第一篇:初中数学教学论文浅谈数形结合思想在函数教学中的渗透解读
浅谈数形结合思想在函数教学中的渗透
摘要:数形结合是数学教学中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
关键词:渗透数形结合思想以形助数以数解形 正文: 著名数学家华罗庚认为“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”。
数形结合是指把代数式的精确刻画与几何图形的直观描述结合起来,使代数的问题几何化或几何的问题代数化,从而将抽象的思维与形象思维结合的一种思想方法,主要表现在用代数的方法解决几何问题,或用几何的方法解决代数问题,以及代数与几何的综合问题解析。数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
数形结合方法是解决数学问题尤其是函数问题的一种重要方法,特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现。用图形可以使抽象的数量关系变得直观形象;而一些图形的性质,又可以赋予其数量意义,通过数量的运算使问题得到解决。
一、利用数形结合思想,基于图像进行函数性质研究。
函数与其图像的数形结合浑然一体.一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助.因此.函数及其图像内容突显了数形结合的思想方法.教学时我们应注重数形结合思想方法的渗透,这样会收到事半功倍的效果.如学习二次函数的性质时,采用如下数形结合的思想,使抽象的性质具体化,直观化,形象化。
解析式y=ax2y=ax2+k y=a(x-h2y=a(x-h2+k y=ax2+bx+c
图象
开口方向 a >0时,开口向上,(实线部分;a<0时,开口向下,(虚线部分 顶点(0,0(0,k(h ,0(h ,k(a b 2-, a b a c 442a <0时 y 最大=0 a <0时 y 最大=k a <0时 y 最大=0 a <0时 y 最大=k a <0时 y 最大= a b a c 442-与x 轴交于A B、两点,与y 轴交于点C ,连接B C A C、.(1求A B 和O C 的长;(2点E 从点A 出发,沿x 轴向点B 运动(点E 与点A B、不重合,过点E 作直线l平行B C ,交
A C 于点D.设A E 的长为m ,AD E △的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值
范围;
(3在(2的条件下,连接C E ,求C D E △面积的最大值;此时,求出以点E 为圆心,与B C 相
h x 3 3 2 2 1 1 4 1-1-2-O y 切的圆的面积(结果保留π.思路:(1由形转化为数:求二次函数与x轴y轴交点坐标即可求出AB和 OC的长。
(2由形DE∥BC,得△ADE∽△ACB,转化为数:面积比等于相似比的 M平方,从而可解答本题。
(3通过添加辅助线,可得△BEM∽△BCO,再把形转化为数:可求EM 即圆的半径。从而容易求出圆的面积。
数和形是初中数学内容的两大板块和两条主线。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象
思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
参考文献: 任百花:初中数学思想方法教学探究 赵章道:试论数形结合思想在教学中的渗透 江国安:初中数学综合题的教学探索
第二篇:数形结合思想在小学数学教学中的渗透2
数形结合思想在小学数学教学中的渗透
数形结合思想就是其中一种重要的思想。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。在低年级教学中学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。
小学应用题中常常涉及到“求一个数的几倍是多少”,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化称自己的东西?我认为用图形演示的方法是最简单又最有效的方法。就利用书上的主题图。在第一行排出3根一组的红色小棒,再在第二行排出3根一组的绿色的小棒,第二行一共排4组绿色小棒。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:绿色小棒与红色小木棒比较,红色小棒是1个3根,绿色小棒是4个3根;把一个3根当作一份,则红色小棒是1份,而绿色小棒就有4份。用数学语言:绿色小棒与红色小棒比,把红色小棒当作1倍,绿色小棒的根数就是红色小棒的4倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。
在利用实物创设问题情境时,教师要特别注意数与形的有机结合,以问题引导学生观察,不仅要用诱导性问题,更要用一些启发性问题,激疑性问题,让学生在观察中发现问题,自己提出问题和解决问题。教师除了提供充分的形象感性材料让学生形成鲜明的表象外,还必须在此基础上,引导学生分析和比较,及时抽象出概念的本质属性,使学生在主动参与中完成概念的建构。
在实际教学中,数和形往往是紧密结合在一起,相互并存的。因此,在实际教学中教师要把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,使数与形相得益彰。
用形的直观来分析数据中的关系,体现了数形结合思想方法的优点,在数学整个发展过程中,人们也总是利用数形结合或数形的转化来研究数学问题,可见数形结合思想的重要性。
第三篇:数形结合思想在小学数学教学中的渗透重点
数形结合思想在小学数学教学中的渗透(河北省唐县高昌镇淑吕小学赵敬敏
日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。只有这样,才能使学生真正感受到数学的价值和力量。小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
数形结合思想是一种重要的数学思想。数形结合就是通过数(数量关系与形(空间形式的相互转化、互相利用来解决数学问题的一种思想方法。它既是一个重要的数学思想,又是一种常用的数学方法。数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。著名数学家华罗庚说过“数缺形时少直观、形少数时难入微”。有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、在理解算理过程中渗透数形结合思想。
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”
根据教学内容的不同,引导学生理解算理的策略也是不同的,笔者认为数形结合是帮助学生理解算理的一种很好的方式。
(一“分数乘分数”教学片段
课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面,提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几? 在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。后进生受到启发后修改自己的图形, 更好地理解1/5×1/4这个算式所表示的意义。第三,全班点评,请一些画得好的同学去展示、交流。也请一些画得不对的同学谈谈自己的问题以及注意事项。
这样让学生亲身经历、体验
“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。
(二“有余数除法”教学片段
课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。
生:9÷4 师:结合图我们能说出这题除法算式的商吗? 生:2,可是两个搭完以后还有1根小棒多出来。师反馈板书:9÷4=2……1,讲解算理。
师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒? ……
通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻。
二、在教学新知中渗透数形结合思想。
在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。
(一“植树问题”教学片段
模拟植树,得出线上植树的三种情况。师:“___”代表一段路,用“ / ”代表一棵树,画“ /
”就表示种了一棵树。请在这段路上种上四棵树,想想、做做,你能有几种种法? 学生操作,独立完成后,在小组里交流说说你是怎么种的? 师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板: ① _________两端都种
② ____________ 或 ____________ 一端栽种 ③ _______________两端都不种
师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。
以上片段教师利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
(二连除应用题教学片段
课一始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。
30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3份。30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。30÷(3×2,学生画了右图:先平均分成6份,再表示出其中的1份。
以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。
三、在数学练习题中挖掘数形结合思想。
运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。
(一三角形面积计算练习
民医院包扎用的三角巾是底和高各为9分米的等腰三角形。现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块? 有些学生列出了算式:72×18÷(9×9÷2,但有些学生根据题意画出了示意图, 列出72÷9×(18÷9×2、72×18÷(9×9×2和72÷9×2×(18÷9等几种算式。
在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生的解题思路,由不会解答到用
多种方法解答,学生变聪明了。(二百分数分数应用题练习
参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。问后来又加入男生多少人? 先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人。
从这题不难看出:“数”、“形”互译的过程。既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。
总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。最关键一点,能使抽象枯燥的数学知识,形象化具体化,使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。
第四篇:浅议数形结合思想在初中数学教学中的运用
龙源期刊网 http://.cn
浅议数形结合思想在初中数学教学中的运用 作者:刘玲
来源:《语数外学习·中旬》2013年第01期
数学作为基础性的应用学科,在长期的实践和探究问题过程,逐步形成了较为全面的解题策略和思想。数形结合思想作为数学学科问题解答的四种最常用的思想方法之一,在实际问题有着广泛的应用。教育学认为,数形结合,就是抓住“数”与“形”的特点,进行有效融合,互为补充,也就是将抽象的数学语言与直观的几何图形进行有效融合,通过“数”与“形”的有效转化进行问题解答的方法策略。我国著名的数学家华罗庚先生曾经用“数与形是两依椅,焉能分作两边飞,数缺形时少直观,形少数时难入微”的经典语言,深刻阐述了数形结合思想的内涵真谛。
一、利用数形结合思想解答函数方程问题
这是一道关于平行四边形的数学问题案例。学生解答“BD与EF互相平分”的过程中,如果直接借助于平行四边形的性质,很难求出“BD与EF互相平分”的结论。因此,在解答中学生需要运用数形结合思想,借助数学问题所给予的条件,再通过对图形的分析,从出采用“构建法”,通过添加“连接DE、BF”的辅助线,然后借助平行四边形性质,采用等量代换的形式,求得AE=CF,EB=DF,从而证得四边形DEBF是平行四边形,求得“BD与EF互相平分”这一结论。
三、利用数形结合思想解决不等式问题
以上所述,是本人在教学实践中对运用数形结合思想的一点心得和体会,在此抛砖引玉,希望同仁共同探究,为提升学生解题能力作出更大贡献。
第五篇:数形结合思想在小学数学教学中的渗透
数形结合思想在小学数学教学中的渗透
数形结合既是解决问题的一种方法、又是一种策略,更是一种思想。数形结合思想就是依据数与形之间相互对应的关系,将数和形互相转化,通过数形结合解决问题的一种思想。数形结合形式可以数化形和以形转数,或借助“形”探究有关“数”的问题,或倚托“数”研究相关“形”的问题,数形之间有机结合,相辅相成。数形结合的价值就在于将形象思维与抽象思维有效转换,使得问题形象化、简单化,从而实现解决问题的高效性。在平时教学中,我尤为关注数形结合在小学数学教学中的渗透研究,培养学生数形结合思想。
一、数因形而直观,感知数形结合思想价值
数学思想是关于数学内容和方法的本质认知,是在具体内容中的进一步感知中抽象与概括,是数学学习迁移的基点,是数学知识获取的本质内核。数形结合对于分析和解决问题有着重要的价值,我们要在实际教学中学习运用数形结合的方法解决实际问题,在此过程中提炼数学结合的策略,感知数学结合思想的价值。
数形结合体现在于将数学语言转化为直观图形,以使形象鲜明,将问题显性化,让问题的解决来得更直观简明。例如,在教学苏教版五年级上册中的《负数的认识》时,对于学生来讲“负数”是一种新的数学概念,为了使学生更为直观形象的认识负数,助力理解负数所表达的深刻涵义,在教学中,我重点开展数轴教学。我将例题情境化:“小林和小华分别住在学校的两侧,他们两人的家与学校在同一条直线上,两人的家距离学校各2千米。你能根据题意画出示意图吗?”具有一定分析理解能力的五年级学生很快画出了示意图,并在示意图中标明数据。于是我继续启发:“小林的家所在方向正好和小华家相反,我们能否用前面刚刚认识的一个数表示?”机灵的孩子迅速联想到刚认识的“负数”,于是回答:“我们可以用-2千米来表示小林家到学校的距离,也就是说小林家距离学校2千米我们可以记作-2千米。”为了使学生更进一步认识负数,我又让学生将示意图转画为直线,在直线上选取一点表示学校,用“0”表示,然后以0为基点,在0刻度的两边画出等距离单位刻度,分别用正数和负数表示。我接着追问:“如果以学校为起点,小华向东走4千米,小林向西走4千米,分别怎样记数表示。”“我们可以分别记作+4千米和-4千米。”学生的反应敏捷。学生在直观简洁的数轴上有效地理解了负数。
我们在教学小数的意义、分数的意义时都可以将枯燥难懂的小数和分数的意义认识依靠数轴,把数转化为形,将数和形完美结合,让抽象化的数量关系更为形象直观,帮助学生有效学习,感知数形结合思想的价值。
二、形因数而简练,感受数形结合思想魅力
图形虽有直观优势,但有时复杂的图形中的数量关系也是较为繁琐的,这时就得借助简约的数学语言或者表达式来言表,让学生精确地把握相关形的特征。形因数而简练,学生更能感受到数形结合的魅力。
例如,在教学苏教版四年级下册第一单元《图形的平移》后,我为了开拓学生思维,给学生出了这样一道题:图
一、在一个等边三角形内画出1个等边三角形;图
2、在一个稍大一点的等边三角形内画出3个等边三角形;图
3、在一个再大一点的等边三角形内画出6个等边三角形;依此类推,第10个等边三角形内应该有多少个小的等边三角形?我让学生观察后独立解答,但是只有3个学生解答出来,而且其中1个学生是用画图的方法花了很长时间才得出答案,其他学生都无解。看来,此刻是发挥数的功效的时候了,我问那个画图的学生感觉怎么样?他说很麻烦。于是,我引导大家观察图形,寻找规律,在我的引导下孩子们发现第一个图形内有1个等边三角形,图2内有1+2=3(个)等边三角形,图3内有1+2+3=6(个),我问道:“图4中应该有几个等边三角形?”发现规律的孩子知道如何通过列式计算出答案:“1+2+3+4=10(个)”,“现在你们有更好的办法解答这个问题吗?”“我们可以通过计算的办法算出第10个图形内一共有:1+2+3+4+5+6+7+8+9+10=55(个)。”“计算和画图哪种方法更好?”“列式计算太方便了。”孩子们毫不犹豫地说出真心话,这道题着实让学生领略到数形结合的魅力。
再如在几何图形教学中,有许多问题的解决凭直观难以做出决断,需要以形转数,依靠数的计算来快捷解决,发挥数的简洁干练特性,彰显数学结合思想的魅力。
三、数形交融合璧,感悟数形结合思想真谛
数和形的紧密联系就像唇齿相依的关系,形影不离,数学结合思想实际上是一种转化思想,贯穿整个数学领域。数形结合思想要在要在反复的实际运用过程中概括提炼,逐渐感悟其思想真谛,指引着数学问题解决的方向,催促着数学的发展。
让孩子们在学习应用过程中反复实践,将数形交融合璧,体验享受到数形结合方法的优势,感悟到数形结合思想的真谛。
具有丰富内涵的数形思想是数学的灵魂之一,在小学数学教学中,我们要当有心人,有意识的渗透数形结合思想,提高学生数学能力,提升数学品质。
(作者单位:江苏省苏州市吴江经济技术开发区花港迎春小学)