2013年高考数学重点难点突破运用向量法解题

时间:2019-05-14 11:33:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013年高考数学重点难点突破运用向量法解题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013年高考数学重点难点突破运用向量法解题》。

第一篇:2013年高考数学重点难点突破运用向量法解题

2013年新课标高考数学之运用向量法解题

平面向量是新课标教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场

(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究

[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当CDCC1的值为多少时,能使A1C⊥平面C1BD?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD=a, CB=b,CC1=c,依题意,|a|=|b|,CD、CB、CC1中两两所成夹角为θ,于是BDCDDB=a-b,CC1BD=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:若使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,由CA1C1D(CAAA1)(CDCC1)

=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得 当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴CDCC1=1时,A1C⊥平面C1BD.I [例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求BN的长;

(2)求cos的值;

(3)求证:A1B⊥C1M.命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属

★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴|BN|=(10)2(01)2(10)23.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴BA1=(1,1,2),CB1=(0,1,2)BA1CB1=1×0+(-1)×1+2×2=3 |BA1|=(10)2(01)2(20)2|CB1|(00)(10)(20)BA1CB1|BC1||CB1|2226 5 3653010cosBA1,CB1.(3)证明:依题意得:C1(0,0,2),M(,2)

22C1M(11,0),A1B(1,1,2)2212112(2)00,A1BC1M,11∴A1BC1M(1)∴A1B⊥C1M.●锦囊妙计

1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的

II 各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:

(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?

(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?

(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?

(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?

●歼灭难点训练

一、选择题

1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为()A.正方形 C.菱形

B.矩形

D.平行四边形

1542.(★★★★)已知△ABC中,AB=a,a·b<0,S△ABC=AC=b,A.30° B.-150°

C.150° ,|a|=3,|b|=5,则a与b的夹角是()

D.30°或150°

二、填空题

3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题

5.(★★★★★)如图,在△ABC中,设AB=a,AC =b,AP =c, AD=λa,(0<λ<1),AE =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使MPMN,PMPN,NMNP成公差小于零的等差数列.(1)点P的轨迹是什么曲线?

(2)若点P坐标为(x0,y0),Q为PM与PN的夹角,求tanθ.III 8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;

(3)设M是EG和FH的交点,求证:对空间任一点O,有OM

参考答案

难点磁场

解:(1)点M的坐标为xM=1120;yM72299,M(0,)2214(OAOBOCOD).|AM|(50)(1292)22212.(2)|AB|(51)(17)2210,|AC|(51)(12)225

D点分BC的比为2.∴xD=1211213,yD72212113

|AD|(513)(12113)21432.(3)∠ABC是BA与BC的夹角,而BA=(6,8),BC=(2,-5).cosABCBABC|BA||BC|62(8)(5)6(8)2(5)22225210292629145

歼灭难点训练

一、1.解析:AB =(1,2),DC =(1,2),∴AB=DC,∴AB∥DC,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又|AB|=5,AC =(5,3),|AC|=34,∴|AB|≠|AC},∴ABCD不是菱形,更不是正方形;又BC=(4,1),∴1·4+2·1=6≠0,∴AB不垂直于BC,∴ABCD也不是矩形,故选D.答案:D 2.解析:∵ 15412·3·5sinα得sinα=

12,则α=30°或α=150°.IV 又∵a·b<0,∴α=150°.答案:C

二、3.(2,0)4.13 cm

三、5.解:∵BP与BE共线,∴BP=mBE=m(AE-AB)=m(μb-a), ∴AP=AB+BP=a+m(μb-a)=(1-m)a+mμb

又CP与CD共线,∴CP=nCD=n(AD-AC)=n(λa-b), ∴AP=AC+CP=b+n(λa-b)=nλa+(1-n)b 由①②,得(1-m)a+μmb=λna+(1-n)b.∵a与b不共线,∴解方程组③得:m=1manm10

即m1nnm1011,n11

1③

代入①式得c=(1-m)a+mμb=

1[λ(1-μ)a+μ(1-λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,2a),C1(-

a32a,a2,2a).32(2)取A1B1的中点M,于是有M(0,,2a),连AM,MC1,有MC1=(-

2a,0,0), 且AB=(0,a,0),AA1=(0,02a)由于MC1·AB=0,MC1·AA1=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵AC1=(32a,a2a,22a),AM(0,2a2a2,2a),AC1AM04942a

2而|AC1|34a214a2a23a,|AM|a42a32a

V 9cosAC1,AM4a23a32a32

所以AC1与AM所成的角,即AC1与侧面ABB1A1所成的角为30°.7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,PM =-MP=(-1-x,-y),PNNP =(1-x,-y),MN =-NM=(2,0),∴MP·MN=2(1+x), PM·PN=x2+y2-1,NMNP =2(1-x).于是,MPMN,PMPN,NMNP是公差小于零的等差数列,等价于

122x2y3xy1[2(1x)2(1x)] 即 2x02(1x)2(1x)0所以,点P的轨迹是以原点为圆心,3为半径的右半圆.(2)点P的坐标为(x0,y0)PMPNx0y012,|PM||PN|(42x0)(42x0)24x0PMPN|PM|PN0x03,12222(1x)y022(1x0)y0222cos14x02

3cos1,0,sin1cos114x02,tansincos3x02|y0|

8.证明:(1)连结BG,则EGEBBGEB12(BCBD)EBBFEHEFEH

12BD=EH)由共面向量定理的推论知:E、F、G、H四点共面,(其中(2)因为EHAHAE12AD12AB12(ADAB)12BD.所以EH∥BD,又EH面EFGH,BD面EFGH 所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG

VI 由(2)知EH被M平分,所以

OM141212BD,同理FG12BD,所以EHFG,EHFG,所以EG、FH交于一点M且(OEOG)12OE12OG1111[(OAOB)][(OCOD)]2222.(OAOBOCOD).VII

第二篇:高考数学难点突破难点—— 运用向量法解题

难点3 运用向量法解题

平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场

(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究

[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当CD的值为多少时,能使A1C⊥平面C1BD?请给出证明.CC1命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD=a, CB=b,CC1=c,依题意,|a|=|b|,CD、CB、CC1中两两所成夹角为θ,于是BDCDDB=a-b,CC1BD=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:若使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,由CA1C1D(CAAA1)(CDCC1)

=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得 当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴CD=1时,A1C⊥平面C1BD.CC1[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求BN的长;

I(2)求cos的值;

(3)求证:A1B⊥C1M.命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴|BN|=(10)2(01)2(10)23.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴BA1=(1,1,2),CB1=(0,1,2)BA1CB1=1×0+(-1)×1+2×2=3 |BA1|=(10)2(01)2(20)26

|CB1|(00)2(10)2(20)25 cosBA1,CB1BA1CB1|BC1||CB1|36530.10(3)证明:依题意得:C1(0,0,2),M(,2)

112211C1M(,0),A1B(1,1,2)

2211∴A1BC1M(1)1(2)00,A1BC1M,22∴A1B⊥C1M.●锦囊妙计

1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.II 3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?

(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?

(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?

(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练

一、选择题

1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为()A.正方形

B.矩形 C.菱形

D.平行四边形

2.(★★★★)已知△ABC中,AB=a,a·b<0,S△ABC=AC=b,15,|a|=3,|b|=5,则a与b的夹角是()4A.30°

B.-150°

C.150°

D.30°或150°

二、填空题

3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题

5.(★★★★★)如图,在△ABC中,设AB=a,AC =b,AP =c, AD=λa,(0<λ<1),AE =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使MPMN,PMPN,NMNP成公差小于零的等差数列.(1)点P的轨迹是什么曲线?

(2)若点P坐标为(x0,y0),Q为PM与PN的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;

III(3)设M是EG和FH的交点,求证:对空间任一点O,有OM 参考答案

难点磁场

解:(1)点M的坐标为xM=

1(OAOBOCOD).41172990;yM,M(0,)2222221.29|AM|(50)2(1)22(2)|AB|(51)2(17)210,|AC|(51)2(12)25

D点分BC的比为2.∴xD=121172211,yD

12312311114|AD|(5)2(1)22.333(3)∠ABC是BA与BC的夹角,而BA=(6,8),BC=(2,-5).cosABCBABC|BA||BC|62(8)(5)62(8)222(5)25210292629 145歼灭难点训练

一、1.解析:AB =(1,2),DC =(1,2),∴AB=DC,∴AB∥DC,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又|AB|=5,AC =(5,3),|AC|=34,∴|AB|≠|AC},∴ABCD不是菱形,更不是正方形;又BC=(4,1),∴1·4+2·1=6≠0,∴AB不垂直于BC,∴ABCD也不是矩形,故选D.答案:D 2.解析:∵1511·3·5sinα得sinα=,则α=30°或α=150°.242又∵a·b<0,∴α=150°.答案:C

二、3.(2,0)4.13 cm

IV

三、5.解:∵BP与BE共线,∴BP=mBE=m(AE-AB)=m(μb-a), ∴AP=AB+BP=a+m(μb-a)=(1-m)a+mμb

又CP与CD共线,∴CP=nCD=n(AD-AC)=n(λa-b), ∴AP=AC+CP=b+n(λa-b)=nλa+(1-n)b 由①②,得(1-m)a+μmb=λna+(1-n)b.②

1manm10∵a与b不共线,∴

即m1nnm10解方程组③得:m=

111,n代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-111λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,2a),C1(-

3aa,222a).3a,0,0), 2(2)取A1B1的中点M,于是有M(0,,2a),连AM,MC1,有MC1=(-且AB=(0,a,0),AA1=(0,02a)

a2由于MC1·AB=0,MC1·AA1=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵AC1=(3aaa,2a),AM(0,2a), 222a29AC1AM02a2a

443212a232而|AC1|aa2a3a,|AM|2aa

444292a34 323aa2cosAC1,AM所以AC1与AM所成的角,即AC1与侧面ABB1A1所成的角为30°.V 7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,PM =-MP=(-1-x,-y),PNNP =(1-x,-y),MN =-NM=(2,0),∴MP·MN=2(1+x), PM·PN=x2+y2-1,NMNP =2(1-x).于是,MPMN,PMPN,NMNP是公差小于零的等差数列,等价于

122x2y3xy1[2(1x)2(1x)] 即 2x02(1x)2(1x)0所以,点P的轨迹是以原点为圆心,3为半径的右半圆.(2)点P的坐标为(x0,y0)PMPNx0y012,|PM||PN|(1x)2y0(1x0)2y0(42x0)(42x0)24x0cosPMPN|PM|PN14x0222222

10x03,cos1,0,23sin1cos211sin2,tan3x|y0| 02cos4x08.证明:(1)连结BG,则EGEBBGEB(BCBD)EBBFEHEFEH 由共面向量定理的推论知:E、F、G、H四点共面,(其中(2)因为EHAHAE121BD=EH)21111ADAB(ADAB)BD.2222所以EH∥BD,又EH面EFGH,BD面EFGH

所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG 由(2)知EH被M平分,所以 11BD,同理FGBD,所以EHFG,EH22FG,所以EG、FH交于一点M且 VI OM1(OAOBOCOD).41111111(OEOG)OEOG[(OAOB)][(OCOD)]2222222.VII

第三篇:空间向量解题时数学思想的运用

龙源期刊网 http://.cn

空间向量解题时数学思想的运用

作者:胡彬

来源:《数理化学习·高一二版》2013年第08期

用空间向量来解决空间立体几何问题非常得心应手,比如证明平行、垂直以及求角、求距离等.但是,我们不能把眼光仅仅限制于这些问题的证明与求解.在运用空间向量解决问题时,也包含着许多数学思想运用于其中.一、方程思想求值

例1 已知正三棱柱ABC-A1B1C1的侧棱长为2,底面边长为1,M是BC的中点.在直线CC1上是否存在一点N,使得MN⊥AB1?若存在,请你求出它的位置;若不存在,请说明理由.

第四篇:Kuaarm高考数学难点突破 难点31 数学归纳法解题

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔

难点31 数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场

(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=

n(n1)(an2+bn+c).12●案例探究

[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.b证明:(1)设a、b、c为等比数列,a=,c=bq(q>0且q≠1)

qbnnnn1∴a+c=n+bq=b(n+qn)>2bn

qqnn

ancnacn(2)设a、b、c为等差数列,则2b=a+c猜想>()(n≥2且n∈N*)

22下面用数学归纳法证明:

a2c2ac2()①当n=2时,由2(a+c)>(a+c),∴

22akckack(), ②设n=k时成立,即

22ak1ck11(ak+1+ck+1+ak+1+ck+1)则当n=k+1时,2411>(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c)44ackacack+1>()·()=()

2221[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列.2(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.2知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,Sk=-

1应舍去,这一点往往容易被忽视.2k3111}是以{}为首项,为公差的等差数列,进而求得SnS12技巧与方法:求通项可证明{通项公式.11成等比数列,∴Sn2=an·(Sn-)(n≥2)

(*)222(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-

3212由a1=1,a2=-,S3=+a3代入(*)式得:a3=-

3315解:∵an,Sn,Sn-

(n1)1 2同理可得:a4=-,由此可推出:an= 2(n1)35(2n3)(2n1)(2)①当n=1,2,3,4时,由(*)知猜想成立.2②假设n=k(k≥2)时,ak=-成立

(2k3)(2k1)故Sk2=-21·(Sk-)(2k3)(2k1)2∴(2k-3)(2k-1)Sk2+2Sk-1=0 11(舍),Sk2k12k311由Sk+12=ak+1·(Sk+1-),得(Sk+ak+1)2=ak+1(ak+1+Sk-)

22∴Sk=

2ak1ak11122aaak1k1k12k12k12(2k1)2

2ak1,即nk1命题也成立.[2(k1)3][2(k1)1]1(n1)由①②知,an=对一切n∈N成立.2(n2)(2n3)(2n1)(3)由(2)得数列前n项和Sn=

1,∴S=limSn=0.n2n1●锦囊妙记

(1)数学归纳法的基本形式

设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30

B.26

C.36

D.6 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()A.n=1

B.n=2

C.n=3

D.n=4

二、填空题

1311511173.(★★★★★)观察下列式子:1,122,1222…则可归

223423234纳出_________.4.(★★★★)已知a1=an=_________.三、解答题

5.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:

3an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想

an3211113.n1n22n247.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+

1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试bn比较Sn与1logabn+1的大小,并证明你的结论.38.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,又如果limS2n<3,求q的取值范围.n

参考答案

难点磁场

14(abc)6a31b11 解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有22(4a2bc)2c10709a3bc于是,对n=1,2,3下面等式成立

1·22+2·32+…+n(n+1)2=

n(n1)(3n211n10)12记Sn=1·22+2·32+…+n(n+1)2

k(k1)(3k2+11k+10)12k(k1)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2

2(k1)(k2)=(3k2+5k+12k+24)12(k1)(k2)=[3(k+1)2+11(k+1)+10]

12设n=k时上式成立,即Sk=也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k

-=(4k+20)·3k=36(k+5)·3k2(k≥2)f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C 2.解析:由题意知n≥3,∴应验证n=3.答案:C

二、3.解析:1131211即1

11222(11)2111511221,即1

2122323(11)2(21)21112n1*(n∈N)222n123(n1)归纳为1答案:11112n1(n∈N*)222n123(n1)13a1233同理,4.解析:a2a1317253 23a23333333a3,a4,a5,猜想ana238359451055n53

33333 答案:、、、78910n

5三、5.证明:(1)当n=1时,421+1+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.×

11713 2122122411113(2)假设当n=k时成立,即 k1k22k241111111则当nk1时,k2k32k2k12k2k1k1131111311 242k12k2k1242k12k213113242(2k1)(k1)246.证明:(1)当n=2时,b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2 10(101)10b1d145d32(2)证明:由bn=3n-2知

11)+…+loga(1+)43n211=loga[(1+1)(1+)…(1+)]

43n2111而logabn+1=loga33n1,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…3341(1+)与33n1的大小.3n2Sn=loga(1+1)+loga(1+取n=1,有(1+1)=38343311 取n=2,有(1+1)(1+)38373321 推测:(1+1)(1+

1411)…(1+)>33n1(*)43n2①当n=1时,已验证(*)式成立.11)…(1+)>33k1 43k21111)(1)33k1(1)则当n=k+1时,(11)(1)(143k23(k1)23k1②假设n=k(k≥1)时(*)式成立,即(1+1)(1+

3k233k1

3k1(3k233k1)3(33k4)33k1(3k2)3(3k4)(3k1)29k40 22(3k1)(3k1)33k1(3k2)33k433(k1)13k1111从而(11)(1)(1)(1)33(k1)1,即当n=k+1时,(*)式成立

43k23k1由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>

11logabn+1,当 0<a<1时,Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2an1,即an+2=q·an an2q∵an·an+1=-qn,an+1·an+2=-qn+1 两式相除,得于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-

1n

q(n=1,2,3,…)22qk1 n2k1时(kN)综合①②,猜想通项公式为an=1k

q n2k时(kN)2下证:(1)当n=1,2时猜想成立

-(2)设n=2k-1时,a2k-1=2·qk1则n=2k+1时,由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立.可推知n=2k+1也成立.设n=2k时,a2k=-所以a2k+2=-1k

q,则n=2k+2时,由于a2k+2=q·a2k, 21kq+1,这说明n=2k成立,可推知n=2k+2也成立.2综上所述,对一切自然数n,猜想都成立.2qk1 当n2k1时(kN)这样所求通项公式为an=1k

q 当n2k时(kN)2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-(q+q2+…+qn)2

2(1qn)1q(1qn)1qn4q()()

1q2(1q)1q21qn4q)()由于|q|<1,∴limq0,故limS2n=(nn1q2n依题意知 4q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<

2(1q)5

第五篇:数学五步解题法

数学五步解题法

数学科目是要让学生学会解题,所有的教学内容和教学效果的落脚点都是做题,要以能解决问题的形式体现出来。所以,用系统的方法教会学生解题是教学成绩提高的重中之重。根据我们的教学实际,结合学情,遵循以下的五个步骤来解题会有一定的成效。

第1步,读题。

① 读懂题意,进入到题目情境,清楚题目的背景。② 把题意用简练的语言陈述出来。第2步,初步分析题意。

① 题目中给了几个条件,把这几个条件指明出来,然后探究明确每个条件的意思。② 摆列出来所给的条件,并分析每个条件的内容。第3步,深入分析题意。

① 寻找与这些条件有关的所有知识内容。② 由这些条件可以推出哪些式子或结论。

③ 把自己所推出来的式子或结论写出来(必须写出来,写出来很重要,因为有时候会因为写出来的式子会带动下一步的思考)。

④ 分析问题要时时把握一个方向,即演算,探究的过程中能敏感的判断方向的正确性。

第4步,目标问题分析。

① 分析题目中的目标问题,以上写出的这几个式子跟所要求的问题有没有联系? ② 要解决问题又需要哪些知识? 第5步,换角度分析目标问题。

① 无论能否解答,考虑这个问题是属于哪一部分的内容,有没有见过这种题型? ②探究关联此类型的知识点有哪些?

认真的按照这几步走,明确解题过程,夯实解题基础,掌握解题策略,养成解题习惯,走向成功之路。

下载2013年高考数学重点难点突破运用向量法解题word格式文档
下载2013年高考数学重点难点突破运用向量法解题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量法在立体几何中的运用

    龙源期刊网 http://.cn 向量法在立体几何中的运用 作者:何代芬 来源:《中学生导报·教学研究》2013年第27期 摘 要:在近几年的高考中利用向量的模和夹角公式求立体几何中的线段......

    高考二轮复习数学考点突破之数列+三角函数与平面向量

    高考二轮复习数学考点突破之数列+三角函数与平面向量高考二轮数学复习:三角函数与平面向量1.三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之......

    2014高考数学复习:平面向量

    高考数学内部交流资料【1--4】2014高考数学复习:平面向量一选择题(每题5分,共50分)1. 向量﹒化简后等于( )A.AMB.0C.0D.AC2. 下面给出的关系式中,正确的个数是( )10·=0○2 ·=·○3○4......

    高考数学重点难点26 垂直与平行

    高中数学难点26 垂直与平行 垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些......

    八下数学《运用公式法》教案

    年级:八年级 学科:数学 课题:《2.3运用公式法(2-1)》 学习目标:1、经历通过整式乘法中的平方差公式逆向推导出用公式法分解因式的过程,理解乘法公式(ab)(a-b)a2b2与公式a2b2(ab)(ab......

    高考数学证明法高二

    數學证明法(高二)明确复习目标1.理解不等式的性质和证明;2.掌握分析法、综合法、比较法证明简单的不等式。建构知识网络1. 比较法证明不等式是最基本的方法也是最常用的方法。比......

    07--12年浙江省高考数学平面向量题

    2010(16)已知平面向量a,(a0,a)满足1,且a与a的夹角为120°则a 。2009(7)设向量a,b满足︱a︱=3,︱b︱=4,ab=0.以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 (A)3(B......

    2014年高考数学空间向量证明平行问题

    4.2 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向......