不等式的解集 - 运城远程教育网

时间:2019-05-12 20:02:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式的解集 - 运城远程教育网》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式的解集 - 运城远程教育网》。

第一篇:不等式的解集 - 运城远程教育网

不等式的解集

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.

1.不等式的解与方程的解的意义的异同点

相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.

不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如,一个解,类似地

能使不等式 等也能使不等式

成立,那么

是不等式的 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式等式 有无数多个解.

都成立,所以不

2.不等式的解与解集的区别与联系

不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.

注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.

3.不等式解集的表示方法

(1)用不等式表示

一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 .

的解集是

(2)用数轴表示

如不等式因为 包含

的解集,可以用数轴上表示4的点的左边部分表示,所以在表示4的点上画实心圆.

如不等式因为 包含

的解集,可以用数轴上表示4的点的左边部分表示,所以在表示4的点上画实心圈.注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

一、素质教育目标

(一)知识教学点

1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.

2.知道不等式的“解集”与方程“解”的不同点.

(二)能力训练点

通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.

(三)德育渗透点

通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.

(四)美育渗透点

通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.

二、学法引导

1.教学方法:类比法、引导发现法、实践法.

2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

三、重点·难点·疑点及解决办法

(一)重点

1.不等式解集的概念.

2.利用数轴表示不等式的解集.

(二)难点

正确理解不等式解集的概念.

(三)疑点

弄不清不等式的解集与方程的解的区别、联系.

(四)解决办法

弄清楚不等式的解与解集的概念.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片、直尺.

六、师生互动活动设计

(一)明确目标

本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.

(二)整体感知

通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.

(三)教学过程

1.创设情境,复习引入

(1)根据不等式的基本性质,把下列不等式化成 或 的形式.

(2)当 取下列数值时,不等式 是否成立?

l,0,2,-2.5,-4,3.5,4,4.5,3.

学生活动:独立思考并说出答案:(1)①0,2,-2.5,-4时,不等式式 不成立.

② .(2)当 取1,成立;当 取3.5,4,4.5,3时,不等

大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式

的解.

对于不等式,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?

学生活动:思考讨论,尝试得出答案,指名板演如下:

【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.

的解的师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是不等式

的解.可以看出,有无限多个解,这无限多个解既包括小于3的正整数、正小数、的无限多个解集中起来,就得到 的解集. 又包括0、负整数、负小数;把不等式 的解的集会,简称不等式

2.探索新知,讲授新课

(1)不等式的解集

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.

①以方程 为例,说出一元一次方程的解的情况.

②不等式 的解的个数是多少?能一一说出吗?

(2)解不等式

求不等式的解集的过程,叫做解不等式.

解方程的解集,为什么? 求出的是方程的解,而解不等式 求出的则是不等式

学生活动:观察思考,指名回答.

教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是来,因而只能用不等式

,而不等式

的解有无限多个,无法一一列举出

揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 的解集是 或

的形式,或 的解集是

就是原不式的解集,例如

.,同理,【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.

(3)在数轴上表示不等式的解集

①表示不等式 的解集:()

分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集

.注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:

②表示 的解集:()

学生活动:独立思考,指名板演并说出分析过程.

分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:

注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.

【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.

3.尝试反馈,巩固知识

(1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.

(2)在数轴上表示下列不等式的解集.

(3)指出不等式 的解集,并在数轴上表示出来.

师生活动:首先学生在练习本上完成,然后教师抽查,最后与出示投影的正确答案进行对比.

【教法说明】教学时,应强调2.(4)题的正确表示为:

我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来.

4.变式训练,培养能力

(1)用不等式表示图中所示的解集.

【教法说明】强调“· ”“ °”在使用、表示上的区别.

(2)单项选择:

①不等式 的解集是()

A.

B.

C.

D.

②不等式 的正整数解为()

A.1,2B.1,2,3C.

1D.2

③用不等式表示图中的解集,正确的是()

A.

B.

C.

D.

④用数轴表示不等式的解集 正确的是()

学生活动:分析思考,说出答案.(教师给予纠正或肯定)

【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.

(四)总结、扩展

学生小结,教师完善:

1. 本节重点:

(1)了解不等式的解集的概念.

(2)会在数轴上表示不等式的解集.

2.注意事项:

弄清“ · ”还是“ °”,是“左边部分”还是“右边部分”.

七、布置作业

必做题:P65 A组 3.(1)(2)(3)(4)

八、板书设计

6.2 不等式的解集

一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.

2.解不等式:求不等式解的过程

二、在数轴上表示不等式的解集

1.2.

三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.

第二篇:《不等式解集》说课稿

《不等式解集》说课稿

作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,认真拟定说课稿,说课稿应该怎么写才好呢?下面是小编为大家整理的《不等式解集》说课稿,仅供参考,大家一起来看看吧。

《不等式解集》说课稿1

教材分析:

上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。

教学重点:

理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。

教学难点:

对不等式的解集含义的理解。

教学难点突破办法:

通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

教学方法:

1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。

3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。

学习方法:

1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

教学步骤设计如下:

(一)创设问题情境,引入新课:

实验:将如下重量的砝码分别放入天平的左边。

请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?

学生活动:

1、让学生观察实验,寻找数量关系回答问题;

2、让学生采取小组合作的学习方式。

(二)讲授新课

通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?

不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。

(三)知识拓展

将数轴上x的范围用不等式来表示:

(四)尝试反馈:

课本第44页“练习”第1、2题。

(五)归纳小结:

这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。

《不等式解集》说课稿2

各位领导老师,大家好:(幻灯1)

今天我说课的题目是人教版、七年级下册、第九章,《不等式》中的第一节:《不等式及其解集》。对于本节课的处理,我准备从教材分析、教法学法、教材处理、教学过程(幻灯2)这几个方面谈谈自己的看法:教材分析(幻灯3)

1.1 教材的地位和作用

本章的主要内容是一元一次不等式解法及其简单的应用,是继一元一次方程学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系、培养学生分析问题和解决问题能力的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式知识的基础。相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部份,它在解决各类实际问题中有着广泛的应用.本节课的内容主要介绍不等式及不等式的解的概念及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用.1.2 学情分析

(1)学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解.(2)学生已初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能力.(3)学生已初步具备探究和比较的能力.1.3教学目标分析

本节课的教学目标是:

1.知识方面:了解不等式及一元一次不等式概念,并理解不等式的解、解集,能够正确表示不等式的解集;经历把实际问题抽象为不等式的过程,能够列出不等关系式.2、能力方面:使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式;初步体会不等式是刻画现实世界中不等关系的一种有效数学模型。3、情感方面:通过对不等式概念及其解集等有关概念的探索,加强同学之间的分工合作与交流.1.4教学重难点分析

本节课的教学重点是:不等式相关概念的理解和不等式的解集的表示。

本节课课的教学难点是:不等式的解不是一个或几个具体的数值,而是适合不等式的未知数的值的全体,具有较高的抽象性,学生不易理解和接受,是本节教学中的难点.2教法和学法(幻灯4)

2.1 教法:

根据本节课教学内容和七年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,揭示事物发展从“特殊”到“一般”再到“特殊”的辩证规律;既提高了学生的学习兴趣,增强了信心,又有利于接受知识;也有益于形成对问题进行探索、研究和解决的能力.2.2 学法:

建构主义教学构想的核心思想是:通过问题的解决来学习.根据本节课的特点,采用自主探究、合作交流的探究式学习方法.教材处理(幻灯5)

本节课是从一个实例(问题)的解答来引出不等式及其概念的,为了降低学生的认知难度,我通过不等式与方程的类比教学,主要采用了:实际问题——列方程解答——改编为问题——列不等式——提出不等式的概念——不等式解的概念,并及时穿插相对应的例题和练习,加以巩固.教学过程

下面我来说说本节课的教学过程共同分为五个环节

第一个环节 创设情境,激发求知欲

首先通过老师的自我介绍,我们先认识一下,我叫丁文婷,我的年龄吗------比您们都大,等等。让学生体会到生活中的不等关系,也让学生轻松地找出生活中的不等关系,既把学生的注意力带入本节课的内容,也拉近了与学生的距离,创建了融洽的教学氛围。然后利用两个实际问题让学生从列方程到列出不等关系式。(幻灯6)

(1)20xx年12月1日起施行修改后的《铁路旅客运输规程》,将此前规定的身高1.1米-1.4米的儿童应购买儿童票,调整为身高1.2米-1.5米的儿童应购买儿童票。这意味着在12月1日新规实行后,1.2米以下儿童可免票,1.2米至1.5米的可购买半票,1.5米以上则须全票.问题:现在若用x表示一名儿童的身高,那么

①x满足______时,他可免票.②x满足______时,他该买全票.⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶.①若该车计划中午12点准时到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________.②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________.考虑学生实际情况和题目难度,所以设置问题串,降低难度.这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升.最后类比方程的概念由学生总结出不等式的概念.第二个环节,4.2承上启下

通过两组练习,(幻灯7)

①下列式子中哪些是不等式?

(1)a+b=b+a

(2)-3>-5

(3)x≠1

(4)x+3>6(5)2m<n(6)2x-3

②用不等式表示:

⑴a是正;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3.一是判断不等式,既巩固了不等式的概念也补充“≠”“≤”“≥”这些符号。二是让学生用不等式来刻画题中6个简单的不等关系,也由此得出一元一次不等式的概念.学生得出答案并不难,所以该环节让学生独立完成、互相评价,同时进一步培养学生列不等式能力.第三个环节,4.3 合作质疑、探索新知

问题1.(幻灯片8)

①判断下列数中哪些满足不等式2x/3>50:76、73、79、80、74.9、75.1、90、60

②满足不等式的未知数的值还有吗?若有,还有多少?请举出2—3例.③.上问中的不等式的解有什么共同特点?若有,怎么表示?你能验证一下你的结论吗? ④.②中答案在数轴上怎么表示?

本环节主要任务是突出重点和突破难点.首先通过一组环环相扣,步步深入的问题来实现,第一问四人一组分工合作完成,通过简单代值运算,使每名学生都动起来,边代、边算、边答、边交流,调动学生的学习兴趣,为每位学生都创造在数学活动中获取成功的体验机会,并培养学生观察能力和数感.第二问的设计,使学生感受不等式的解不是一个或几个具体数值,加深对不等式解的理解。第三问四问突破不等式的解是适合不等式的未知数的值的全体这一难点,使学生及时掌握、运用新知识。从而类比方程的解得出不等式的解和解集的概念.尤其第四问的不等式的解集在数轴上的表示也体现了数形结合的思想,连同前面的文字表示,充分体现了数学的三种表示形式.其次通过两组练习观察学生掌握知识的情况,及时反馈,及时调节。整个环节通过“观察特点——猜想结论——验证猜想”的思路展开,符合学生的认知过程.第四个环节,4.4 运用新知、解决问题(幻灯9)

某班同学经调查发现,1个易拉罐瓶可卖0.1元,1名山区贫困生一年生活费用至少是500元。该班同学今年计划资助两名山区贫困生一年生活费用,他们已集资了450元,不足部分准备靠回收易拉罐所得。那么他们一年至少要回收多少个易拉罐?

该环节设置了一个俭省节约和助人为乐的实际问题,通过对学生熟悉的生活背景进行处理,让学生体会数学生活化,能将实际问题转化为数学问题加以解决,培养学生应用意识,同时也对学生进行潜移默化的思想品德教育.第五个环节,归纳反思、重组结构(幻灯10)

4.5 归纳反思、重组结构

(1)通过本节课的学习,你学会了哪些知识?

(2)通过本节课的学习,你最大的收获是什么?

(3)通过本节课的学习,你获得了哪些学习数学的方法?

充分发挥学生的主体地位,从学习知识、方法和延伸三方面进行归纳。,让学生养成“反思”的好习惯,并培养学生语言表述能力。

最后分层次设置作业让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生.教学评价:本节课主要在第一环节,学生有没有积极思考,尝试列不等式,能不能归纳出不等式的概念.第二个环节关注学生能不能判断不等式,归纳出一元一次不等式的概念.第三个环节关注学生参与活动的积极性和对数学的三种表示的总结,然后通过学生板演评价学生的知识的掌握,能力的迁移情况.第四环节考察学生把实际问题数学化的能力.第五环节不仅评价学生总结的知识点 而且有数学思想、数学方法等等

最后展示一下我的板书设计:

不等式及其解集

问题一: 巩固练习: 练习1

问题二: 探索新知: 练习2

不等式的概念: 不等式的解: 反思:

一元一次不等式的概念: 不等式的解在数轴上的表示

以上,我仅说明了“教什么”和“怎么教”,阐述了“为什么这样教” 希望各位专家领导对本堂说课提出宝贵意见

《不等式解集》说课稿3

各位领导

你们好!

今天我要为大家讲的课题是 : 《 不等式及其解集 》。

首先,我对本节教材进行一些分析:

一、教材分析:

1.教材所处的地位和作用:

本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。

2教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

了解不等式及一元一次不等式概念。

理解不等式的解、解集,能正确表示不等式的解集。

(2)能力目标:

通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:

通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3.重点,难点以及确定的依据:

本课中 不等式相关概念的理解和不等式的解集的表 是重点,不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

(一)教学手段:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1.“读(看)——议——讲”结合法.读图讨论法.教学过程中坚持启发式教学的原则

基于本节课的特点: 第一节知识性特点,应着重采用 自主探讨 的教学方法。

(二)教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法):

1.学生特点分析:

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

2.知识障碍上:

(1)知识掌握上,学生原有的知识 等式,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论。

(2)学生学习本节课的知识障碍。不等式解集的表示方法

知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

3.动机和兴趣上:

明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

最后我来具体谈一谈这一堂课的教学过程:

四、教学程序及设想:

教学程序:

(一)课堂结构:

出示学习目标,预习展示,练习反馈,课堂自测,布置作业 五 个部分。

(二)教学简要过程:

1、出示学习目标,课前预习

出示学习目标,学生观察学习目标,自主预习。

设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。

学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。

【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。

2、预习反馈

让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。

3、老师归纳,练习反馈

归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如)、不等式的定义设置,(判断)下列各式是否为不等式;

(1)-2<5(2)x+3> 2x(3)4x-2y<0(4)a-2b

(5)x2-2x+1<0(6)a+b≠c(7)5m+3=8(8)x≤-4)、用不等式表示:

⑴ a与1的和是正数;

⑵ y的2倍与1的和小于3;

⑶ y的3倍与x的2倍的和是非负数 ;

⑷ x乘以3的积加上2最多为5.)、下列说法正确的是()

A.x=3是2x>1的解

B.x=3是2x>1的唯一解

C.x=3不是2x>1的解

D.x=3是2x>1的解集

及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:

用数轴表示不等式的解集:

(1)x>-2;(2)x≤3;(3)y≤0

找三名同学上台展示。

展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。

体会不等式是解决实际问题的有效工具。

4、课堂自测

检测学习本节课的掌握情况。

5、布置作业

分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。

五、反思:

本节教学,有以下几点特别值得回味的地方。

1、从生活中来回到生活中去的教学设计

新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

2、重视数学思想方法的渗透

数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

3、重视数学的“再创造”

课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

《不等式解集》说课稿4

一、教材内容分析

1、教材的地位和作用

本章学习的一元一次不等式的知识及其应用,是中学数学的重要内容,在学习了一元一次方程和二元一次方程组之后,进一步探究现实世界中的数量关系.本章通过对汽车行驶速度问题的分析,使学生经历实际问题中数量关系的分析、抽象过程,体会到现实世界中有各种各样错综复杂的数量关系,既有相等关系,也有不等关系,使学生在分析问题的过程中了解不等式.2、主要知识结构

不等式的概念—→一元一次不等式—→不等式的解—→不等式的解集—→

—→在数轴上表示不等式的解集

3、教学重点和难点

对于初一学生来说,以前接触到的代数式及方程等知识都具有唯一性,给定字母的值,能确定唯一的代数式的值,给定方程能得到唯一的解,而这一节所接触到的一元一次不等式却有无数个解,需要我们去用集合的形式来表示,这对学生形象思维来说是一个大的转变,所以我们将不等式解集的理解和表示作为本节课的重点,将不等式解集的概念本节课的难点.二、教学目标分析

根据学生的认知水平和新课程标准的要求,本课题学习力求达到如下目标:

知识与技能:1.理解不等式的意义,不等式解的意义,并能判断出不等式的解.2.理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式.过程与方法:使学生在学习中经历问题的提出→分析→探索→类比的过程,体会到生活中数量关系的多样性,初步了解数形结合的重要数学思想.情感与态度:从实际问题中抽象出数学模型,让学生认识数学与人类生活的密切联系,通过师生共同探索不等式的意义及找到不等式的解集的过程,体验数学活动充满着探索与创造,培养学生自主探索、合作学习的能力.三、教法学法分析

根据本节课的实际情况,在教学中主要以讲学稿为载体,采用探索发现法,以问题为主线,体现“问题情境—建立数学模型—求解与解释—应用与拓展”的模式.通过情境的分析过程,强化学生的主动探索,加强对实际问题中抽象出数量关系的数学建模思想教学,体现新课程标准里,对重要的概念和数学思想呈螺旋上升的原则.四、教学过程分析

(一)创设情境,导入新课

(二)师生互动,课堂探究

1、导入新知,解释疑难

(1)不等式的概念

通过对前面情境的分析,学生对生活中的不等关系有了一定的了解和认识,并对进一步了解不等式产生了极大的兴趣,此时再引入新的.情境,让学生去分析其中的不等关系,学生乐于接受.问题:一辆匀速行驶的汽车在11:20距A地50千米,要在12:00之前驶过A地,车速应满足什么条件?

分析:设车速是x千米/时.从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间

不到 小时,即 ①

从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶 小时的路程要超过

50千米,即 ②

式子①和②从不同角度表示了车速应满足的条件.(2)不等式的解和解集

在了解不等式之后,学生很容易将思维转移到什么样的值才满足这个不等式,光凭想像很难得出结果,此时利用多媒体的交互作用,让学生对未知数的值进行试探.比如:若速度为100千米/时,(多媒体演示)输入速度x的值为100,多媒体中的汽车随之进行运动,观察运动的结果,满足题目的要求,所以100是这个不等式的解,从中得到不等式解的概念.如果学生对这个演示过程感兴趣的话,鼓励学生多进行试探,比如再输入80、75等,同时穿插一些不满足题意的值,如40、50等,便于进行对比,寻找这个不等式的解的范围.在演示的同时,引导学生思考两个问题:

1、不等式的解到底有多少个?

2、这些解有什么样的共同特征?

学生回答后,从中归纳得到:只要是大于75的数都满足这个不等式.用集合的形式表示为 ,从而得到不等式解集的概念:使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集.(3)在数轴上表示不等式的解集

(多媒体演示)画数轴表示不等式解集的过程.然后在黑板上按四步引导学生用数轴表示不等式的解集:

画数轴—→找点—→描点—→牵线

2、归纳类比,寻找解集

(三)巩固练习,加深理解

(四)归纳总结,知识回顾

师生合作,共同归纳.由学生对本节课所学习的知识点进行归纳,老师进行引导、整理.归纳时注意以下几个要点:

什么叫不等式?什么叫一元一次不等式?

什么叫不等式的解?什么叫不等式的解集?

怎样在数轴上表示不等式的解集?

五、板书设计(略)

《不等式解集》说课稿5

各位评委老师大家好!我说课的题目是华东师大版初中数学七年级(下)第八章第二节《解一元一次不等式》的第一节《不等式的解集》,下面我从教材分析等方面对本课的设计进行说明。

一、教材分析

本节课研究的是不等式的解集和不等式解集在数轴上的表示。这之前学生已经初步学习了不等式和不等式解,这部分在本章中不但有承上启下的作用,而且为今后学习函数的应用奠定了数形结合的基础,因此它在教材中处于非常重要的位置。一元一次不等式的解集是前面一元一次方程解的扩展,两者存在区别与联系。在数轴上表示不等式的解集,是学生学习数轴之后,又一次接触到图形与数量的对应关系,同时为今后函数的学习提供了方法和依据。

二、目标分析

根据学生已有的认知基础和本科教材的地位,由于数学教学不仅是知识的教学,技能的训练,更能重视能力的培养及情感教育,因此确定教学目标1,2,3。

即:

1、知识目标:了解不等式解集的意义和不等式的解集在数轴上的表示。

2、能力目标:建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想。

3、情感目标:引导学生在独立思考的基础上,参与问题的讨论,激发学生主动获取知识的兴趣增强学生学习的信心。

教学重点:一元一次不等式的解集和表示。

教学难点:一元一次不等式解集的意义和不等式解集在数轴上的表示。

教学难点突破办法: 通过观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

三、教法分析

为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学目标根据学生特点和学生的实际情况采用引导发现法,计算机辅助教学。将学生个体的自我反馈,小组间的合作交流,与师生间的信息及时联系起来,形成多层次多方面的合作交流,共同发现知识,获取知识。学生知识掌握过程离不开学生自身的智力活动,因此,在教学中,突出引导学生观察,分析,以旧探新,猜测论证等方法,揭示数学问题,并采用个人思考,分组讨论,汇报结果等多种形式,使每个学生都参与到学习中来,学生在获得知识的过程中悟出道理,得出结论,增强学习数学的自信心,四、学法分析

1.学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2.合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

五、教学过程

1、创设情景,提出问题

通过实际应用问题让学生在解决的过程中先找出几个符合题意的解,然后发现问题,这样,既复习了不等式,又给新课做好了铺垫,由此可以发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集。

2、探究新知

通过讨论、交流、归纳得到:大于3的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+25的解有无限多个,它们组成集合,称为一元不等式x+25的解集。即表示为x3。

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。

3、讲解补充例题,例1:判断:

①x=2是不等式4x<9的一个解.()

② x=2是不等式4x<9的解集.()

例2、将下列不等式的解集在数轴上表示出来:

(1)x<2

(2)x≥-2

(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

4、巩固练习:课本44页练习2,3题

5、归纳总结,结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。

6、作业:课本49页习题1,2题

设计意图:促进学生及时地复习课文,巩固和强化所学知识,提高解决问题的能力。

《不等式解集》说课稿6

尊敬的各位老师,你们好,今天我说课的题目是人教版数学七年级下册第九章第一节《不等式及其解集》,下面我将从说教材,说教法,说学法以及教学过程等几个方面对本课的设计进行说明。

一、说教材

1、本节教材的地位和作用

本节课是学生学习了等式,方程,方程组的概念,重点研究了解方程及方程组之后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,甚至以后的高等数学中所涉及到的优化问题都要用到本节课的内容,因此,本节课的内容在整个中学数学乃至整个数学领域都起着承前启后的作用,通过本节课的学习可以使学生思维变得更开阔,也对以后更好的学习各种科学知识有很大的帮助。

2、教学目标

新课标下的教学活动必须建立在学生已有的认知发展水平及知识经验的基础上,新课程理念下的数学教学必须体现三维目标,因此根据本课内容的特点以及学生知识水平和认知水平,我确定了以下教学目标:

(1)、知识与技能:使学生掌握不等式的概念,理解不等式解集的意义,会用不等式表示简单的数量关系和不等式解集的表示法。培养学生独立思考,分析及归纳能力。

(2)、过程与方法:经历由具体实例建立不等式模型的过程,通过解决简单的实际问题,使学生自发的寻找不等式的解

(3)、精感态度与价值观:引导学生在独立思考的基础上,积极参与不等式类数学问题的讨论,逐步培养他们合作交流意识,让学生充分体会到数学在实际生活中的广泛存在,并能将他们应用到生活的各个领域,让学生感受到学习数学的乐趣。

二、说教法

数学教学活动必须建立在学生的认知水平和已有的知识经验基础上,教师应激发学生的学习积极性,给学生提供参与数学活动的机会,多让学生交流合作。引导学生动脑筋思考,协助学生归纳总结知识重点,最终达到教学相长。因此,本节课我主要采用了以下教学方法:

以启发式教学为主,讨论、交流合作等方法为辅。先复习了已有的等式、方程的有关知识,然后举两个不能用等式表示的数量关系,接着让学生联想生活实际中的一些不等关系并举例,最后选择教材上的问题1让学生分组讨论,各组找出几个能满足该问题中未知数的值学生会发现各组所选数值的差异,紧接着引出解集的概念。这样由易到难层层深入,既符合学生的认知水平又符合学生已有的知识经验,也给了更多学生参与数学活动的机会,同时还可以提高学生的合作能力。

整个教学过程中,我通过让学生举例、思考、讨论、合作交流,充分调动学生的积极性,让学生在老师的引导下始终处于一种积极的学习状态,充分体现老师是教学活动的组织者、合作者、参与者而学生是学习的主人。

三、说学法

按照新课标的精神,把学习的主动权还给学生,提倡积极主动,勇于探索的学习方式,体现学生在教学活动中的主体地位,在本节课上,我一开始就让学生举例,然后分组合作找出满足问题1中不等式的未知数的值,通过学生交流发现他们所找的值不完全相同,引出不等式解集的概念,最后加以适当的练习巩固本节课的知识。这样将大量时间还给了学生,让他们在做中学,学中做。使学生自觉实现知识的构建,促进学生全面发展。

四、说教学过程

课堂教学是丰富学生科学知识的重要途径之一,而这正是我们教学的重要任务和目标,为了更好实现我们的目标,我设计了以下教学过程。

1、创设情境,引入课题

首先,引导学生回忆等式、方程及方程组的概念,然后提出:在现实生活中很多问题并不能简单的用等式或者方程来描述。比如,古代的舂米的方法,小时候玩的跷跷板的两端的力量如果都一样大,它还会翘来翘去吗?让学生感受到生活中不等关系的广泛存在,然后让学生独立思考,举出一些不能用等式表示的实例,(物理课上用到的天枰,两个人的身高等),引出不等式的概念。

2、新授:

(1)、要求学生完成P123第2题,使学生能够熟练的用不等式表示一些数量关系。

(2)、选课本上的问题1,让学生独立理解题意后分组讨论,得出能够表达题意的不等式,并加以指导和更正,这样不仅符合学生掌握知识的过程而且更好的培养了学生独立思考和相互合作的能力。

(3)、分组合作,交流得出新知识(不等式的解)。

将全班学生分成几个小组,每一组经过讨论找到一个或几个满足问题1中的X值,推出一个代表说出并讲明理由。让大家发现问题:各组给出数字可能不一样,但它们都能满足问题1中的条件。老师给予表扬并肯定他们所给的都是问题中1不等式的解。

学生归纳不等式的解的概念:能使不等式成立的未知数的值叫做不等式的解。同时他们会发现,前面学的方程的解都只有一个,为什么今天所学不等式的解不止一个呢?引出解集的概念:一个含有未知数的不等式的所有解组成这个不等式的解集。这样设计让学生充分表现自己,体现自己的价值。也正是新理念下的学生主体地位的体现。

3、课堂练习,巩固新知。

通过列不等式,找不等式的解,表示不等式的解集的梯度训练。使学生对所学的新知识进一步理解并掌握。这样安排,符合学生接受新事物的水平层次。从易到难,让学生更容易理解和接受。

4、课堂小结

(1)、让学生谈谈通过本节课的学习他们学到了什么?

(2)、根据学生所谈到的问题,有针对性的对本节课的重点加以强调,加深学生对本节课知识的掌握。

以这种形式的小结,激发学生主动参与的意识,调动学生的学习兴趣,为每一位学生都提供了在数学学习活动中获得成功的体验和充分展示自己的机会。

5、作业:P128,2,3。

作业量不大,但对所学新知识的运用体现的很明显。对学生更好的巩固新知是较好的选择。这样既减轻了学生的负担,也不耽误学生对新知识的学习巩固。

《不等式解集》说课稿7

说教材分析

本章主要内容包括:不等式的有关基本概念,不等式的性质,一元一次不等式(组)的解法,利用不等式(组)解决实际问题和课题学习。此部分内容是在学生已经学过的方程(组)的基础上,进一步讨论不等式,教材首先从数量大小之分说起,这是人们熟知的客观事实。由大小,就有相等或不相等,例如,在引言中给出的不等式2+3>1+3,a+bc等,用等式可以研究相等关系,要研究不相等关系,也需要专门的数学工具,这就是不等式。

说教学目标

1.知识与能力

感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发的寻找不等式的解,会把不等式的解集正确的表示在数轴上。

2.数学思维

经历由具体实例建立不等式模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想。

3.情感态度与价值观

引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识,让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

说教学重点与难点

1重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确的表示在数轴上。

2.难点:正确理解不等式解集的意义。

说教学方法:探究、合作、质疑

说教具:三角尺、多媒体课件

说教学过程

一、创设情境,提出问题。

多媒体展示

问题1:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?

问题2:元宵佳节,在燃放各种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域。已知导火线的燃烧速度为0.02米/秒,人离开的速度为4米/秒,那么导火线的长度应为多少厘米?

设计意图:通过实例创设情境,培养学生观察能力,激发他们的学习兴趣。

二、合作探究新知

(一)不等式、一元一次不等式的概念

学生活动:学生与同伴交流,小组展开讨论,在学生发表自己意见的基础上,归纳结论。

设计意图;引导学生仔细观察并归纳不等式的定义,从而引出一元一次不等式。

多媒体演示:

下列式子中哪些是不等式?哪些是一元一次不等式?

(1)a+b=b+a(2)-3<2(3)x≠1

(4)x+3>6(5)2+1<3+5(6)2<5-x

(二)不等式的解、不等式的解集。

多媒体展示

问题1、要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?

问题2、车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?

问题3、我们曾经学过使方程两边相等的未知数的值就是方程的解,我们也可以把使不等式成立的未知数的值叫做不等式的解,刚才同学们所说的这些数哪些是不等式2/3x>50的解呢?

问题4、判断下列数中哪些是不等式2/3x>50的解:

76,73,79,80,74.9,75.1,90,60

你能找出这个不等式其它的解吗?它到底有多少个解?你从中发现了什么规律?

学生活动:让学生通过计算,动手验证,动脑思考,初步体会不等式解及其解集的意义,再归纳结论。

设计意图:遵循学生的认知规律,有意识,有计划,有条理地设计一些引人入胜的问题,可让学生始终处在积极的思维状态,不知不觉中接受了新知识,分散了难点。

(三)不等式解集的表示方法

1.教师示范

2.多媒体展示

设计意图:教师示范,渗透着数形结合的思想方法,为后续学习作了铺垫。

三.巩固新知

多媒体展示

1.下列数值哪些是不等式x+3>6的解?哪些不是?

-4,-2.5,0,1,2.5,3,3.2,4.8,8,12

2.用不等式表示:

(1)a是正数(2)a是负数

(3)a与5的和小于7(4)a与2的差大于-7

(5)a的4倍大于8(6)a的一半小于3

3.直接想出不等式的解集,并在数轴上表示出来。

;(1)x+3>6(2)2x<8(3)x-2>0

设计意图:巩固对不等式解及其解集的理解,并会在数轴上表示不等式的解集。

四.归纳总结

1.不等式与一元一次不等式的概念;

2.不等式的解与不等式的解集;

3.不等式的解集在数轴上的表示。

五.布置作业

1.书面作业:第134页1,2,3

2.课外作业:第134页5———13。

六.板书设计

9.1.1不等式及其解集

1.不等式、一元一次不等式的概念

2.不等式的解、不等式的解集

3.不等式解集的表示方法

第三篇:《不等式的解集》说课稿

《不等式的解集》说课稿

说课内容: 《不等式的解集》

教材分析:

上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。

教学重点:理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。

教学难点:对不等式的解集含义的理解。

教学难点突破办法:

通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

教学方法:

1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。

3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。

学习方法:

1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

教学步骤设计如下:

(一)创设问题情境,引入新课:

实验:将如下重量的砝码分别放入天平的左边。(略)

请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?

学生活动:

1、让学生观察实验,寻找数量关系回答问题;

2、让学生采取小组合作的学习方式。

(二)讲授新课

通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?

不等式解集x>3,在数轴上可以直观地表示出来。如图(略)

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图(略)

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。

(三)知识拓展

将数轴上x的范围用不等式来表示:

(四)尝试反馈:

课本第44页“练习”第1、2题。

(五)归纳小结:

这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。

(六)布置作业:

第四篇:不等式及其解集教学设计

《不等式及其解集》教学设计

【教学目标】

1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式。

2.正确理解“非负数”、“不小于”、“不大于”等数学术语。

3.理解不等式的解、解集,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解集。

4.能用数轴表示不等式的解集。【教学重点】

用数轴表示不等式的解集。【教学难点】

不等式解集的确定。【学情分析】

学生在小学阶段对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆。【教学流程】

活动一:多媒体展示三张图片,一张是胖瘦对比图,一张是大小对比图,一张是高矮对比图。

师:在我们的生活当中,很多时候就需要像这样,表示出两个量的不等关系,所以今天我们就一起来研究不等式及其解集的相关知识。

【设计意图】通过上面的三张图片的展示,让学生体验到不等式是由不等关系的需要而产生的,更是由于生活的需要,数学源于生活又服务于生活。顺势引出课题。活动二:

师:请大家根据多媒体上的问题,对版块一进行交流合作。【板块一】

1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系;

(1)a与1的和是正数;(2)y的2倍大于3;(3)a与8的差小于4;(4)c的一半是非负数;(5)x除以2的商不大于5;(6)a与b的积不小于3.解:(1)(2)(3)

(4)(5)(6)根据上面你所写的式子,说一说什么是不等式?

2、请根据不等式的概念,举出不等式的列子。

【设计意图】培养学生自学能力,合作交流的意识和习惯,使他们积极参与问题的,并敢于发表自己的见解,老师引导学生对概念进行剖析,发散学生思维,培养学生分析问题,解决问题的能力。活动三: 师:通过对版块一的汇报交流,大家已经能够掌握不等式的概念,那么接下来,我们就要对不等式概念的进一步理解,看看你是否掌握了概念。版块二:

1、根据题中的数量关系列出正确的不等式。

(1)x的一半小于-1(2)y与4的和大于0.5(3)a与7的和是正数(4)a与-3的和是负数

(5)m除以4的商加上3至多为5(6)a与b两数和的平方不小于3

2、判断下列的式子是否为不等式?

(1)a+b=b+a(2)-3 >-5(3)x=1(4)x+3>6(5)2m0(9)4x+5=9(10)6x+7y>8 【设计意图】在甄别不等式的过程中,加深对不等式意义的理解。巩固了不等式的概念。活动四: 【板块三】

师:刚刚我们通过合作学习,掌握了不等式的概念,也能应用概念去解决一些简单的问题。那么接下来我们就一起来合作解决下面的问题。

1、下列哪些数值能使不等式x+3>6成立,哪些不能?-4,-2.5,0 2.5,3,3.2,4.8,8,12

2、通过上题,你能说一说什么是不等式的解吗?

3、你还能写出满足x+3>6的其他解吗?这个不等式有多少个解呢?那能说一说什么是不等式的解集吗?

4、你能用数轴表示出x>10的解集吗?表示出x≥的解集吗?它们有什么不同?

5、你认为在画数轴时,应该注意什么呢?

【设计意图】通过判断这几个数是不是不等式的解,启发学生类比方程得出,检验一个数是不是不等式的解,就是把所给数值代入不等式的两边,观察不等式是不是成立。此环节不仅让学生理解了不等式的解的意义,通过合作更好的区别解与解集,掌握数轴表示解集的方法。活动五:【板块四】

1、判断x=21,x=22,x=23,x=24,x=25,x=26,x=27,哪些是5x>120的解?哪些不是?

2、不等式x<3的正整数解是。不等式x>-4的负整数解是。

3、你能画出数轴并在数轴上表示出下列不等式的解集吗?(1)x>3(2)x<12(3)y≥-1 【设计意图】进一步巩固学生对不等式解与解集的理解和应用。活动六: 【达标检测】

1、下列数学表达式中,不等式有()

①-3<0;②4x+3y>0;③x=3;④x≠2; ⑤x+2>y+3(A)1个.(B)2个.(C)3个.(D)4个.2、当x=-3时,下列不等式成立的是()

(A)x-5<-8(B)2x+2>0.(C)3+x<0.(D)2(1-x)>7.3、写出不等式2x<6的解集,其中的正整数解。

4、写出不等式的解集x-1<2,其中的非负整数解是。

5、直接写出下列不等式的解集,并把解集在数轴上表示出来:(1)x+3>5;(2)2x<8;(3)x-2≥0.【设计意图】运用本节课所学的知识,解决问题,使学生实现对所学知识的巩固和深化。

第五篇:《不等式及其解集》教案说明

教案说明

云南省昆明市东川区汤丹中学 祝明

一、教学本质与教学目标定位

不等式是初中数学“数与代数”领域的重要内容,是揭示客观现实生活中不等关系的一种数学表现形式。在本节课的教学中考虑教学内容自身数学特点,遵循学生学习数学的心理规律,集合边疆地区学生的认知基础,强调从学生已有的生活经验出发,经历将实际问题抽象成数学模型并进行解释与应用的过程,使学生获得对本节课知识理解的同时,在思维能力、情感态度与价值观等多方面得到全面、持续、和谐的发展。其教学目标为:

1、知识与技能:(1)了解不等式和一元一次不等式的意义;(2)通过解决简单的实际问题,使学生自发地寻找不等式的解,理解不等式的解集;(3)会把不等式的解集正确地表示在数轴上。

2、数学思考:经历现实生活不等关系的探究过程,体会建立不等模型的思想;通过不等式解集在数轴上表示的探究,渗透数形结合思想。

3、解决问题:能用不等式刻画事物间的相互关系;学会用观察、类比、猜测解决问题。

4、情感态度与价值观:(1)、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,体会在解决问题的过程中与他人合作的重要性。(2)、通过问题解决,获得成功体验建立学习自信心。让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。(3)、在问题情景中提升道德修养。

二、学习本内容的基础及用处

学生在小学对不等量关系、数量大小的比较等知识已经有所了解,对“>”“<”符号并不陌生,在前面学习过用方程表示问题情景中的等量关系,不等式和方程在分析解决实际问题中有许多共同点,在教学中可以合理地应用类比思想,充分发挥学习心理学中正向迁移的积极作用,为进一步学习不等式提供合理的学习的平台。学习本课内容不但可以解答现实世界中大量的问题,锻炼学生能力,同时为后面学习不等式的性质,和一元一次不等式组乃至今后的二元一次不等式的基础,也是研究方程、函数和其它数学分支的重要依据,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具,并为学生的道德提升和人格发展找到渗透点。

三、教学诊断分析

在学生已有知识的基础上,结合七年级学生认知特点。本节课中的不等式及一元一次不等式的概念比较容易了解,不等式的解在方程的解的认识的基础上应用类比的思想引导学生会使问题变得容易,学生理解起来也不难。不等式的解集是一个抽象的概念,涉及集合思想,学生理解起来较困难,特别是“解集”与“解”之间的关系。学生容易混淆;数轴上表示解集是数和图形的相互转化,需要注意的地方多,如:“不等号的方向与折射线的方向”,“实心与空心”学生在做题时容易误解。对数量关系中的“不大于”、“非正数”“至少”等数学术语的含义难以准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难。

四、教法特点及预期效果分析

教学要以实际生活为背景,本课运用奥运福娃,引入刘翔创设问题情景,激发学生的学习兴趣和求知欲望。以问题为中心,使每一位学生在寻求问题答案的过程中亲身体验问题的发生、发现、发展、与解决的全过程。为了突破难点,充分利用全国上下都在关心的 “5.12”事件创设问题,引导学生去追溯知识的来源;在数据的设置上有意使数据简单,理解起来直观,计算起来便捷;从认知的规律设计启发性强的问题,以此分散难点,优化教学;这样不但能吸引学生注意,还能体会数学与自然及人类社会的密切联系,更有力地说明知识来源于现实生活。在数轴上表示不等式的解集是数与形相互转化的理解过程,利用知识特点,向学生幻灯展示两个已经做好的题目,让学生自己经历观察、对比、讨论、获得数学猜想,然后学生口述猜想结果,教师帮助验证,最后做题加以巩固。这样不但掌握了知识,还培养了学生的细致观察,大胆猜测,合作交流的能力,同时也锻炼学生自主学习、善于探究的习惯。

“《课标》没有规定内容的的呈现顺序和形式,教师可以根据学生的学习愿望及其发展的可能性,因材施教”,为了更系统地掌握知识,对教材内容进行了 2 重组和加工,在教材的基础上把“≥”、“≤”从《从不等式的性质》这一节提到本节课来介绍,并把一元一次不等式的概念也从最后提到开头来探讨。这样有利于在对比中系统地掌握知识,并为后面的内容减轻压力,特别是在数轴中表示解集的时候更能形象地在对比中理解“空心”和“实心”的意义。

“教材不是唯一的课程资源,教师可以充分利用自然环境、社会背景等深化课程资源”;新课改鼓励教师善于发掘德育渗透点,为此,本节课创设“奥运”和“

5、12”两个问题情景,使学生在为北京加油为四川加油的同时培养了学生的民族自豪感和团结一致关爱他人的良好品质。

整节课在问题情景中教师只是一个引导者,引导学生在观察猜测、合作交流、自主探究、动手做题、踊跃回答的过程中渗透类比、转化等数学思想;时刻注意激发学习内驱力,每个环节都有相应的题目使学生在挑战中巩固所学知识,全面与否都给予了及时的肯定和鼓励从而获得成功的体验,小结中让学生例举身边的不等现象,又使知识回归现实。再次经历数学来源于现实生活、回答现实生活的感受。实现了:生活世界、数学世界、教学世界的融会贯通;教学设计思路清晰,目的性强,充分利用多媒体确保学生学得更多、更快、更好,让学生真正成为课堂主人。这样设计不但能轻松地掌握知识与技能,还能使学生的思维能力、情感态度和价值观等各个方面迈上一个新的台阶。

下载不等式的解集 - 运城远程教育网word格式文档
下载不等式的解集 - 运城远程教育网.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式的解集教案

    3.不等式解集备课 七年级数学导学稿备课时间设计人姓名审核人姓名 授课人姓名使用时间学生姓名班级组号 导学案 一、 学习目标: 1.能够根据具体问题中的大小关系了解不等式的......

    《不等式及其解集》教学设计

    《不等式及其解集》教学设计 [教学目标] 1. 了解不等式概念,理解不等式的解集,能正确表示不等式的解集 2. 培养学生的数感,渗透数形结合的思想. [教学重点与难点] 重点:不等式......

    9.1.1不等式及其解集教案

    9.1.1不等式及其解集 教学目标 1. 知识与技能:了解不等式概念,理解不等式的解集,能正确的用数轴表示不等式的解集; 2. 过程与方法:经历由具体实例建立不等式模型的过程,进一步发展......

    《不等式及其解集》教学设计

    《不等式及其解集》教学设计 一、学情分析 学生前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不......

    不等式及其解集教学设计

    不等式及其解集教学设计 教学过程 (一)情境诱导 同学们,在我们的生活中有很多标志牌,今天老师也拿了一个标志牌,谁告诉我这是什么标志牌吗? (这是限速的标志)它表示什么意思?(汽车......

    教案 9.1.1不等式及其解集

    9.1.1 不等式及其解集 教学目标 1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集......

    远程教育网自查报告

    马头营镇远程教育网自查报告 按照《乐亭县委组织部关于组织开展远教站点验收工作的通知》的要求,我镇利用一周时间对全镇32个终端接收站点运行情况进行了检查验收,现将自查情......

    不等式的解集练习题(一)

    不等式作业(2) 班级姓名 1.不等式x31的正整数解是2.不等式93x0的非正整数解的和是. 3.当x2x5的值不大于0;当x2x5的值等于0. 4.如果不等式(a3)xb的解集是x 5.不等式b,那么a的取值范围......