2
可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(k,0)k∈Z.2(3)单调性
通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(又由正切函数的周期性可知,正切函数在开区间(22,)内是增函数,2+kπ,+kπ),k∈Z内都是增函数.2(4)定义域
根据正切函数的定义tanα=
y,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时x正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+数的定义域是{α|α≠kπ+
,k∈Z,所以正切函2,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在22解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域
由多媒体课件演示正切线的变化规律,从正切线知,当x大于切线AT向Oy轴的负方向无限延伸;当x小于向无限延伸.因此,tanx在(2且无限接近2时,正
且无限接近时,正切线AT向Oy轴的正方2222,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1
问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整22,)的图象为好.22+kπ(k∈Z)2个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠的图象,我们称正切曲线,如图3.图2
图3
问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(22,)的简图.学生可看出有三个点很关键:(4,-1),(0,0),(,1),还有两4条竖线.因此,画正切函数简图的方法就是:先描三点(x=4,-1),(0,0),(,1),再画两条平行线42,x=,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.2讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题
①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=
+kπ,k∈Z所隔开的无2穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性
+kπ),k∈Z,没有减区间.它的图象是关于原点对称
22k的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(,0),k∈Z.2质——单调性,单调增区间是(+kπ,问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例 略
课堂小结
1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义? 作业课本习题1.4 A组6、8、9.
第三篇:正切函数的图像与性质教案
高中数学
正切函数的图像与性质
昆明市教师资格审查教育教学能力测评试讲教案
试 讲 科 目: 高 中 数 学 学 校: 云 南 师 范 大 学
姓 名: 何 会 芳
2013年5月3日制 高中数学
正切函数的图像与性质
一.教材分析
1、教材的地位和作用
本节课是在学生学习了正弦余弦函数图像及基本性质的基础上对又一个具体三角函数的学习,其研究方法与前面正余弦函数图像与性质的研究方法类似,是对学生所学知识的融通和运用,也是学生对学习函数规律的总结和探索。正确理解和熟练掌握正切函数的图像和性质也是之后学好《已知三角函数求值》的关键。
2、教学目标
(一)知识和技能目标:
1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法”
2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用.
(二)过程与方法目标:
1、通过学生自己动手作图,调动学生的积极性和情感投入,培养学生数形结合的思想方法;
2、培养学生类比、归纳的数学思想;
3、培养学生发现数学规律,实践第一的观点,增强学习数学的兴趣。3.重点、难点与疑点
(一)、教学重点:正切函数的图象和性质。
1、我打算用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图,并探索函数性质;
2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=/2 +k,kZ在确定图象形状时所起的关键作用。
(二)、教学难点:体验正切函数基本性质的应用,(三)、教学疑点:正切函数在每个单调区间是增函数,但由于定义域的不连续性并非整个定义域内的增函数;
二.教学策略
在本节课中,我以“矛盾冲突”为主线撞击学生的思维,比如:
1、在得到正切函数的概念之后,提出如何研究这一具体函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法;
2、在得到正切函数的部分性质之后,提出如何能“丰满”正切函数的性质,启发学生可以借助图像进行研究,让学生感受“数缺形少直观,形缺少数难入微”的精妙.三.学情分析
本节课是研究了正弦、余弦函数的图像与性质后,对又一具体三角函数的学习。学生已经掌握了角的正切,正切线和与正切有关的诱导公式,对三角函数性质的讨论方法已经有了一个比较清晰的认识,这为本节课的学习提供了知识的保障.
四.教学程序
1、复习引入
(一)、复习
问题:
1、什么是正切?正切有关的诱导公式? 练习:画出下列各角的正切线 高中数学
正切函数的图像与性质
(二)、引入
引出正切函数、正切曲线的概念,提出对正切函数性质思考,让学生能清晰的认识本节课的内容:在内容上,是研究一个具体函数的图像和性质.2、学习新课:
提出如何研究正切函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法。
(一)复习:如何作出正弦函数的图像?
(二)、探究:用正切线作正切函数图像
问题:正切函数y=tanx是否是周期函数?
设f(x)=tanx f(x+)=tan(x+)=tanx=f(x)y=tanx是周期函数,是它的一个周期。高中数学
正切函数的图像与性质
我们先来作 一个周期内的图像
根据正切函数的周期性,将上图像向左向右延伸得到正弦函数的图像
(三)、研究函数性质(启发学生借助图像进行研究,培养学生数形结合的思想)
(四)、疑点解析 高中数学
正切函数的图像与性质
在每一个开区间
(五)、例题讲解及课内巩固练习例
1、比较下列每组数的大小
(1)tan167与tan17
3(2)tan(y=tanx在(,)上是增函数,又y=tanx在(0,)上是增函数
内都是增函数)与tan
说明:比较两个正切值大小,关键是相应的角化到y=tanx的同一单调区间内,再利用y=tanx的单调递增性解决。
例
2、求函数y=tan(x+)的定义域和单调区间及其对称中心。
解:令t= x+,那么函数y=tan(x+)的定义域是
t ,因此,函数的定义域是 高中数学
正切函数的图像与性质
练习:求函数y=tan3x的定义域,值域,单调增区间,对称中心
例3 求函数y=tan3x的周期
说明自变量x,至少要增加是。,函数的值才能重复取得,所以函数y=tan3x的周期
例4 解不等式:
例5 观察正切曲线,写出满足下列条件的x的值的范围
高中数学
正切函数的图像与性质
(六)、课堂小结
通过本节课的学习,我们认识了正切函数的图象即正切曲线以及通过图象观察总结出正切函数的性质并利用性质解决了一些简单问题,要注意整体思想在其中的应用。
3、课后作业
(1)课本课本课本课本80页第页第页第页第1,3题
(2)列表比较正弦函数、余弦函数、正切函数的图像及性质
第四篇:示范教案(1.3_两角和与差的正切函数)
区公开课教案
《两角和与差的正切函数》教案
高一数学
陈业锋
两角和与差的正切函数
三维目标
1.会由两角和与差的正弦、余弦公式推导两角和与差的正切公式,能运用两角和与差的正切公式进行简单的化简、求值及三角恒等证明.2.通过两角和与差的正切公式的推导及运用,让学生从中体会转化与化归的思想方法,培养学生用联系变化的观点观察问题,通过学生的互相交流增强学生的合作能力,加强学生对公式的理解,在公式变形美的熏陶下提高数学审美层次.重点难点
教学重点:两角和与差的正切公式的推导及应用.教学难点:两角和与差的正切公式的灵活运用,特别是逆用及变形用.教学方法
启发引导式、讲练结合法
教学过程
一、导入新课
1、回忆两角和与差的余弦公式、正弦公式。
2、通过前面的学习,你能否求出tan75°的值?学生很容易转化为30°、45°的正弦、余弦来求.教师进一步提出:能否直接利用tan30°和tan45°来求出tan15°呢?由此展开新课
二、推进新课、新知探究
活动:回答上述问题,教师板书过程。提出问题
(1)通过上述特殊角的正切值得推导,利用所学两角和与差的公式,对比分析公式Cα-β、Cα+β、Sα-β、Sα+β,能否推导出tan(α-β)=?tan(α+β)=?
(2)分析观察公式Tα-β、Tα+β的结构特征与正、余弦公式有什么不同?(3)前面两角和与差的正、,余弦公式是恒等式,和与差的正切呢?
活动:引导学生观察思考前面我们推出的公式Cα-β、Cα+β、Sα+β、Sα-β,通过教师引导学生自然会想到利用同角三角函数关系式化弦为切,通过除以cosαcosβ即可得到,在这一过程中学生很可能想不到讨论cosαcosβ等于零的情况,这时教师不要直接提醒,让学生通过观察验证自己悟出来才有好效果.对cosαcosβ讨论如下:
当cos(α+β)≠0时,tan(α+β)=
sin()sincoscossin.cos()coscossinsin若cosαcosβ≠0,即cosα≠0且cosβ≠0时,分子分母同除以cosαcosβ,得 tan(α+β)=tantan.1tantan根据角α、β的任意性,在上面的式子中,β用-β代之,则有 tan(α-β)=tantan()tantan.1tantan()1tantan由此推得两角和与差的正切公式,简记为“Tα-β、Tα+β”.tan(α+β)=tantan;(Tα+β)1tantantan(α-β)=tantan.(Tα-β)1tantan我们把公式Tα+β,Tα-β分别称作两角和的正切公式与两角差的正切公式 问题:通过刚才的推导你能说出α、β、α±β满足的范围吗?
+kπ(k∈Z),这样才能保证tan(α±β)与222tanα,tanβ都有意义.教师应留出一定的时间让学生回味,反思探究过程,点明推导过程的关键是: tan(α+β)→sin(α+β),cos(α+β)→sinα、sinβ、cosα、cosβ→tanα、tanβ.教师说明:一定要掌握公式成立的条件、公式的形式及公式的作用三个方面: ①公式成立的条件是什么?(提示学生从公式的形式和推导过程看)tanα、tanβ、tan(α±β)都有意义,且1±tanαtanβ≠0;
②注意公式的形式:公式右边分子是单角α、β正切的和与差,分母是1减(或加)单角α、β正切的积公式,右边分子的符号与公式左边的符号相同,公式右边分母的符号与分子的符号相反;③公式的作用:将复角α±β的正切化为单角α、β的正切形式,用于角的变换.(基本关系式用于三角函数的变形)可用于三角函数的计算、化简、证明.至此,我们学完了两角和与差的正弦、余弦、正切公式,统一叫作三角函数的和差公式.一般地,我们把公式Sα+β,Cα+β,Tα+β都叫作和角公式,而把公式Sα-β,Cα-β,Tα-β都叫作差角公式.要让学生明晰这六个公式的推导过程,清晰逻辑关系主线.可让学生自己画出这六个框图,通过逻辑联系图: 生:
α≠+kπ(k∈Z),β≠
+kπ(k∈Z),α±β≠
三、应用示例
例1 求tan150的值。解略
例 2.求下列各式的值:
tan42tan18tan30tan75(1);(2).1tan42tan181tan30tan75
解略。
活动说明:例
1、例2主要是公式的正用与逆用,由学生回答。
1tan15例3 计算的值.1tan15活动:教材安排本例的目的是让学生体会公式的逆用,难度不大,可由学生自己完成.对部分思路受阻的学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现
tan45tan15与Tα-β右边形式相近,但需要进行一定的变形,又因tan45°=1,原式化为,再逆
1tan45tan15用公式Tα-β即可解得.解:因为tan45°=1, 1tan15tan45tan153所以==tan(45°-15°)=tan30°=.31tan151tan45tan15
1例4 已知tanα=2,tanβ=-,其中0<α<,<β<π.322(1)求tan(α-β);(2)求α+β的值.活动:本例是两角和与差的正切公式的直接运用,教师可让学生独立解决.对于(2)教师要提醒学生注意判断角的范围,这是解这类题目的关键步骤.让学生养成良好的习惯:由三角函数值求角必先找出所求角的范围.1解:(1)因为已知tanα=2,tanβ=-,31tantan3=7.所以tan(α-β)=21tantan132(2)因为tan(α+β)=tantan1tantan,<β<π,所以
13=1, =
2132又因为0<α<在222<α+β<
3.42与355之间,只有的正切值等于1,所以α+β=.444
25310 变式一:已知sin,cos,其中0,5102
,(1)求tan(0);(2)求的值2 变式二:已知tan2,tan,3
);(2)求的值(1)求tan(21,tan(β-)=,求tan(α+)的值.5444活动:本例是教材和与差角公式的最后一个例题,需要用到拆角技巧,对此学生是熟悉的.教学时可让学生自己探究解决,但要提醒学生在以后解题时注意挖掘题目中隐含着的某种特殊的关系,通过细微而敏锐的观察、联想、转化等思维活动,以实现解题的突破.例5 若tan(α+β)=
解:因为α+4=(α+β)-(β-4), 所以tan(α+4)=tan[(α+β)-(β-
4)]
21tan()tan()4543.=
21221tan()tan()1454点评:本题是典型的变角问题,就是把所求角利用已知角来表示,具有一定的技巧,这就需要教师巧妙地引导,让学生亲自动手进行角的变换,使之明白此类变角的技巧,从而培养学生灵活运用公式的能力.四、知能训练
课本练习1、2、3、4.课堂小结
本节课主要学习的是:推导了两角和与差的正切公式;研究了公式成立的条件、公式的形式及公式的作用;学习了公式的应用,通过公式的推导,加强了对“转化”数学思想方法的理解,掌握探究公式的方法,学会应用公式的三种基本方式;通过例题我们对公式不仅要会正用,还要会逆用,有时还需要适当变形后再用,这样才能全面地掌握公式.作业
1、.课本习题3—1 A组6,7.2、.补充:已知一元二次方程ax2+bx+c=0(ac≠0)的两个根为tanα,tanβ,求tan(α+β)的值.解:由韦达定理,得tanα+tanβ=-
bc,tanαtanβ=, aabtanatanbb∴tan(α+β)=.ac1tanatanacca1a
教学反思
1.因为本节内容是两角和与差公式的最后一节,所以本节教案的设计目的既是两角和与差正弦余弦公式的继续,也注意了复习巩固两角和差公式.设计意图在于深刻理解公式的内在联系,学会综合利用公式解题的方法和技巧.因此本节课安排的几个例子都是围绕这个目标设计的,它们的解题方法也充分体现了公式的灵活运用.另外,通过补充的例题,教给学生正用、逆用、变形用公式的方法,培养了他们的逆向思维和灵活运用公式的能力.2.对于本节课来说,我们应该本着以学生为主体,教师为主导的原则,让学生充分发挥自己的学习智能,由学生唱好本节的主角.在设计例习题上,也是先让学生审题、独立思考、探究解法,然后教师再进行必要的点评.重在理清思路,纠正错误,点拨解法,争取一题多解,拓展思路,通过变式训练再进行方法提升,开拓题型.总之,本节教案的设计思想是把本节操作过程当作提升学生思维、运算能力的极佳载体.
第五篇:“正切函数的图像和性质”的教学设计[模版]
“正切函数的图像和性质”的教学设计
“正切函数的图像和性质”是全日制普通高级中学教科书(必修)《数学》第一册(下)第四章第十节的内容,也是普通高中课程标准试验教科书(必修)《数学》4 §1.4.3的内容.正切函数的图像和性质的学习是正弦、余弦函数的图像和性质知识的延续和深化,也是数形结合等重要数学思想方法的基础.本节课的教学不但能使学生在原有知识和经验的基础上进一步体会数形结合思想,而且可以提高观察、比较、概括等能力的发展.但对图像的认识学生始终有些难以理解,因此,本节课力争使用多媒体教学,使学生从理性和感性两方面去认识,从而达到预期的效果.一、教学目标
1.知识目标
通过本节的学习能理解并掌握作正切函数图像的方法,能用正切函数的图像解决有关问题.2.能力目标
经历正切函数图像的作法过程,发展学生运用类比的方法分析问题和解决问题的能力,并让学生进一步体会数形结合思想方法的重要性.3.情感目标
培养学生积极参与、合作交流的主体意识和主动探索、勇于发现的科学精神.在知识的探索和发现的过程中,使学生感到数学学习的意义,从而产生良好的数学学习态度.4.重点和难点
重点:正切函数的图像形状及其主要性质.难点:利用正切线画出正切函数y=tanx,x∈-π2,π2的图像.为了突出重点、突破难点,在教学中采取以下措施:
(1)采用类比的方法,让学生在正弦函数图像画法的基础上研究正切函数图像的画法.(2)从学生已有的知识出发,利用数形结合的思想,逐步引导学生通过自主探索、合作交流的形式,观察、归纳出正切函数的主要性质.二、教法探索
1.教法分析
针对高一年级学生的年龄特点和心理特征,结合他们的认知水平,在遵循启发式教学原则的基础上,本节课我主要采用以“情境――问题”教学法为主,以类比法、讨论法、练习法为辅的教学方法,意在通过教师的引导,调动学生的积极性,让学生多交流、多讨论,主动参与到教学活动中来.“情境――问题”教学法是贵州师范大学数学系的教授和研究生们,从跨文化数学教育研究的结果出发,为改变由教师单向灌输书本知识、学生被动接受学习的模式,提出了旨在培养创新意识和创新能力的基本教学模式,表示为:
设置数学情境→提出数学问题→解决数学问题→注重数学应用
(引导观察分析)(猜想探究)(正面求解或反例反驳)(学做学用)
2.学法指导
现代教育理论认为,教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键,因此在本节课的教学中,教会学生能用“类比”的学习方法学习正切函数的图像和性质,体会数形结合解决问题的好处,使传授知识与培养能力融为一体,真正实现本节课的教学目标.3.教学手段
为了更形象、直观地突出重点、突破难点,增大教学容量,提高教学效率,本节课采用多媒体辅助教学,以加深学生对图像的认识,尤其使用几何画板的功能,让学生用动态的观点分析问题和解决问题.三、教学环节设计
为了达到预期的教学目标,对整个教学过程进行了系统的规划,主要设计了以下五个教学环节(诸环节的标题与顺序见下面的各个小标题):
1.创设情境,导入新课
引入新课:正切函数是区别于正弦函数的又一三角函数,它与正弦函数的最大区别是定义域的不连续性,为了更好地研究其性质,我们首先讨论y=tanx的图像.利用多媒体展示正弦函数的图像:y=sinx,x∈(0,2π).2.自主探索,归纳新知
(本环节主要引导学生探索研究,得出新知.引导学生由正弦函数图像,通过类比作出正切函数图像,并让学生通过对图像的观察,自主探索、合作交流,归纳出正切函数性质.)
师生互动:
活动一:采用类比的方法,让学生通过正弦函数图像的作法探索如何利用正切线作出正切函数的y=tanx,x∈-π2,π2图像.在学生合作交流、共同探讨后利用多媒体课件展示正切函数的图像(如图示).活动二:利用几何画板的强大功能展示正切函数图像的动态画法,让学生在动态中享受数学知识带来的乐趣.活动三:引导学生通过函数的周期性作出函数y=tanx在整个定义域内的函数图像.(此环节让学生通过正弦函数的画法,通过类比的方式,根据正切函数的周期性得出.)
活动四:引导学生通过对图像的研究,分析归纳出正切函数的性质.(本环节中,通过设计“问题串”、作类比等方式,使学生对于知识的理解不仅仅停留在表面,而是抓住了其实质,从而轻松地掌握本节的教学重点.)
3.巩固练习,深化知识
适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的.为了促进学生对新知识的理解和掌握,及时安排学生完成以下练习.1.求函数y=tanx+π4的定义域.2.不求值,比较下列各组中两个正切函数值的大小:
(1)tan167°与tan173°;
(2)tan-11π4与tan-13π5.4.归纳小结,反思提高
小结以提问的方式出现.问题1:通过本节课的学习,你学会了什么知识?
问题2:在解决问题的过程中,你掌握了哪些数学思想方法?
5.布置作业,分层落实
为培养学生良好的学习习惯,巩固所学内容,提高学生的探究能力和自主学习能力,让学生完成下列练习:
1.证明函数f(x)=tanx在-π2,π2是增函数.2.课后习题(习题4.10).四、反思研究
作为一节新知识课,在教法上,我打破了传统的教学模式,精心设计问题情境,积极引导、启发学生,经过类比、观察、归纳,最终得出.本节课在设计和教学过程中,留下了一些遗憾.比如,想让学生了解的内容过多,而对学生的估计不足,使得在教学过程中,未能充分发挥学生的主观能动作用,教学中未能完全放开.附:板书设计
4.10正切函数的图像和性质
1.正切函数的图像
2.正切函数的性质:
(1)定义域:
(2)值域:
(3)周期性:
(4)奇偶性:
(5)单调性:
3.练习巩固.【参考文献】
[1]马复.设计合理的数学教学[M].北京:高等教育出版社,2003.[2]教育部.普通高中数学课程标准(实验).北京:人民教育出版社,2003.[3]吕传汉,汪秉彝.中小学数学情景与提出问题数学探究[M].贵阳:贵州人民出版社,2002.