高考数学证明法高二

时间:2019-05-13 21:41:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学证明法高二》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学证明法高二》。

第一篇:高考数学证明法高二

數學证明法(高二)

明确复习目标

1.理解不等式的性质和证明;

2.掌握分析法、综合法、比较法证明简单的不等式。

建构知识网络

1.比较法证明不等式是最基本的方法也是最常用的方法。比较法的两种形式:

(1)比差法:步骤是:①作差;②分解因式或配方;③判断差式符号;

(2)比商法:要证a>b且b>0,只须证 a1。b

说明:①作差比较法证明不等式时,通常是进行通分、因式分解或配方,利用各因式的符号或非负数的性质进行判断;

②证幂、乘积的不等式时常用比商法,证对数不等式时常用比差法。运用比商法时必须确定两式的符号;

2.综合法:利用某些已经证明过的不等式(如均值不等式,常用不等式,函数单调性)作为基础,再运用不等式的性质推导出所要证的不等式的方法。

3.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。这种证明方法叫做分析法。要注意书写的格式, 综合法是分析法的逆过程

4.对较复杂的不等式先用分析法探求证明途径,再用综合法,或比较法加以证明。

5.要掌握证明不等式的常用方法,此外还要记住一些常用不等式的形式特点,运用条件,等号、不等号成立的条件等。

经典例题做一做

【例1】(1)已知a,b∈R,求证:a2+b2+1>ab+a

a

22b22(2)设a0,b0,求证()()a2b2.ba

【例2】已知a+b+c=0,求证:ab+bc+ca≤0.111

1【例3】已知ABC的三边长为a,b,c,且m为正数.求证:abc.ambmcm

【例4】设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1.a

(1)当x∈(0,x1)时,证明x<f(x)<x1;

(2)设函数f(x)的图象关于直线x=x0对称,求证x0<x1.2【研讨.欣赏】已知a>1,m>0,求证:loga(a+m)>loga+m(a+2m).提炼总结以为师

1.比较法是一种最重要的、常用的基本方法,其应用非常广泛,一定要熟练掌握.步骤是:作差→变形(分解因式或配方)→判断符号.对于积或幂的式子可以作商比较,作商比较必须弄清两式的符号.2.对较复杂的不等式需要用分析法,分析使不等式成立的充分条件,再证这个条件(不等式)成立.3.综合法是最简捷明快的方法,常需用分析法打前站,用分析法找路,综合法写出.有时也需要几种方法综合运用.4.要熟练掌握均值不等式、四种平均值之间的关系,记住一些常用的不等式,记住它们的形式特点、证明方法和内在联系。

【解答题】

y11x7.(1)已知a、b、x、y∈R+且>,x>y.求证:> abxayb

(2)若a>0,b>0,a3+b3=2.求证a+b≤2,ab≤1.

8.己知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)2.9.设x>0,y>0且x≠y,求证xy3133x2y

附錄:不等式基本概念

一.考试要求:

(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单不等式.(4)掌握简单不等式的解法.(5)理解│a│-│b│≤│a+b│≤│a│+│b│

【注意】不等式在数学的各个分支中都有广泛的应用,同时还是继续学习高等数学的基础.纵观历年试题,涉及不等式内容的考题大致可分为以下几类:①不等式的证明;②解不等式;③取值范围的问题;④应用题.三.基础知识:

1.常用不等式:

(1)a,bRab2ab(当且仅当a=b时取“=”号). 2

2ab(当且仅当a=b时取“=”号). 2

333(3)abc3abc(a0,b0,c0).(2)a,b

R

(4)柯西不等式

(a2b2)(c2d2)(acbd)2,a,b,c,dR.(5)ababab.2.极值定理

已知x,y都是正数,则有

(1)若积xy是定值p,则当xy时和xy有最小值2p;

(2)若和xy是定值s,则当xy时积xy有最大值

3.一元二次不等式axbxc0(或0)212s.4(a0,b24ac0),22如果a与axbxc同号,则其解集在两根之外;如果a与axbxc异号,则其解

集在两根之间.简言之:同号两根之外,异号两根之间.x1xx2(xx1)(xx2)0(x1x2);

xx1,或xx2(xx1)(xx2)0(x1x2).4.含有绝对值的不等式 当a> 0时,有

xax2aaxa.xax2a2xa或xa.5.指数不等式与对数不等式

(1)当a1时,af(x)ag(x)f(x)g(x);

f(x)0logaf(x)logag(x)g(x)0.f(x)g(x)

(2)当0a1时,af(x)ag(x)f(x)g(x);

f(x)0logaf(x)logag(x)g(x)0

f(x)g(x)

三.基本概念

1、不等式的性质:

(1)同向不等式可以相加;异向不等式可以相减:若ab,cd,则acbd(若ab,cd,则acbd),但异向不等式不可以相加;同向不等式不可以相减;

(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若ab0,cd0,则acbd

若ab0,0cd,则ab; cd

nn(3)左右同正不等式:两边可以同时乘方或开方:若ab0,则a

b

(4)若ab0,ab,则1111;若ab0,ab,则。abab

2.不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。

3.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。

4.常用不等式有:

(根据目标不等式左右的运算结构选用);(1222(2)a、b、cR,abcabbcca(当且仅当abc时,取等号);

bbm(3)若ab0,m0,则(糖水的浓度问题)。aam5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).常用的放缩技巧有:11111112 nn1n(n1)nn(n1)n1n

6.简单的一元高次不等式的解法:

标根法:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;

(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;

(3)根据曲线显现f(x)的符号变化规律,写出不等式的解集。

7.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

8.绝对值不等式的解法:

(1)分段讨论法(最后结果应取各段的并集):

(2)利用绝对值的定义;

(3)数形结合9、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是„”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;

(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

11.含绝对值不等式的性质:

a、b同号或有

0|ab||a||b|||a||b|||ab|;

a、b异号或有

0|ab||a||b|||a||b|||ab|.12.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)

1).恒成立问题

若不等式fxA在区间D上恒成立,则等价于在区间D上fxminA

若不等式fxB在区间D上恒成立,则等价于在区间D上fxmaxB

第二篇:数学证明法例题

例1 已知,p,q∈R’且p+q=2,求证:p+q≤

2证明用反证法

p+q>

2,则q>2-p,∴q>8-12p+6p-p

p+q>8-12p+6p=2+6(p-1)≥2

与题p+q=2,矛盾。

所以p+q>2不成立,只能是p+q≤2。

说明当用直接证法证明比较困难时可以用反证法。反证法的步骤首先是否定结论,要找准结论的反面,然后根据题设或定理公理推出矛盾,即结论的反面不成立。

例2 已知x+y=1,x,y∈R 223333223233

3证明∵x+y=1 22

由三角函数的有界性可得

换元法中应用三角函数,将代数式化成了三角式再结合三角公式以及三角函数中正、余弦函数的有界性,可以使证明简练。例2的证法四

例3 已知a,b,m∈R,且a<b,+

分析本题可以用比较法,综合法,分析法来证明,而且都比较容易,这里再介绍几种构造法证题。

证法一利用函数的性质来说明

证法二设点A(b,a),点B(-m,-m),其中m>0∵0<a<b,则(如图5-2)直线OA

∵B在第三象限角的平分线上,所以AB必与x轴的正半轴相交,

第三篇:2014年数学高考专题--用构造局部不等式法证明不等式[模版]

2014年数学高考专题--用构造局部不等式法证明不等式

有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。

例1.若a,bR,ab2,求证:a1*2b12

分析:由a,b在已知条件中的对称性可知,只有当ab1,即2a13时,等号才能成立,所以可构造局部不等式。证明:2a1332a13·(2a1)·3·(a2)3323

(b2)3

(a2)(b2)2 33同理,2b1∴a1

2b1

222x12x2xnxn1…x1x2 例2.设x1,x2,…,xn是n个正数,求证:x2x3xnx1

…xn。

证明:题中这些正数的对称性,只有当x1x2…xn时,等号才成立,构造局部不等式如下:

222x12x2xnxn1x22x1,x32x2,…,xn2xn1,x12xn。x2x3xnx1

将上述n个同向不等式相加,并整理得:

222x12x2xnxn1…x1x2…xn。x2x3xnx1

例3.已知a1,a2,…,an均为正数,且a1a2…an1,求证:

22a12a2an1…。a1a2a2a3ana12

a12aa21a1,证明:因a1,a2,…,an均为正数,故a1a24

22a2a2a3anaa1a2,…,nan。a2a34ana14

又∵a1a2a2a3aa111…n(a1a2…an),44422

∴把以上各个同向不等式相加,整理得:

22a12a2an1…a1a2…an1 a1a2a2a3ana12

22a12a2an1故…。a1a2a2a3ana12

例4.设a,b,cR,且abc1,求证:*3111。333a(bc)b(ca)c(ab)2证明:由a,b,c在条件中的对称性知,只有当abc1时,才有可能达到最小值31bc1,此时刚好3。所以,可构造如下局部不等式。2a(bc)4bc2

∵1bc11,233a(bc)4bc4abca

1ac11,2b3(ac)4ac4b3acb

1ab11,2c3(ab)4ab4c3abc

111a3(bc)b3(ca)c3(ab)1111bcacab()()abc4bcacab∴

1111313() 2abc2abc2

a2b2c2

1。例5.设a,b,cR,且abc2,求证:bccaab*

a2bc证明:由a,b,c在条件中的对称性知,只有,才可能达到最小值1,此时刚。所以,可构造如下局部不等式。bc4

a2bc。所以,可构造如下局部不等式。bc4

a2bcb2cac2ab∵a,b,c bc4ca4ab4a2b2c21∴(abc)abc bccaab2

a2b2c2

即1 bccaab

第四篇:高二数学构造函数法在不等式证明中运用

构造函数法在不等式证明中运用

作者:酒钢三中 樊等林

不等式的证明历来是高中数学的难点,也是考察学生数学能力的主要方面。不等式的证明方法多种多样,根据所给不等式的特征,巧妙的构造适当的函数,然后利用一元二次函数的判别式、函数的奇偶性、单调性、有界性等来证明不等式,统称为函数法。本文通过一些具体的例子来探讨一下怎样借助构造函数的方法证明不等式。

一、构造函数利用判别式证明不等式 ①构造函数正用判别式证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得: a(b2)ab2b10,此方程恒成立,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2

1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36

632abc

二、构造函数利用函数有界性证明不等式

例5.设a﹤1,b﹤1,c﹤1,求证:abbcac﹥-1.解析:令f(x)(bc)xbc1为一次函数。

由于f(1)(1b)(1c)﹥0,且f(x)(1b)(1c)﹥0,∴f(x)在x(1,1)时恒有f(x)﹥0.又∵a(1,1),∴f(a)﹥0,即:abbcac1﹥0 评注:考虑式中所给三个变量的有界性,可以视其为单元函数,转化为f(a)1。

三、构造函数利用单调性证明不等式

abab例6.设a,bR,求证:﹥ 1a1b1ab解析:设f(x)又x11,当x﹥0时,f(x)是增函数,1x1xabababab2abababf(abab),=﹥=1a1b(1a)(1b)(1a)(1b)1abab而a,bR,∴abab﹥ab,∴f(abab)﹥f(ab)故有: abab﹥ 1a1b1ab例7.求证:当x﹥0时,x ﹥ln(1x)。解析:令f(x)xln(x1),∵x﹥0,∴f/(x)11x ﹥0.x1x1又∵f(x)在x0处连续,∴f(x)在0,上是增函数,从而,当x﹥0时,f(x)xln(1x)﹥f(0)=0,即:x﹥ln(1x)成立。

评注:利用函数单调性证明不等式和比较大小是常见的方法,特别是在引入导数后,单调性的应用将更加普遍。

四、构造函数利用奇偶性证明不等式

xx(x0)。例8.求证:﹤x212xxxxx2xx=解析:设f(x)-(x0),f(x)=xxx221212212xxxxx1(12)x==f(x).212x212x所以f(x)是偶函数,其图象关于y轴对称。

当x﹥0时,12x﹤0,故f(x)﹤0;当x﹤0时,依图象关于y轴对称知f(x)﹤0。

xx(x0)﹤212x评注:这里实质上是根据函数奇偶性来证明的,如何构造恰当的函数充分利用其性质是关健。

由上述几种情况可以看出,能否顺利地构造函数利用其函数性质和使用数学思想来证明不等式,最重要的是要有扎实的基本功和多种思维品质,敢于打破常规,创造性地思维,才能独辟蹊径,使问题获得妙解。故当x0时,恒有f(x)﹤0,即

第五篇:高二数学不等式的证明

高二数学不等式的证明(二)

[本周学习内容]不等式证明中的综合证明方法:

1.换元法:通过适当的换元,使问题简单化,常用的有三角换元和代数换元。

2.放缩法:理论依据:a>b,b>ca.c,找到不等号的两边的中间量,从而使不等式成立。

3.反证法:理论依据:命题“p”与命题“非p”一真、一假,证明格式

[反证]:假设结论“p”错误,“非p”正确,开始倒推,推导出矛盾(与定义,定理、已知等等矛盾),从而得 到假设不正确,原命题正确。

4.数学归纳法:这是一种利用递推关系证明与非零自然数有关的命题,可以是等式、不等式、命题。

证明格式:

(1)当n=n0时,命题成立;

(2)假设当n=k时命题成立;

则当n=k+1时,证明出命题也成立。

由(1)(2)知:原命题都成立。

[本周教学例题]

一、换元法:

1.三角换元:

例1.求证:

证一:(综合法)

即:

证二:(换元法)∵-1≤x≤1 ∴令x=cos,[0,π]

∵-1≤sin2≤1

例2.已知x>0,y>0,2x+y=1,求证:

分析:由于条件给出了x>0,y>0,2x+y=1,故如何使用2x+y=1这一特点是解决问题的重要环节。由本题中x>0,y>0,2x+y=1的条件也可用三角代换。

证一:

证二:由x>0,y>0,2x+y=1,可设

例3.若x2+y2≤1,求证:

证:设

例4.若x>1,y>1,求证:

证:设

例5.已知:a>1,b>0,a-b=1,求证:

证:∵a>1,b>0,a-b=1,∴不妨设

小结:若0≤x≤1,则可令

若x2+y2=1,则可令x=cos,y=sin(0≤θ<2π)

若x2-y2=1,则可令x=sec,y=tan(0≤θ<2π)

若x≥1,则可令

2.代数换元:,若xR,则可令

例6:证明:若a>0,则

证:设

∴原式成立

小结:还有诸如“均值换元”“设差换元”的方法。

二、放缩法:

例7.若a,b,c,dR+,求证:

证:记

∵a,b,c,dR+

∴1

例8.当n>2时,求证:logn(n-1)logn(n+1)<1

证:∵n>2 ∴logn(n-1)>0,logn(n+1)>0

∴n>2时,logn(n-1)logn(n+1)<1

例9.求证:

证:

三.反证法

例10.设0

证:设

则三式相乘: ①

又∵0

同理:

以上三式相乘:

∴原式成立

与①矛盾

例11.已知a+b+c+>0,ab+bc+ca>0,abc>0,求证:a,b,c>0

证:设a<0,∵abc>0,∴bc<0

又由a+b+c>0,则b+c=-a>0

∴ab+bc+ca=a(b+c)+bc<0 与题设矛盾

又:若a=0,则与abc>0矛盾,∴必有a>0

同理可证:b>0,c>0

四.构造法:

1.构造函数法

例12.已知x>0,求证:

证:构造函数

显然

∴上式>0

∴f(x)在 上单调递增,∴左边

例13.求证:

证:设

用定义法可证:f(t)在上单调递增,令:3≤t1

例14.已知实数a,b,c,满足a+b+c=0和abc=2,求证:a,b,c中至少有一个不小于2。

证:由题设:显然a,b,c中必有一个正数,不妨设a>0

则有两个实根。

例15.求证:

证:设

当y=1时,命题显然成立,当y≠1时,△=(y+1)2-4(y-1)2=(3y-1)(y-3)≥0

综上所述,原式成立。(此法也称判别式法)

例16.已知x2=a2+b2,y2=c2+d2,且所有字母均为正,求证:xy≥ac+bd

证一:(分析法)∵a,b,c,d,x,y都是正数

∴要证:(xy)≥ac+bd

只需证

即:(a2+b2)(c2+d2)≥a2c2+b2d2+2abcd

展开得:a2c2+b2d2+a2d2+b2c2≥a2c2+b2d2+2abcd

即:a2d2+b2c2≥2abcd

由基本不等式,显然成立

∴xy≥ac+bd

证二:(综合法)

证三:(三角代换法)

∵x2=a2+b2,∴不妨设

y2=c2+d

2五.数学归纳法:

例17.求证:设nN,n≥2,求证:

分析:关于自然数的不等式常可用数学归纳法进行证明。

证:当n=2时,左边,易得:左边>右边。

当n=k时,命题成立,即:成立。

当n=k+1时,左边

;且4(k+1)2>(2k+3)(2k+1);

于是可得:

即当n=k+1时,命题也成立;

综上所述,该命题对所有的自然数n≥2均成立。

[本周参考练习]

证明下列不等式:

1.提示:令,则(y-1)x2+(y+1)x+(y-1)x=0用△法,分情况讨论。

2.已知关于x的不等式(a2-1)x2-(a-1)x-1<0(aR),对任意实数x恒成立,求证:

提示:分

3.若x>0,y>0,x+y=1,则

提示:左边

令t=xy,则

在 上单调递减

4.已知|a|≤1,|b|≤1,求证:,提示:用三角换元。

5.设x>0,y>0,求证:a

放缩法

6.若a>b>c,则

10.左边

11.求证:高二数学不等式的应用

三.关于不等式的应用:

不等式的应用主要围绕着以下几个方面进行:

1.会应用不等式的证明技巧解有关不等式的应用题:利用不等式求函数的定义域、值域;求函数的最值;讨论方程的根的问题。

(求极值的一个基本特点:和一定,一般高,乘积拨了尖;积不变,两头齐,和值得最低。)在使用时,要注意以下三个方面:“正数”、“定值”、“等号”出现的条件和成立的要求,其中“构造定值”的数学思想方法的应用在极值使用中有着相当重要的作用。

2.会把实际问题抽象为数学问题进而建立数学模型,培养分析问题、解决问题的能力和运用数学的意识。

3.通过不等式应用问题的学习,进一步激发学数学、用数学的兴趣。

四、不等式的应用问题举例:

例10.已知a、b为正数,且a+b=1,求

最大值。

分析:在一定的条件限制下出现的最值问题,在变式的过程中,如何减少变形产生的错误也是必不可少的一个环节。

解:由可得;

小结:如果本题采用

两式相加而得:号是否取到,这是在求极值时必须坚持的一个原则。

;则出现了错误:“=”

例11.求函数的最小值。

分析:变形再利用平均值不等式是解决问题的关键。

解:

即f(x)最小值为-1

此类问题是不等式求极值的基本问题;但如果再改变x的取值范围(当取子集时),要则要借助于函数的基本性质解决问题了。

例12.若4a2+3b2=4,试求y=(2a2+1)(b2+2)的最大值。的某一个

分析:在解决此类问题时,如何把4a2+3b2=4拆分成与(2a2+1),(b2+2)两个式子的代数和则是本问题的关键。

解:

当且仅当:4a2+2=3b2+6,即

时取等号,y的最大值为8。

小结:此问题还有其它不同的解法,如三角换元法;消元转化法等等。但无论使用如何种广泛,都必须注意公式中的三个运用条件(一正,二定,三等号)

例13.已知x.y>0,且x·y=1,求的最小值及此时的x、y的值。

分析:考查分式的最值时,往往需要把分式拆成若干项,然后变形使用平均值不等式求解。

解:∵x>y>0 ∴x-y>0

又∵x·y=1,也即:;当且仅当时取等号。

也即;时,取等号。

例14.设x,y,z∈R+,x+y+z=1,求证:的最小值。

分析:此类问题的关键是如何使用平均值不等式,两条途径1.利用进而进行类加。

2.另一个途径是直接进行1的构造与转化。但无论如何需要注意的是验证“=”号成立。本题使用1的构造代入。

解:∵x,y,z∈R+,且x+y+z=1

当且仅当时,取“=”号,的最小值为9。

小结:本题如果采用三式类加,得到:,由x,y,z∈R+,且x+y+z=1得:

。进而言之,的最小值为5,则出现了一个错误的结果,其关键在于三个“=”号是否同时成立。

例15.已知a>0,a2-2ab+c2=0,bc>a2,试比较 a,b,c的大小。

分析:此问题只给出了几何简单的不等式关系,故要判断大小必须在这几个不等式中进行变形分析才可解决问题。

解:由a2-2ab+c2=0可得,a2+c2=2ab≥2ac

又∵a>0,∴b≥c,(当且仅当a=c时,取等号)再由:bc>a2可知,b>c,b>a再由原式变形为:a2-2ab+b2+c2-b2=0得:b2≥c2,结合:b>c可得:b>c>0

又由b>a可得:2ab>2a2,综上所述,可得:b>c>a

小结:本题中熟练掌握不等式的基本性质和变形是解决问题的关键。

例16.某村计划建造一个室内面积为800m2的矩形蔬菜温室。在温室内,沿左,右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?

分析:如何把实际问题抽象为数学问题,是应用不等式等基础知识和方法解决实际问题的基本能力。

解:设矩形温室的左侧边长为am,后侧边长为bm,则ab=800

蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=808-2(a+2b)

所以

当a=2b,即a=40(m),b=20(m)时,=648(m2)

答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.例17.某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为

(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;

(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

分析:数学建模是解决应用问题的一个基本要求,本问题对建立函数关系式、数列求和、不等式的基础知识,运用数学知识解决实际问题的能力都有着较高的要求。

解:(Ⅰ)依题设,An=(500-20)+(500-40)+…+(500-20n)=490n-10n2;

(Ⅱ)

因为函数上为增函数,当1≤n≤3时,当n≥4时,∴仅当n≥4时,Bn>An。

答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润。

小结:如何进行数学建模最基本的一个方面就是如何把一个实际中的相关因素进行分析,通过文字说明转化为等量关系或者是相互关系,再把文字关系处理为数学关系。

五、本周参考练习

1.已知a>0 ,b>0,a+b=1,证明:

2.如果△ABC的三内角满足关系式:sin2A+sin2B=sin2C,求证:

3.已知a、b、c分别为一个三角形的三边之长,求证:

4.已知x,y是正数,a,b是正常数,且满足:,求证:

5.已知a,b,c∈R+,求证:

6.已知a>0,求的最值。(答最小值为)

7.证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大。

8.某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:m)的矩形。上部是等腰直角三角形,要求框架围成的总面积8m2,问x、y分别为多少(精确到0.001m)时用料最省?

(答:当x为2.34m,y为2.828m时,用料最省。)高二数学练习三

1.xR,那么(1-|x|)(1+x)>0的一个充分不必要条件是()

A.|x|<1

B.x<1

C.|x|>1

D.x<-1或|x|<1

2.已知实数a,b,c满足:a+b+c=0,abc>0,则:的值()

A.一定是正数

B.一定是负数

C.可能是0

D.无法确定

3.已知a,b,c是△ABC的三边,那么方程a2x2-(a2-b2+c2)x+c2=0()

A.有两个不相等的实根

B.有两个相等的实根

C.没有实数根

D.要依a,b,c的具体取值确定

4.设0

A.C.5.设a,bR+,则A,B的大小关系是()

B.D.A.A≥B

B.A≤B

C.A>B

D.A

6.若实数m,n,x,y满足m2+n2=a,x2+y2=b,则mx+ny的最大值是()

A.B.C.D.7.设a,b,cR+,则三个数

A.都大于2

B.都小于2

()

C.至少有一个不大于2

D.至少有一个不小于2

8.若a,bR+,满足a+b+3=ab,则

9.设a>0,b>0.c>0,a+b+c=1,则的取值范围是_____ 的最大值为_____

10.使不等式

答案:

1.A 2.B 3.C 4.D 5.C 6.B

7.D 8.9.10.a>b>0且a-b>1

都成立的a与b的关系是_____

下载高考数学证明法高二word格式文档
下载高考数学证明法高二.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    解析法证明平面几何题—高二中数学竞赛讲座(大全5篇)

    【高中数学竞赛讲座2】解析法证明平面几何解析法,就是用解析几何的方法来解题,将几何问题代数化后求解,但代数问题未必容易,采用解析法就必须有面对代数困难的准备,书写必须非常......

    高考数学推理与证明

    高考数学推理与证明1.(08江苏10)将全体正整数排成一个三角形数阵:2 34 5 67 8 9 10。 。 。 。 。按照以上排列的规律,第n行(n3)从左向右的第3个数为▲. n2n6【答案】 2【解析】本......

    高二数学不等式的证明6

    6.3 不等式的证明(六) 教学要求:更进一步掌握不等式的性质,能熟练运用不等式的证明方法:比较法、综合法、分析法,还掌握其他方法:放缩法、判别式法、换元法等。 教学重点:熟练运用......

    高二文科数学几何证明试题

    高二文科数学几何证明试题经典试题:1. (2008梅州一模文)如图所示,在四边形ABCD中, EF//BC,FG//AD,则EFBC+FGAD=.2. (2008广州一模文、理)在平行四边形ABCD中, 点E在边AB上,且AE:EB=1:2......

    2012高考数学几何证明选讲

    几何证明选讲模块点晴一、知识精要值叫做相似比(或相似系数)。由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比......

    高考数学 椭圆性质(92条,含证明)

    椭圆1.2.标准方程3.4.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点......

    关于等额定期投资法的数学证明

    等额定期投资。 等额定期投资指的是用固定的投资金额,在固定的时间间隔,购买固定的证券。比如:股票、基金、债券等等。 等额定期投资的好处是,投资的单位证券价格,小于等于该证券......

    高二 数学 选修 推理与证明(文)(模版)

    高中数学(文)推理与证明知识要点:1、合情推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过......