2020-2021国家开放大学电大《微积分初步》期末试题及答案
盗传必究
一、填空题(每小题4分,本题共20分)
1.函数,则。
2.若函数,在处连续,则。
3.曲线在点处的切线斜率是。
4.。
5.微分方程的阶数为。
二、单项选择题(每小题4分,本题共20分)
1.函数的定义域是()。
A.
B.
C.
D.
2.设,则()。
A.
B.
C.
D.
3.下列函数在指定区间上单调减少的是()。
A.
B.
C.
D.
4.若函数,则()。
A.
B.
C.
D.
5.微分方程的通解为()。
A.
B.
C.
D.
三、计算题(本题共44分,每小题11分)
1.计算极限。
2.设,求。
3.计算不定积分。
4.计算定积分。
四、应用题(本题16分)
用钢板焊接一个容积为4的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?
试题答案及评分标准
(仅供参考)
一、填空题(每小题4分,本题共20分)
1.2.1
3.4.
5.5
二、单项选择题(每小题4分,本题共20分)
1.D
2.A
3.B
4.C
5.D
三、计算题(本题共44分,每小题11分)
1.解:原式
11分
2.解:
9分
11分
3.解:=
11分
4.解:
11分
四、应用题(本题16分)
解:设水箱的底边长为,高为,表面积为,且有
所以
令,得,10分
因为本问题存在最小值,且函数的驻点唯一,所以,当时水箱的表面积最小,此时的费用为
(元)
16分