数学科学学院 中国海洋大学

时间:2019-05-14 11:45:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学科学学院 中国海洋大学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学科学学院 中国海洋大学》。

第一篇:数学科学学院 中国海洋大学

2018年硕士研究生招生考试大纲

011 数学科学学院

目 录

初试考试大纲........................................................1 617 数学分析....................................................1 856 高等代数....................................................6 432 统计学......................................................8 复试考试大纲.......................................................12 实变函数.......................................................12 计算方法.......................................................13 常微分方程.....................................................15 概率论与数理统计(统计学).......................................17 概率论与数理统计(应用统计)...................................18

初试考试大纲

617 数学分析

一、考试性质

数学分析是数学相关专业硕士入学初试考试的专业基础课程。

二、考察目标

本考试大纲制定的依据是根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士专业学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。

本考试旨在测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。

三、考试形式

本考试为闭卷考试,满分为150分,考试时间为180分钟。

试卷结构:一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。

四、考试内容

(一)变量与函数

1、实数:实数的概念、性质,区间,邻域;

2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。(二)极限与连续

1、数列极限:定义(-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要的 1 数列极限lim(1n)e),迫敛性法则,柯西收敛准则);

n1n2、无穷小量与无穷大量:定义,性质,运算,阶的比较;

3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(-, -X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine定理),柯西收敛准则);运算;

4、两个常用不等式和两个重要函数极限(limsinx11,lim(1)xe);

x0xxx5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。

(三)实数的基本定理及闭区间上连续函数性质的证明

1、概念:子列,上、下确界,区间套,区间覆盖;

2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);

3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。

(四)导数与微分

1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);

2、微分:定义,运算法则,简单应用;

3、高阶导数与高阶微分:定义,运算法则。

(五)微分学基本定理及导数的应用

1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);

2、泰勒公式及应用(近似计算,误差估计);

3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;

(六)不定积分

1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。

(七)定积分

1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);

2、变上限定积分:定义,性质。

(八)定积分的应用

1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;

2、定积分在物理上的应用:功、压力、引力;

3、微元法。

(九)数项级数

1、预备知识:上、下极限;

2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;

3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);

4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法。

(十)反常积分

1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。

(十一)函数项级数、幂级数

1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);

2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor)级数与几种常见的初等函数的幂级数展开。

(十二)傅里叶级数

1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以2为周期的函数的傅里叶级数展开,以2L(L0)为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。

(十三)多元函数的极限与连续

1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;

2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。

(十四)偏导数和全微分

1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;

2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。

(十五)极值和条件极值

1、极值:概念,判别(必要条件、充分条件),应用,最小二乘法;

2、条件极值:概念,拉格朗日乘数法,应用。(十六)隐函数存在定理

1、隐函数:概念,存在定理;

2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式。(十七)含参变量积分与含参变量广义积分

1、含参变量的正常积分:定义,性质(连续性、可微性、可积性);

2、含参变量的反常积分:定义,一致收敛的定义,一致收敛积分的判别法(柯西收敛原理、魏尔斯特拉斯判别法、阿贝尔判别法、狄立克雷判别法),一致收敛积分的性质(连续性、可微性、可积性);

3、欧拉积分:函数和函数的定义、性质。(十八)重积分的计算及应用

1、二重积分:二重积分的概念,性质,计算(化二重积分为二次积分,换元法(极坐标变换,一般变换);

2、三重积分:计算(化三重积分为三次积分, 换元法(一般变换,柱面坐标变换,球面坐标变换));

3、重积分的应用:立体体积,曲面的面积,物体的质心,矩,引力,转动惯量;

(十九)曲线积分与曲面积分

1、曲线积分:第一型曲线积分及第二型曲线积分的来源背景、概念、性质、应用与计算,两类曲线积分的联系;

2、曲面积分:第一型曲面积分及第二型曲面积分的来源背景、概念、性质、应用与计算,两类曲面积分的联系。(二十)各种积分间的联系和场论初步

1、各种积分间的联系公式:格林(Green)公式,高斯(Gauss)公式,斯托克斯(Stokes)公式;

2、曲线积分与路径无关性:四个等价条件。

3、场论初步:场的概念,梯度,散度和旋度,保守场,哈密顿算子(算子)。

五、是否需使用计算器

否。856 高等代数

一、考试性质

高等代数是全国数学专业硕士入学初试考试的专业基础课程。

二、考察目标

本考试大纲力求反映数学硕士专业学位的特点,科学、准确、规范地测评考生对高等代数所具有的基本素质和综合能力,具体考察考生对高等代数基础理论的掌握情况,以及运用高等代数的理论与方法分析问题、解决问题的能力。

本考试在三个层次上测试考生对高等代数理论的掌握程度和运用能力。三个层次的基本要求分别为:

1、基本概念和基本理论的理解、掌握;

2、运用基本理论解决基础性问题的分析、计算和推理能力;

3、综合运用高等代数知识分析问题、解决问题的能力。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。

(三)试卷结构(1)试卷分值构成:

多项式理论部分约占分值20分; 矩阵理论部分约占分值60分; 线性空间理论部分约占分值70分。

(2)题型包括:填空题,简答题,计算题,证明题。

四、考试内容

(一)多项式理论

1、一元多项式的一般理论

概念、运算、导数及基本性质;

2、整除理论

整除的概念、最大公因式、互素的概念与性质;

3、因式分解理论

不可约多项式、因式分解、重因式、实系数与复系数多项式的因式分解、有理系数多项式不可约的判定等;

4、根的理论

多项式函数、多项式的根、有理系数多项式的有理根的求法、根与系数的关系等;

5、多元多项式的一般理论 多元多项式概念、对称多项式。

(二)矩阵理论

1、行列式理论与计算

行列式的概念、性质以及计算;Cramer法则,拉普拉斯定理。

2、线性方程组

向量、向量组的线性相关与无关;线性方程组的解的结构。

3、矩阵

矩阵的各种运算及运算规律,矩阵的秩,矩阵的逆,分块矩阵的相应运算及性质。

4.二次型

二次型基本概念,配方法、合同变换法化二次型为标准形,惯性定理,正定、半正定、半负定二次型与矩阵的判定。

(三)线性空间理论

1、线性空间

线性空间的定义与性质;线性相关性及有关结论;秩与极大线性无关组;线性空间的基与维数;基变换与坐标变换公式;线性子空间;子空间的交、和与直和;线性空间的同构。

2、线性变换

线性变换的定义及其基本性质;线性变换的运算;线性变换的矩阵;相似矩 阵;矩阵的特征值与特征向量;线性变换的特征值与特征向量;哈密顿-凯莱定理;相似对角化;线性变换的值域与核;不变子空间;不变子空间与线性变换的矩阵的化简;若尔当标准形;最小多项式。

3、 矩阵

矩阵的概念;矩阵的等价;矩阵在初等变换下的标准形、不变因子与行列式因式;矩阵的初等因子;求矩阵的标准形的方法;矩阵相似的充分必要条件;矩阵若尔当标准形与有理标准形。

4、欧几里得空间

内积和欧几里得空间;长度、夹角与正交;度量矩阵;标准正交基;正交矩阵;欧氏空间的同构;正交变换;正交子空间与正交补;实对称矩阵的标准形;对称变换;向量到子空间的距离;最小二乘法。

五、是否需使用计算器

否。

432 统计学

一、考试性质

统计学是中国海洋大学数学科学学院应用统计学专业专业硕士研究生入学考试初试科目。

二、考察目标

统计学是阐述现代统计基础理论和基本方法的一门学科。实际应用十分广泛。内容包括统计调查、数据整理与展示、概率论基础、参数估计、假设检验、方差分析、回归分析、非参数方法、时间序列、统计指数等方面的内容。

本科目的考试旨在考察考生对统计学的基本原理和基本方法及各种调查研究、数据整理、展示,并结合数据资料进行定性分析和定量分析的掌握与理解能力。统计学考试主要从如下三方面测评考生在统计学方面的基本素质:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力和数据分析与展示能力;

3、综合运用统计理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为150分,考试时间为180分钟。(2)试卷分值构成:

基础知识和基本概念理解部分约占分值25%;

运用所学知识经过基本分析解决问题部分约占分值35%;

综合运用基本理论和方法分析问题与解决问题部分约占分值40%。(3)题型包括:选择题,填空题,简答题,计算分析题。

四、考试内容

(一)统计中的几个基本概念

1、统计数据的类型:分类数据,顺序数据,数值型数据。

2、总体和样本:总体,样本,参数和统计量,变量及类型。

(二)数据的搜集

1、数据来源:数据的间接来源,数据的直接来源。

2、调查数据:概率抽样,非概率抽样,搜集数据的基本方法。

3、实验数据。

4、数据的误差:抽样误差,非抽样误差,误差的控制。

(三)数据的图表展示

1、数据的预处理:审核,筛选,排序,数据透视表。

2、品质数据的整理与图示:分类数据和顺序数据的整理与图示。

3、数值型数据的整理与展示:数据分组,数值型数据的图示(直方图,茎叶图,箱线图,线图,散点图,雷达图)。

(四)数据的概括性度量

1、集中趋势的度量:分类数据(众数),顺序数据(中位数和分位数),数值数据(各种平均数,众数,中位数)。

2、离散程度的度量:分类数据(异众比率),顺序数据(四分位差),数值数据(极差,平均差,方差,标准差,离散系数,变异系数)。

3、偏态与峰态的度量:偏态及其计算公式,峰态及其计算公式。

(五)概率与概率分布

1、随机事件及其概率。

2、概率的性质与运算法则:基本性质,条件概率,全概率公式和贝叶斯公式。

3、离散型随机变量及其分布:二项分布,泊松分布,期望,方差。

4、连续型随机变量的概率分布:密度和分布函数,正态分布,指数分布,均匀分布,期望,方差。

(六)统计量及其抽样分布

1、统计量:统计量的概念,常用统计量,次序统计量,充分统计量。

2、关于分布的几个概念:抽样分布,渐进分布。

3、由正态分布导出的几个重要分布:卡方分布,t分布,F分布。

4、样本均值的分布与中心极限定理。

5、样本比例的抽样分布。

6、两个样本平均值之差的分布。

7、关于样本方差的分布。

(七)参数估计

1、参数估计的基本原理。

2、一个总体参数的区间估计。

3、两个总体参数的区间估计。

4、样本量的确定。

(八)假设检验

1、假设检验的基本问题。

2、一个总体参数的检验。

3、两个总体参数的检验。

(九)分类数据分析

1、分类数据与卡方统计量。

2、拟合优度检验。

3、列联分析:独立性检验。

4、列联表中的相关测量。

(十)方差分析

1、方差分析的基本概念:基本思想,基本假定,问题的一般提法。

2、单因素方差分析。

3、双因素方差分析。

(十一)一元线性回归

1、变量间关系的度量。

2、一元线性回归:回归模型,参数的最小二乘估计,回归直线的拟合优度,显著性检验,回归分析结果的评价。

3、利用回归方程进行预测:点估计,区间估计。

4、残差分析。

(十二)多元线性回归

1、多元线性回归模型。

2、回归方程的拟合优度。

3、显著性检验。

4、多重共线性。

5、利用回归方程进行预测。

6、变量选择和逐步回归。

(十三)时间序列分析和预测

1、时间序列及其分解。

2、时间序列的描述性分析。

3、时间序列预测的程度。

4、平稳序列的预测。

5、趋势型序列的预测。

6、季节型序列的预测。

7、复合型序列的分解预测。

(十四)指数

1、指数的概念和分类。

2、总指数编制方法:简单指数,加权指数。

3、指数体系。

4、指数综合评价。

五、是否需使用计算器

允许携带无存储功能的计算器。

复试考试大纲

实变函数

一、考试性质

《实变函数》是中国海洋大学数学相关专业硕士研究生入学考试复试科目。

二、考察目标

实变函数是近代分析数学的基础,是数学分析的延续与拓广。考试以考察基本知识为主,考核对重要定理的理解和应用。旨在测试考生对集合论、可测集、可测函数、可积函数等基本定义概念的理解和掌握。要求考生理解实变函数的基本概念和基本理论;掌握其基本论证方法和常用结论;具备较强的逻辑推理能力及初步的应用能力。

三、考试形式

本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:客观题30%、简答题占30%,证明题占40%。

四、考试内容

(一)集合论

1集合的各种运算,上、下限集的定义

2集合的对等,集合的基数,集合的可列性;

3开集、闭集、完全集、稠密集、稀疏集的概念及其性质;点集的内部、导集、闭包、边界;Cantor三分集的结构和性质;

4点到集合的距离,集合间的距离。

(二)可测集

1.外测度、测度和可测集的概念及其性质,集合可测性的判别方法; 2.开集、闭集的可测性,以及它们与可测集之间的联系。

(三)可测函数

1.可测函数的概念及其性质;

2.函数可测性的判别方法,其与简单函数的联系;

3.可测函数列几种收敛性之间的关系(包括处处收敛、几乎处处收敛、一致收敛、近一致收敛、测度收敛);

4.可测函数和连续函数的联系

5.叶果洛夫(Egoroff)定理、里斯(Riesz)定理、鲁津(Rusin)定理的含义及应用;

(四)Lebesgue积分

1.Lebesgue积分的定义及其性质,函数可积性的判定;

2.积分收敛定理(勒维(Levi)定理,法杜(Fatou)定理和Lebesgue控制收敛定理,Vitali定理)及应用;

3.Riemann积分与Lebesgue积分之间的区别和联系; Fubini定理。

五、是否需使用计算器

否。

计算方法

一、考试性质

计算方法是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。

二、考察目标 要求考生理解数值计算的基本方法及基本理论,掌握基本数值方法的理论分析技巧, 具有把数学问题近似求解和编程实现能力。本科目主要考查考生对计算数学基础理论的掌握及考生的基本数值分析能力。从如下三方面测评考生的计算数学基本素质:

1、基本概念和基本理论

2、基本数值方法的构建及分析

3、综合算法分析及应用

三、考试形式

本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:

数值逼近的基本概念和基本理论约为30%,分值约为30分; 代数方程的数值方法及分析约为40%,分值约为40分; 微分方程数值解法及分析约为30%,分值约为30分。

四、考试内容

(一)数值逼近基础

1.误差(误差来源,误差限,有效数字,误差传播,避免误差的注意事项)2.插值法(Lagrange插值,Hermite插值,分段插值,分段Hermite插值, 样条插值,数值微分)

3.数据拟合法(最小二乘原理,多变量拟合,正交多项式拟合)

4.数值积分(梯形、Simpson公式及误差估计,复化公式及误差估计,加速公式与Romberg求积,Gauss型公式等)

(二)代数方程数值方法

1.线性代数方程组的直接法(高斯消去法、主元消去法, 矩阵分解法,误差分析)

2.线性代数方程组的迭代法(几种常用迭代法收敛性及误差估计,判别收敛的条件,收敛速率)

3.矩阵特征值和特征向量的计算(幂法,反幂法,QR算法 Jacobi方法)4.非线性代数方程的解法(对分区间法,迭代法,迭代收敛的加速,Newton法,14 弦位法抛物线法,最速下降法)

(三)微分方程数值方法

1.常微分方程的数值解法(几种简单的数值解法,R-K方法,线性多步法,预估校正公式,自动选取步长及事后估计)

2.偏微分方程的差分解法(差分格式的建立,收敛性,稳定性,高维问题的交替方向法)

五、是否需使用计算器

否。

常微分方程

一、考试性质

常微分方程是中国海洋大学数学科学学院硕士研究生入学考试复试笔试科目。

二、考察目标

要求考生能正确理解常微分方程的基本概念,掌握一些基本理论和各种类型方程求解的主要方法,具有一定的解题能力。同时,要求考生生具有分析与解决问题的能力。

三、考试形式

本考试为闭卷考试,满分为150分,考试时间为180分钟。试卷结构:选择题30%;计算题20%; 综合题20%;证明题30%

四、考试内容

考试内容:初等积分法;基本定理;一阶线性微分方程组;n 阶线性微分方程;定性理论与稳定性理论简介;一阶偏微分方程初步。

1.初等积分法部分:要求考生能用初等(积分)解法求解常微分方程的可积类型,掌握各种类型的解法,具有判断一个给定方程的类型和正确求解的能力。重点是求解方法,难点是识别方程的类型以及熟练掌握求解方法。

2.基本定理部分包括解的存在唯一性定理,解的延展定理,解对初值的连续依赖性定理和解的可微性定理,构成了常微分方程主要理论部分。解的存在唯一性定理表明,若右端函数满足连续和利布希兹条件,则保证方程的解存在性与唯一性。它是常微分方程理论中最基本的定理,有其重大的理论意义。另一方面,由于能求得精确解的方程不多,所以该定理给出的求近似解法就具有重要的实际意义。解的延拓定理及解对初值的连续依赖性与可微性定理揭示了微分方程的重要性质。要求考生必需理解上述定理的条件和结论,掌握证明方法,能运用定理证明有关问题。重点是证明的思路和方法,特别是逐次逼近法,难点是贯穿定理证明过程的利布希兹条件运用和证明过程中不等式技巧的把握。

3.一阶线性微分方程组是常微分方程理论中的重要部分,无论从实用的角度或从理论的角度来说,一阶线性微分方程组所提供的方法和结果都是非常重要的。要求考生:1.掌握线性微分方程组的一般理论,把握解空间的代数结构;2.基解矩阵求法。一般齐次线性微分方程组的基解矩阵是难以通过积分求得,但当系数矩阵是常系数矩阵时,可以通过代数方法(Jordan标准型、矩阵指数)求出基解矩阵。3.重点掌握一阶线性微分方程组的解空间结构和常系数线性微分方程组的解法,难点是证明一阶齐次常微分方程组的解空间是n 维线性空间和一阶常系数齐次或非齐次微分方程组的求解。

4.n 阶线性微分方程是值得重视的方程,这不仅仅因为n阶线性微分方程的一般理论已被研究的十分清楚,而且它是研究非线性微分方程的基础,它在物理、力学和工程技术中也有广泛的应用。要求考生重点掌握n阶线性微分方程的基本理论和常系数n阶线性微分方程的解法,对于高阶方程的降阶问题和二阶线性方程的幂级数解法作简单了解。熟悉Laplace变换是求解n阶常系数线性微分方程初值问题的方法。把握n 阶线性微分方程与一阶线性微分方程组的关系,能够将一阶线性微分方程组的有关结果推广到n 阶线性微分方程,以统一的观点理解这两部分的内容。

5.定性理论与稳定性理论简介主要介绍定性理论和稳定性理论,定性理论产生与发展与生产实践和物理、力学以及工程技术问题紧密联系,它主要研究轨线在相平面或相空间的分布以及极限环或周期轨的稳定性和不稳性等问题。稳定性理论研究平衡态的稳定性问题,主要研究方法是李雅普诺夫第一方法和第二方 16 法。在现代科学技术中,无论是定性理论还是稳定性理论都有着极其广泛的应用。要求学生对定性理论和稳定性理论有所了解,能够用李雅普诺夫第二方法判断平衡点的稳定性问题。

6.一阶偏微分方程部分:只要考生对一阶偏微分方程的理论和方法有所了解,会求解简单的一阶线性齐次偏微分方程和一阶拟线性非齐次偏微分方程问题。

五、是否需使用计算器

否。

概率论与数理统计(统计学)

一、考试性质

概率论与数理统计是数学类专业的重要专业必修课,是中国海洋大学数学科学学院硕士研究生入学考试复试科目。

二、考察目标

要求学生掌握概率论与数理统计的基本理论和基本方法。对相关定理和统计方法有较为深刻的理解,具有分析问题和解决问题的基本技能,为深入学习随机过程和高级数理统计知识做好必要的准备。

本科目旨在考查考生对概率论与数理统计基础理论、基本知识的掌握情况。主要从如下三方面测评考生在概率论与数理统计方面的能力:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力;

3、综合运用理论知识分析问题、解决问题的能力。

三、考试形式

本考试为闭卷考试,满分为100分,考试时间为120分钟。

试卷结构:试卷由试题和答题纸组成,答案必须写在答题纸上。概率论部分与数理统计部分各占分值50%。其中:基础知识和基本概念理解部分约占分值30%;运用所学知识经过基本分析解决问题部分约占分值40%;运用基本理论和基本方法综合分析问题解决问题部分约占分值30%。

四、考试内容

(一)概率论部分

1、概率论的基本概念:样本空间,随机事件,概率,条件概率,独立性。

2、随机变量及其分布函数,密度函数。

3、二元随机变量,分布函数,条件分布,边际分布,协方差,相关系数,独立性。

4、数字特征,重要不等式。

5、特征函数,大数定律,中心极限定理。

(二)数理统计部分

1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。

2、估计理论:矩法估计,极大似然估计,无偏性,有效性,相合性,一致最小方差无偏估计,区间估计,贝叶斯估计。

3、假设检验:正态总体参数的假设检验,指数分布与二项分布参数的假设检验。非参数假设检验包括:总体分布的假设检验,独立性假设检验。

4、方差分析:单因素方差分析,双因素方差分析。

5、回归分析:线性模型,最小二乘估计,最小二乘估计的性质,线性模型 中回归系数的假设检验。

五、是否需使用计算器

否。

概率论与数理统计(应用统计)

一、考试性质

概率论与数理统计是中国海洋大学数学科学学院应用统计学专业硕士研究生入学复试科目。

二、考察目标

概率论与数理统计是研究自然界和人类社会普遍存在的随机现象统计规律的学科,有着广泛地应用,也是统计学专业的重要基础课程。本科目的考试旨在 考查学生掌握概率论与数理统计的基本概念、基本理论和基本方法,综合运用概率统计的思想和方法分析问题、解决问题的能力。测试内容包括如下三个方面:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力;

3、综合运用理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为100分,考试时间为120分钟。(2)试卷分值构成:

基础知识和基本概念理解部分约占分值35%;

运用所学知识经过基本分析解决问题部分约占分值35%;

综合运用基本理论和方法分析问题与解决问题部分约占分值30%。注:概率论部分与数理统计部分分别约占整个试卷分值的50%。

四、考试内容

(一)概率论部分

1、样本空间,随机事件,概率,条件概率,独立性,全概率公式,贝叶斯公式。

2、一元离散型和连续型随机变量,分布律,分布函数,密度函数,随机变量函数的分布。

3、二元离散型和连续型随机变量,分布函数,边际分布,条件分布,相互独立,随机变量函数的分布。

4、数学期望,方差,协方差,相关系数,切比雪夫不等式。

5、大数定律,中心极限定理。

(二)数理统计部分

1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。

2、估计理论:矩估计,极大似然估计,无偏性,有效性,相合性,区间估计。

3、假设检验:正态总体参数的假设,非参数假设检验。

4、方差分析:单因素方差分析,两因素方差分析。

5、回归分析:线性模型,最小二乘估计,线性模型中回归系数的假设检验,预测与控制。

五、是否需使用计算器

否。

第二篇:数学科学学院

011 数学科学学院

目录

一、初试考试大纲:..................................................1 617 数学分析....................................................1 856 高等代数....................................................6 432 统计学......................................................8

二、复试考试大纲:.................................................12 计算方法.......................................................12 实变函数.......................................................13 数学物理方程...................................................15 概率论与数理统计...............................................16 概率论与数理统计(应用统计)...................................18 数理统计.......................................................19 计量经济学.....................................................21

一、初试考试大纲:

617 数学分析

一、考试性质

数学分析是数学相关专业硕士入学初试考试的专业基础课程。

二、考试目标

本考试大纲制定的依据是根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士专业学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。

本考试旨在测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。

(三)试卷结构

一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。

四、考试内容(一)变量与函数

1、实数:实数的概念、性质,区间,邻域;

2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。

(二)极限与连续

1、数列极限:定义(-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要lim(1n)e1n的数列极限n),迫敛性法则,柯西收敛准则);

2、无穷小量与无穷大量:定义,性质,运算,阶的比较;

3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(-, -X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine定理),柯西收敛准则);运算;

sinx11lim(1)xex4、两个常用不等式和两个重要函数极限(x0x,x);

lim5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。

(三)实数的基本定理及闭区间上连续函数性质的证明

1、概念:子列,上、下确界,区间套,区间覆盖;

2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);

3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。

(四)导数与微分

1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导 2 法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);

2、微分:定义,运算法则,简单应用;

3、高阶导数与高阶微分:定义,运算法则。

(五)微分学基本定理及导数的应用

1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);

2、泰勒公式及应用(近似计算,误差估计);

3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;

(六)不定积分

1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。

(七)定积分

1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);

2、变上限定积分:定义,性质。

(八)定积分的应用

1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;

2、定积分在物理上的应用:功、压力、引力;

3、微元法。

(九)数项级数

1、预备知识:上、下极限;

2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;

3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);

4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法。

(十)反常积分

1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。

(十一)函数项级数、幂级数

1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);

2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor)级数与几种常见的初等函数的幂级数展开。

(十二)傅里叶级数

1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以2为周期的函数的傅里叶级数展开,以2L(L0)为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。

(十三)多元函数的极限与连续

1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;

2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。

(十四)偏导数和全微分

1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;

2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。

(十五)极值和条件极值

1、极值:概念,判别(必要条件、充分条件),应用,最小二乘法;

2、条件极值:概念,拉格朗日乘数法,应用。

(十六)隐函数存在定理

1、隐函数:概念,存在定理;

2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式。

(十七)含参变量积分与含参变量广义积分

1、含参变量的正常积分:定义,性质(连续性、可微性、可积性);

2、含参变量的反常积分:定义,一致收敛的定义,一致收敛积分的判别法(柯西收敛原理、魏尔斯特拉斯判别法、阿贝尔判别法、狄立克雷判别法),一致收敛积分的性质(连续性、可微性、可积性);

3、欧拉积分:函数和函数的定义、性质。

(十八)重积分的计算及应用

1、二重积分:二重积分的概念,性质,计算(化二重积分为二次积分,换元法(极坐标变换,一般变换);

2、三重积分:计算(化三重积分为三次积分, 换元法(一般变换,柱面坐标变换,球面坐标变换));

3、重积分的应用:立体体积,曲面的面积,物体的质心,矩,引力,转动惯量;

(十九)曲线积分与曲面积分

1、曲线积分:第一型曲线积分及第二型曲线积分的来源背景、概念、性质、应用与计算,两类曲线积分的联系;

2、曲面积分:第一型曲面积分及第二型曲面积分的来源背景、概念、性质、应用与计算,两类曲面积分的联系。

(二十)各种积分间的联系和场论初步

1、各种积分间的联系公式:格林(Green)公式,高斯(Gauss)公式,斯托克斯(Stokes)公式;

2、曲线积分与路径无关性:四个等价条件。

3、场论初步:场的概念,梯度,散度和旋度,保守场,哈密顿算子(算子)。

856 高等代数

一、考试性质

高等代数是全国数学专业硕士入学初试考试的专业基础课程。

二、考试目标

本考试大纲的制定力求反映数学硕士专业学位的特点,科学、准确、规范地测评考生高等代数的基本素质和综合能力,具体考察考生对高等代数基础理论的掌握与运用高等代数的基本概念和论证方法分析问题解决问题的能力。

本考试旨在三个层次上测试考生对高等代数理论知识掌握的程度和运用能力。三个层次的基本要求分别为:

1、概念理解: 对高等代数理论的基本概念的正确理解考核。

2、分析判断: 用高等代数基本理论来分析判断某些论述的正确与否。

3、综合运用: 运用所学的高等代数理论知识来解决综合性题目。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。

(三)试卷结构

基本概念理解与计算考核的比例约为16.7%,分值为25分; 分析判断考核的比例约为23.3%,分值为35分; 综合运用考核的比例约为60%,分值为90分。

四、考试内容

(一)多项式理论

1、一元多项式的一般理论 概念、运算、导数及基本性质;

2、整除理论

整除的概念、最大公因式、互素的概念与性质;

3、因式分解理论

不可约多项式、因式分解、重因式、实系数与复系数多项式的因式分解、有理系数多项式不可约的判定等;

4、根的理论

多项式函数、多项式的根、有理系数多项式的有理根的求法、根与系数的关系等;

5、多元多项式的一般理论 多元多项式概念、对称多项式。

(二)矩阵理论

1、行列式理论与计算

行列式的概念、性质以及计算;Cramer法则。

2、线性方程组

向量、向量组的线性关系;线性方程组的解的结构。

3、矩阵

矩阵的各种运算及运算规律,逆矩阵的求法,分块矩阵的相应运算及性质。4.二次型

二次型基本概念,配方法、合同法化二次型为标准形,正定二次型与正定矩阵的判定与证明。

(三)线性空间论

1、线性空间

线性空间的定义与性质;线性相关性及有关结论;秩与极大线性无关组;线性空间的基与维数;基变换与坐标变换公式;线性子空间;子空间的和与直和;线性空间的同构。

2、线性变换

线性变换及其基本性质;线性变换的运算;线性变换的矩阵;相似矩阵;矩阵的特征值与特征向量;线性变换的特征值与特征向量;哈密顿凯莱定理;相似对角化;线性变换的值域与核;不变子空间;不变子空间与线性变换的矩阵的化简;若尔当标准形;最小多项式。

3、矩阵

矩阵的概念; 矩阵的等价; 矩阵在初等变换下的标准形、不变因子与行列式因式; 矩阵的初等因子;求 矩阵的标准形的方法;矩阵相似的充分必要条件;若尔当标准形;有理标准形。

4、欧几里得空间

内积和欧几里得空间;长度、夹角与正交;度量矩阵;标准正交基;正交矩阵;欧氏空间的同构;正交变换;正交子空间与正交补;实对称矩阵的标准形;对称变换;向量到子空间的距离;最小二乘法。

432 统计学

一、考试性质

统计学是中国海洋大学数学科学学院应用统计学专业专业硕士研究生入学考试初试科目。

二、考察目标

统计学是阐述现代统计基础理论和基本方法的一门学科。实际应用十分广泛。内容包括统计调查、数据整理与展示、概率论基础、参数估计、假设检验、方差分析、回归分析、非参数方法、时间序列、统计指数等方面的内容。

本科目的考试旨在考察考生对统计学的基本原理和基本方法及各种调查研究、数据整理、展示,并结合数据资料进行定性分析和定量分析的掌握与理解能力。统计学考试主要从如下三方面测评考生在统计学方面的基本素质:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力和数据分析与展示能力;

3、综合运用统计理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为150分,考试时间为180分钟。试卷由试题和答题纸组成,答案必须写在答题纸上。考生可以携带只有计算功能的计算器及直尺等作图工具。(2)试卷分值构成:

基础知识和基本概念理解部分约占分值25%;

运用所学知识经过基本分析解决问题部分约占分值35%;

综合运用基本理论和方法分析问题与解决问题部分约占分值40%。(3)题型包括:选择题,填空题,简答题,计算分析题。

四、考试内容

第1章 统计中的几个基本概念

一.统计数据的类型 1.分类数据2.顺序数据3.数值数据 二.总体和样本1.总体2.样本3.参数和统计量4.变量及类型

第2章 数据的搜集

一.数据来源1.数据的间接来源2.数据的直接来源

二.调查数据 1.概率抽样(各种抽样方式及特点)2.非概率抽样(各种抽样方式及特点)三.实验数据

四.数据的误差1.抽样误差2.非抽样误差 3.误差的控制

第3章 数据的图表展示 一.分类数据的整理与图示1.频数与频数分布2.分类数据的图示(条形图,饼图,环形图)

二.顺序数据的整理与图示1.累积频数与累积频率2.顺序数据的图示(向上累积与向下累积频数图)

三.数值型数据的整理与展示1.数据分组及组距、组中值等有关的概念2.数值型数据的图示(直方图,茎叶图,箱线图,线图,散点图,雷达图)

第4章 数据的概括性度量

一.集中趋势的度量1.分类数据(众数)2.顺序数据(中位数和分位数)3.数值数据(各种平均数,众数,中位数)二.离散程度的度量1.分类数据(异众比率)2.顺序数据(四分位差)3.数值数据(极差,平均差,方差,标准差,离散系数,变异系数)三.偏态与峰态的度量1.偏态及其计算公式2.峰态及其计算公式

第5章 概率与概率分布

一.随机事件及其概率 二.概率的性质与运算法则 三.离散型随机变量及其分布 四.连续型随机变量的概率分布

第6章 统计量及其抽样分布

一.统计量

二.关于分布的几个概念

三.由正态分布导出的几个重要分布 四.样本均值的分布与中心极限定理 五.样本比例的抽样分布 六.两个样本平均值之差的分布 七.关于样本方差的分布

第7章 参数估计

一.参数估计的基本原理 二.一个总体参数的区间估计 三.两个总体参数的区间估计 四.样本量的确定

第8章 假设检验

一.假设检验的基本问题 二.一个总体参数的检验 三.两个总体参数的检验

第9章 分类数据分析

一.分类数据与x2统计量 二.拟合优度检验

三.列联分析:独立性检验 四.列联表中的相关测量

第10章 方差分析

一.方差分析引论 二.单因素方差分析

第11章 一元线性回归

一.变量间关系的度量 二.一元线性回归

三.利用回归方程进行预测

五、参考书

1.贾俊平何晓群 金勇进 编著《统计学》,2.盛

骤 谢式千 潘承毅 编《概率论与数理统计》

二、复试考试大纲:

计算方法

一、考试性质

《计算方法》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。

二、考试目标

计算方法是数学类专业的重要专业基础课,介绍数值计算的基本方法及基本理论,使学生掌握把数学问题近似求解的“数值”计算方法,通过上机实习加深对基本方法的理解并提高实际运用和编程实现能力,为进行计算方法理论及应用的深入研究打下基础。

本科目旨在考查考生对计算数学基础理论知识的掌握及考生的基本数值分析能力。主要从如下三方面测评考生的计算数学基本素质:

1、基本概念和基本理论的掌握

2、基本数值方法的构建及分析

3、综合算法分析及应用

三、考试形式

(一)试卷满分及考试时间

本试卷满分为100分,考试时间为120分钟

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。

(三)试卷结构

数值逼近的基本概念和基本理论比例约为30%,分值约为30分; 代数方程的数值方法及分析比例约为40%,分值约为40分; 微分方程数值解法及分析比例约为30%,分值约为30分。

四、考试内容

(一)数值逼近基础

1.误差(误差来源,误差限,有效数字,误差传播,避免误差的注意事项)2.插值法(Lagrange插值,Hermite插值,分段插值,分段Hermite插值, 样条插值,数值微分)

3.数据拟合法(最小二乘原理,多变量拟合,正交多项式拟合)4.数值积分(梯形、Simpson公式及误差估计,复化公式及误差估计,加速公式与Romberg求积,Gauss型公式等)

(二)代数方程数值方法

1.线性代数方程组的直接法(高斯消去法、主元消去法, 矩阵分解法,误差分析)

2.线性代数方程组的迭代法(几种常用迭代法收敛性及误差估计,判别收敛的条件,收敛速率)

3.矩阵特征值和特征向量的计算(幂法,反幂法,QR算法 Jacobi方法)4.非线性代数方程的解法(对分区间法,迭代法,迭代收敛的加速,Newton法,弦位法抛物线法,最速下降法)

(三)微分方程数值方法

1.常微分方程的数值解法(几种简单的数值解法,R-K方法,线性多步法,预估校正公式,自动选取步长及事后估计)

2.偏微分方程的差分解法(差分格式的建立,收敛性,稳定性,高维问题的交替方向法)

实变函数

一、考试性质

《实变函数》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。

二、考试目标

实变函数是近代分析数学的基础,是数学分析的延续与拓广。考试以考察基本知识为主,考核对重要定理的理解和应用。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为100分,考试时间为120分钟

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。

(三)试卷结构

填空题与简答题占35%,证明题占65%。

四、考试内容

(一)集合论

1集合的各种运算,上、下限集的定义 2集合的对等,集合的基数,集合的可列性;

3开集、闭集、完全集、稠密集、稀疏集的概念及其性质;点集的内部、导集、闭包、边界;Cantor三分集的结构和性质;

4点到集合的距离,集合间的距离。

(二)可测集

1.外测度、测度和可测集的概念及其性质,集合可测性的判别方法; 2.开集、闭集的可测性,以及它们与可测集之间的联系。

(三)可测函数

1.可测函数的概念及其性质;

2.函数可测性的判别方法,其与简单函数的联系;

3.可测函数列几种收敛性之间的关系(包括处处收敛、几乎处处收敛、一致收敛、近一致收敛、测度收敛);

4.可测函数和连续函数的联系

5.叶果洛夫定理、里斯定理、鲁津定理的含义及应用;

(四)Lebesgue积分

1.Lebesgue积分的定义及其性质,函数可积性的判定;

2.积分收敛定理(勒维定理,法杜定理和Lebesgue控制收敛定理,Vitali定理)及应用;

3.Riemann积分与Lebesgue积分之间的区别和联系; Fubini定理。

数学物理方程

一、考试性质

《数学物理方程》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。

二、考试目标

《数学物理方程》课程是近代分析学的重要分支,是物理学及其它自然科学中出现的偏微分方程为主要研究对象,是先修课程数学分析、高等代数、空间解析几何、普通物理、复变函数、常微分方程、泛函分析等课程的延续与拓广。考试以考察基本知识和计算能力为主,考核对重要定理的理解和应用。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为100分,考试时间为120分钟

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。

(三)试卷结构

填空题与简答题占40%,证明题占60%。

四、考试内容

(一)绪论数学物理方程含义。

(二)波动方程

(1)方程的建模过程;(2)达朗贝尔公式的推导过程的理解;(3)各种情形中特征问题的特征值与特征向量;(4)球平均法与降维法的基本原理的理解;(5)二维与三维情形的差异和联系;(6)能量法的应用

(三)热传导方程

(1)方程的建模过程;(2)具第三类边界条件的特征问题;(3)积分变换法;(4)极值原理及其应用;(5)解的衰减估计值分析。

(四)调和方程

(1)方程的建模过程;(2)格林函数及性质;(3)弱极值原理与强极值原理应用;(4)特殊区域(二维及三维空间)中格林函数及推导(5)调和函数性质。

(五)二阶线性偏微分方程的分类与总结

(1)方程分类与标准形式的转化;

概率论与数理统计

一、考试性质

《概率论与数理统计》是中国海洋大学数学科学学院硕士研究生入学考试复试笔试科目。

二、考试目标

概率论与数理统计是数学类专业的重要专业必修课,要求学生掌握概率论与数理统计的基本理论和基本方法。对相关定理和统计方法有较为深刻的理解,具有分析问题和解决问题的基本技能,为深入学习随机过程和高级数理统计知识打下扎实基础。

本科目旨在考查考生对概率论与数理统计基础理论、基本知识的掌握情况。主要从如下三方面测评考生的概率论与数理统计方面的基本素质:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力;

3、综合运用理论知识分析问题、解决问题的能力。

三、考试形式

(一)试卷满分及考试时间

本试卷满分为100分,考试时间为120分钟

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。

(三)试卷结构

基础知识和基本概念理解部分约占分值30%;

运用所学知识经过基本分析解决问题部分约占分值40%;

运用基本理论和基本方法综合分析问题解决问题部分约分值30%。概率论部分与数理统计部分各占分值50%;

四、考试内容

(一)概率论部分

1、概率论的基本概念:样本空间,随机事件,概率,条件概率,独立性。

2、随机变量及其分布函数,密度函数

3、二元随机变量,分布函数,条件分布,边际分布,相互独立。

4、数学特征。重要不等式。

5、特征函数,大数定律,中心极限定理。

(二)数理统计部分

1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。

2、估计理论:矩法估计,极大似然估计,无偏性,有效性,相合性,一致最小方差无偏估计,充分性,完备性,区间估计,贝叶斯估计。

3、假设检验:正态总体参数的假设,指数分布,二项分布的假设检验,非参数假设检验。

4、方差分析:单因素方差分析,两因素方差分析。

5、回归分析:线性模型,最小二乘估计,最小二乘估计的性质,线性模型中回归系数的假设检验,预测与控制。

概率论与数理统计(应用统计)

一、考试性质

概率论与数理统计是中国海洋大学数学科学学院应用统计学专业硕士研究生入学复试科目。

二、考察目标

概率论与数理统计是研究自然界和人类社会普遍存在的随机现象统计规律的学科,有着广泛地应用,也是统计学专业的重要基础课程。本科目的考试旨在考查学生掌握概率论与数理统计的基本概念、基本理论和基本方法,综合运用概率统计的思想和方法分析问题、解决问题的能力。测试内容包括如下三个方面:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力;

3、综合运用理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为100分,考试时间为120分钟。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。(2)试卷分值构成:

基础知识和基本概念理解部分约占分值35%;

运用所学知识经过基本分析解决问题部分约占分值35%;

综合运用基本理论和方法分析问题与解决问题部分约占分值30%。注:概率论部分与数理统计部分分别约占整个试卷分值的50%。

四、考试内容

(一)概率论部分

1、样本空间,随机事件,概率,条件概率,独立性,全概率公式,贝叶斯公式。

2、一元离散型和连续型随机变量,分布函数,密度函数,随机变量函数的分布。

3、二元离散型和连续型随机变量,分布函数,条件分布,边际分布,相互独立。

4、数学期望,方差,协方差,相关系数,协方差阵,切比雪夫不等式。

5、大数定律,中心极限定理。

(二)数理统计部分

1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。

2、估计理论:矩法估计,极大似然估计,无偏性,相合性,区间估计。

3、假设检验:正态总体参数的假设,指数分布,二项分布的假设检验,非参数假设检验。

4、方差分析:单因素方差分析,两因素方差分析。

5、回归分析:线性模型,最小二乘估计,线性模型中回归系数的假设检验,预测与控制。

数理统计

一、考试性质

数理统计是中国海洋大学数学科学学院应用统计学专业研究生招生同等学历考生加试科目。

二、考察目标

数理统计学是研究如何科学而有效地收集、整理和分析有随机影响的数据,以对所研究问题做出推断、预测或为采取的决策和行动提供依据与建议。本科目的考试旨在考察考生对数理统计中的基本概念、基本定理和基本方法的理解程度及综合运用这些定理和方法进行分析问题、解决问题的能力。测试内容包括如下三个方面:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力;

3、综合运用理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为100分,考试时间为120分钟。试卷由试题和答题纸组成,答案必须写在答题纸上。

(2)试卷分值构成:

基础知识和基本概念理解部分约占分值30%;

运用所学知识经过基本分析解决问题部分约占分值40%;

综合运用基本理论和方法分析问题与解决问题部分约占分值30%。

四、考试内容及要求 第一章

理解总体、个体、简单样本和统计量的概念,掌握样本均值、样本方差及样

2本矩的计算。理解经验分布函数的重要意义及其收敛性质。熟练掌握分布、t分布和F分布的定义及其有关的重要定理,掌握多元正态分布与正态二次型的一些重要结论。正确理解抽样分布的基本概念,熟练掌握正态总体的常用统计量的分布。理解分位数的概念并会查表计算。

第二章

掌握矩估计法和极大似然估计法,理解并掌握估计量的评选标准——无偏性、有效性、一致性、均方误差最小估计。理解Rao—Cramer不等式及一致最小方差无偏估计的概念。理解置信区间的概念,掌握正态总体均值和方差参数的区间估计及指数分布和二项分布中参数的区间估计方法。了解贝叶斯估计,贝叶斯决策的基本思想和方法。

第三章

掌握参数假设检验的基本思想和方法以及各种非参数假设检验方法,尤其掌2握皮尔逊检验方法,掌握假设检验的基本步骤,理解并掌握假设检验可能产 20 生的两类错误。熟练掌握正态总体的均值和方差及指数分布和二项分布中参数的的假设检验过程。了解正态总体的概率纸检验、科尔莫哥罗夫检验、斯米尔诺夫检验、秩和检验、游程检验的基本思想和方法。

第四章

理解并掌握单因素方差分析和双因素方差分析方法。

第五章

掌握线性回归模型的最小二乘估计及其性质、回归系数的检验并用回归模型进行预测和控制的方法。

计量经济学

一、考试性质

计量经济学是中国海洋大学数学科学学院应用统计学专业研究生招生同等学历考生加试科目。

二、考查目标

计量经济学是统计学专业的基础必修课程,其主要目的是培养学生掌握计量经济学的基本概念、基本理论和基本方法,初步学会建立和使用计量经济模型,培养学生运用计量经济学知识处理经济问题的基本能力。本科目主要考察运用计量经济学的有关原理解决实际问题,掌握一元线性回归模型,多元线性回归模型的有关计算、检验,异方差、自相关、多重共线性的相关理论,联立方程模型的建立,以及计量经济学的发展趋势。计量经济学考试主要从如下三方面测评考生的基本素质:

1、基本概念和基本理论的理解、掌握;

2、基本解题能力和数据分析与展示能力;

3、综合运用计量经济学理论知识分析问题、解决问题的能力。

三、考试形式

(1)考试形式及考试时间:

本考试为闭卷考试,答题方式为笔试。满分为100分,考试时间为120分钟。试卷由试题和答题纸组成,答案必须写在答题纸上。考生可以携带只有计算功能的计算器及直尺等作图工具。

(2)试卷分值构成:

基础知识和基本概念理解部分约占分值25%;

运用所学知识经过基本分析解决问题部分约占分值35%;

综合运用基本理论和方法分析问题与解决问题部分约占分值40%。

(3)题型

选择题,填空题,简答题,计算分析题。

四、考试内容

1.计量经济学的基本理论和方法

·计量经济学的基本概念(经济数据、估计量、误差项、残差、回归分析、相关分析、计量模型)·计量经济学的理论体系和研究方法(经济理论、经济数据与统计方法的结合;理论与事实的结合)

2.单方程计量经济模型

·计量经济模型基本假设

·计量经济模型参数估计(最小二乘法和最大似然法)·计量经济模型统计检验和区间估计

·计量经济模型中的问题(异方差、自相关、多重共线性、误设定)·变量选择与模型建立的的原则和方法

3.联立方程计量经济模型

·模型识别问题

·联立模型的基本估计方法

·宏观计量经济模型的概念与发展现状

4.虚拟变量的概念与应用

·自变量为虚拟变量的模型 ·因变量为虚拟变量的模型(Probit模型、Logit模型)

5.面板数据模型

·面板数据模型的几种形式

·固定影响、随机影响模型的判定(Hausman检验)

6.时间序列模型

·恩格尔和格兰杰对时间序列分析的贡献 ·平稳和协整的概念与应用 ·伪回归问题

7.应用计量经济学

·计量经济模型应用(预测、结构分析、政策评价、理论验证)·单方程计量经济模型(生产、需求、消费、投资)

第三篇:2012年中国海洋大学迎新晚会主持词

2012中国海洋大学经济学院迎新晚会 节目串词

主持人分工:

A:邓夏怡

B:刘昕界

C:张嘉彤

D:彭玮仪

开场词

A:尊敬的各位领导、各位来宾

B:敬爱的老师,亲爱的同学们,大家

ABCD:晚上好!(合)A:踏着秋风,沐着秋雨,我们相逢在收获的九月;

B:携着祝福,带着嘱托,我们相约在美丽的青岛;

C:军训的号角还在耳边回响,希望的种子已经破土发芽;

D:求学的钟声早已敲响,大学的生活已经拉开帷幕。

A:伴着星光,激情和希望在这里燃烧。

B:伴着秋风,青春和渴望在这里激荡。

C:伴着音乐,畅想和思绪在这里飞扬。

D:伴着欢呼,未来和梦想在这里起航!

A:这里是中国海洋大学经济学院2012年迎新晚会的现场。首先,请允许我荣幸的介绍今天到场的各位嘉宾,他们是:

让我们再一次用掌声欢迎他们的到来!

B:下面我宣布,中国海洋大学经济学院2012年《青春馥郁·精彩华章》迎新晚会

ABCD:现在开始

A:首先请欣赏由研究生学长孙金彪为我们带来的歌曲《宣言》。

2、相声《大学要好学》

C:咱们学校有一句非常有名的话,叫做:学在海大。来到了大学,想必大家都是奔着一个求学之梦而来的。

D:对,今天就有两位同学来到了现场,咱们就看看他们,是怎么学习的。C:下面请欣赏相声《做人要好学》。表演者:杨学龙 肖敬煦

3、民族舞

A:提到西双版纳,你会想起什么?

B:我会想起秀丽的风景,宜人的气候,充满特色的建筑……

A:对,除了这些,还有很重要的一点,就是能歌善舞的少数民族。

B:对,今天我们迎新晚会的现场就来了这么一帮美丽的少数民族姑娘,她们为大家带来了一支好看的民族舞。下面请欣赏民族舞串烧。表演者:

4、音乐剧《同桌的你》

C:在学生时代,同桌总是那个让我们又爱又恨的人,但同桌带给我们的记忆,却是我们漫长的求学生涯里最亲切的。

D:对呀,每个人的同桌都不尽相同,但是他却精彩了你的青春,丰富了你的年华。接下来就请欣赏音乐剧《同桌的你》。表演者:

5、研究生T台秀

A:时尚一直是我们大学生朋友们追逐的热点,我们喜爱时尚,钟情时尚带给我们的享受。

B:今天,我们的研究生学姐们,将时尚和环保结合了起来,为大家带来一场独特的视觉盛宴。

A:下面请欣赏T台秀《》 表演者

6、老师节目

C:今天呀有很多老师也坐在台下,接下来我们请老师与同学们一起来表演节目好不好!?(众:好!)

D:那现在就有请我们的老师为我们一展歌喉吧,有请__________为我们带来_____________

7、凳子舞

A:作为学生的我们,对凳子再熟悉不过了,它们陪伴我们,走过了一个个难忘的时刻。

B:对,不过接下来这个舞蹈啊,可是颠覆了我们对于凳子的记忆。12级的美女们将用凳子为我们带来一段激情四溢的凳子舞。

A:下面请欣赏舞蹈《凳子舞》,表演者:

8、歌曲串烧

(单人)下面请欣赏歌曲串烧:

9、话剧《新生入学那些事》

C:哎,XX啊,你还记得你前几天刚入学的状态么?

B:记得啊,刚来的时候心情是相当的复杂,跟一群还不甚熟悉的同学们住在一起,既有对过去生活的怀念,也有对新的生活的向往。

C:是吗?那今天,我们就和12级的新同学一起回顾一下咱们新生入学那些事。B:请欣赏话剧,《新生入学那些事》 表演者

10、朗诵《青春·中国》

A:中国这两个字,是我们共同热爱,并为之奋斗着的。

B:中国的今天是旧人用鲜血铸就的。中国的未来是需要我们用青春和我们的爱国之心去渲染的。

A:下面请欣赏诗歌朗诵《青春,中国》。朗诵者:

11、教官节目

C:同学们,军训刚刚结束,大家一定对跟大家一起艰苦训练了十四天的教官们充满着思念吧?

D:今天,我们把教官们也请到了我们的演出现场。(微顿)掌声欢迎教官们带来的节目,《》。

12、乐器合奏《茉莉花》、《Rolling in the deep》

A:有一首经典的老歌,在我们童年的记忆中不停的回响,B:有一首劲爆的新歌,在我们身边的大街小巷不停传唱。

A:它们都带给我们不同的享受,带给我们不同的回忆。

B:请欣赏乐器合奏《茉莉花》《rolling in the deep》

13、现代舞《get in new time》

C:当军训的阅兵仪式结束的时候,你是否觉得自己经历了一场蜕变。

D:当你踏入大学校门的时候,你是否觉得自己开始一段新的征程。

C:今晚,美丽的学姐们,将以一支舞蹈,向你们诠释这新的开始。

D:请欣赏舞蹈《get in new time》

14、民歌独唱

(单人)下面请欣赏民歌独唱《》,表演者:

15、研究生小品《超级研究生》

A:感谢咱们的教官,为我们带来这么精彩的表演。让我们再一次用热烈的掌声表示对他们的感谢!

B:接下来,让我们一同走进研究生学长学姐的生活,感受一下他们的乐趣!让我们掌声欢迎XXX等为我们带来小品《超级研究生》

16、体育串烧

C:XX啊,奥运会不是刚结束吗,你最喜欢什么体育项目啊?

D:我喜欢……

C:看来你对体育还是很热爱的啊。我想在座的各位肯定都有自己喜欢的体育项目。咱们的迎新晚会,可不局限于文艺。今天还有这么一帮可爱的同学,为我们带来了新颖的体育串烧,满足我们的体育爱好者们。

D:下面请欣赏体育表演串烧,表演者:

17、江南style

A:快乐的时光总是短暂的,看过这么多精彩的演出后,我们的晚会已经接近尾声了。

B:下面,就让我们在群舞表演《江南style》中,点燃我们的快乐,点燃今天这个美好的夜晚!

结束语

A:今夜,我们欢聚一堂,激情满怀

B:今夜,我们载歌载舞,心潮澎湃

C:今夜,我们让青春尽情的绽放

D:今夜,我们让梦想自由的飞翔

A:告别今夜,我们将迎来明朝东升的旭日

B:告别今夜,我们将走进崭新的收获季节

C:飞扬的歌声,吟唱难忘的岁月,凝聚心头不变的情节

D:熟悉的旋律,演绎时代的激越,回荡情怀不改的真切

A:下面我宣布,中国海洋大学经济学院2012年《青春馥郁·精彩华章》迎新晚会

ABCD:到此结束

A:祝大家

ABCD:晚安

第四篇:贵州大学动物科学学院

贵 州 大 学 动 物 科 学 学 院

跟踪用人单位对毕业生工作情况调查表

为了更好的服务用人单位,培养更加适应社会需求的高级专门人才,提高办学水平。我院特组织了此次毕业生跟踪调查活动。详细了解我院毕业生在贵单位(公司)的情况,特请贵单位给予大力支持。

一、贵单位的基本情况:

单位名称:

单位性质:机关、科研设计单位、高等学校、其他教学单位、其他事业单位、金融单位、国有企业、三资企业、其他企业、部队。

单位所属行业:

单位地址:

邮政编码:

联 系 人:

联系电话:

二、贵单位近三年到我院招聘毕业生的情况:

近三年到我院招聘人;本科人,研究生人。其中动物科学专业人,动物医学专业人,水产养殖专业人。

三、贵单位对我院毕业生的总体评价:

(1)、毕业生的思想道德品质(满意、基本满意、一般、不满意)

(2)、毕业生对环境的适应能力(满意、基本满意、一般、不满意)

(3)、毕业生的团队合作精神(满意、基本满意、一般、不满意)

(4)、毕业生的专业知识结构(满意、基本满意、一般、不满意)

(5)、毕业生的敬业精神(满意、基本满意、一般、不满意)

(6)、毕业生在工作中解决实际问题的能力(满意、基本满意、一般、不满意)

(7)、毕业生的学习和创新能力(满意、基本满意、一般、不满意)

(8)、毕业生对单位的贡献(大、较大、一般、差)

(9)、毕业生的组织协调能力(满意、基本满意、一般、不满意)1

(10)、毕业生的动手能力和吃苦精神(满意、基本满意、一般、不满意)

(11)、毕业生的再学习能力(满意、基本满意、一般、不满意)

(12)、贵单位总体上对我院毕业生感到(满意、基本满意、一般、不满意)

(13)、贵单位是如何了解到我院的(网络、社会宣传、同事介绍)

(14)、我院毕业生突出的特点:

四、贵单位选择毕业生的主要依据:

1、学习成绩;

2、求职态度;

3、所学专业;

4、学历层次;

5、性格因素;

6、社会活动能力;

7、学生党员;

8、获奖情况;

9、家庭背景;

10、学校推荐;

11、求职单位职工推荐;

12、仪态仪表;

13、学生干部;

14、其他

五、贵单位共有我院历届毕业生人,贵单位认为我院在贵单位的所有毕业生在实际工作中优秀的占%,称职%,不称职的占%。

六、贵单位认为我院的毕业生与同类院校毕业生相比。(优秀、较好、较差)

七、我院毕业生在贵单位是否安心工作情况。(是、否)

八、贵单位是否还计划接收我院毕业生。(是、否)

九、贵单位近三年的毕业生的需求情况。(专业、人数)

十、贵单位对我院毕业生在培养工作及培养方向的意见和建议,贵单位认为我院在毕业生哪些方面的能力还须加强培养。

签章

年月日2

第五篇:2013年中国海洋大学企业管理最新考研资料

中国海洋大学企业管理专业的一些相关资料初试101思想政治理论②201英语一③303数学三④862专业综合课A

复试企业管理学

初试所用课本1.《管理学》(第三版),杨文士,中国人民大学出版社,2009;20元

2.《企业战略管理》,徐二明,中国经济出版社,2007;14元

3.《市场营销学通论》,郭国庆,中国人民大学出版社,2007。:18元

《企业战略管理》这本书没有07年的 只有02年的。应该是官方网站出现错误了。所以大家安心用02年的就行了。以上课本价格是在买资料的基础上的,如单买课本需要每本加五元,快递费5元。

联系qq 264022738

1【资料介绍】

考试科目:862专业综合课A

一、历年真题、答案

1、历年真题01-12年12套。主要用来研究考研的考点,重点和出题思路,为考研必备参考资料。复印版,50.002、企业管理专业考研真题答案解析一本,包括01-09年9套真题答案解析。此答案为本校本专业专业课138分高分考生整理,此资料有利于考生检验复习效果,分析解题思路,把握得分点和解题步骤。打印版,70.00注:本校往年考试代码均有不同。

二、考研复习指南、辅导班讲义

1、《管理学》强化阶段讲义(精华)一本,2011年考研辅导班讲义,打印版,47页,50.002、《企业战略管理》复习指南一本(精华),由学文优秀师资团队、本校优秀师资及本校本专业前三名优秀研究生共同研究编制,对考点和重点进行全方位的剖析。本资料条理清晰,考点和重点明确,被考生亲切的称为“学文考研指南针”。打印版,42页,50.003、《市场营销学通论》复习指南一本(精华),由学文优秀师资团队、本校优秀师资及本校本专业前三名优秀研究生共同研究编制,对考点和重点进行全方位的剖析。本资料条理清晰,考点和重点明确,被考生亲切的称为“学文考研指南针”。打印版,46页,50.00

三、考研题库,期末试题

1、管理学习题库1本,分别汇总了判断题、选择题、简单题、案例题等相关重点习题及答案。共56页,打印版,50.002、管理学期末试题06-09年4套、市场营销学期末试题06-09年4套,共8套。为本校本科阶段的期末试题,打印版,无答案。40.00,订购全套赠送此项

原价260.本周搞团购 180 欲购从速

联系qq 264022738

1另外有新东方公共课视频

1、单科全程班:30元,两科全程班:60 元,三科全程班:90 元。买全套专业课资料客享受八折优惠。全程班包括:基础班、强化班、冲刺班、点睛班。就是一次性交钱,给你全部课

程,以后不会再交钱。不单独卖基础班或强化班等。现在新东方官网基础班课程已更新完,现在只给你13年基础班的,以后更新会通知你,把课程再补发给你。注意:团购活动已经结束,所以不要再讲价了哦!

2、买13年课程还赠送对应的12年新东方全程班课程,例如:买13年英语全程班课程,赠送12年的新东方英语全程班课程。

3、不议价的哦。你可以查看官方课程,然后对比价格、对比质量。考过研的同学基本都知道我们这种课程,你可以咨询考下考研的学长学姐。对于价格,了解这种课程的人有的嫌价高,不了解的人嫌价低不敢买,怕受骗,真有点抓狂!不了解的同学百度下自己研究下,这种课程已经在市场上发展好几年了!

联系qq 2640227381

下载数学科学学院 中国海洋大学word格式文档
下载数学科学学院 中国海洋大学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年中国海洋大学MTI英语翻译硕士

    一、 CBD FTA NPL FOB ISO NGO HSK Caller ID Game Theory civil liability Perfect capacity for act Broad Band Salary Design Break pane Law (就记得13个) 污水处理 同......

    浅论中国海洋战略

    浅论中国海洋战略 摘要:海洋曾经是人类的禁区,如今越来越成为人类的希望,也越来越成为世界各国争夺的目标。当今世界强国无一例外都是海洋大国,海洋发展战略在国家整体发展战略......

    2018年曼彻斯特大学计算机科学学院

    WWW.SLL.CN 曼彻斯特大学(The University of Manchester)始建于1824年,是位于英国第二繁华城市曼彻斯特的一所世界三十强顶尖名校,英国著名的六所“红砖大学”之一,英国“常春藤......

    中国地质大学(武汉)地球科学学院

    中国地质大学(武汉)地球科学学院 院字〔2009〕1号关于调整非学历研究生课酬与指导费的规定 为促进学院非学历研究生教育发展,规范课酬发放,经学院党政联席会议研究决定,对课酬......

    2013年中国海洋大学自主招生面试题及解答

    2013中国海洋大学自主招生面试题及试题分析 一、中文试题: 1.如果你是人大代表,你将会提什么提案? 2.大学生携带电脑看法。 3.善意的谎言是否是正确的? 4.因为星球在运动,所以看......

    2018年中国海洋大学艺术类招生简章(音乐表演)

    官网:www.xiexiebang.com 2018年中国海洋大学艺术类招生简章(音乐表演) 中国海洋大学是具有九十余年办学历史的教育部直属重点综合性大学,是国家“211工程”和“985工程”重点......

    数学与信息科学学院学术报告

    数学与信息科学学院学术报告 (20120529-1) 题目:连续线性奇异系统的半稳定性 报告人:吴保卫(陕西师范大学教授、博士生导师) 时间:2012年5月29日(星期二)上午9:30 地点:先骕楼数信......

    数学科学学院行政述职报告

    数学科学学院行政述职报告 自01年4月学校领导班子成立以来,院行政在校党委、行政的领导下,在院总支的大力支持下,根据任职提出的工作目标,狠抓落实,成效显著。学院在行政制度建设......