第一篇:XX届高考数学知识点不等式证明——比较法复习教案
XX届高考数学知识点不等式证明——比
较法复习教案
本资料为woRD文档,请点击下载地址下载全文下载地址
www.5y
kj.co
m【§5.3不等式证明——比较法】班级姓名学号
例1.a、b、c≥0,求证a3+b3+c3≥3abc.例2.a、b、c是△ABc的三边,求证a2+b2+c2<2.例3.已知m、n∈N,求证:.例4.若x∈(0,1),a>0且a≠1,求证:|loga|>loga|.【备用题】
x,y,z∈R,A、B、c是△ABc三内角,求证:x2+y2+z2≥2yzcosA+2zxcosB+2xycosc
【基础训练】
.设m=,则m、N的大小关系是
()
A.m>N
B.m=N
c.m D.不确定 2.设正数a、b、c、d满足a+d=b-c,且|a-d|<|b-c|,则ad和bc的大小关系是 () A.ad=bc B.ad c.ad>bc D.不确定 3.已知a,b∈R+,则与的大小关系是 () A.x>y B.x≥y c.x≤y D.不确定 4.设a,b∈R+,且a+b=2,则的最小值是_________________.5.对任意锐角θ,都有,恒成立,则的最大值是_________________.6.若a>b>c>1,P=,是P与Q中的较小者是____________.【拓展练习】 用比较法证明下列不等式 .x,y∈R,x≠y,求证:x4+y4>x3y+xy3.2.x∈R,求证:1+2x2≥2x3+x2.3.x∈R,x≠-1,求证:.4.b>a>0,求证:.5.x,y,z∈R,求证:x2+y2+xy+7z2≥2xz+5yz.6.x>0,n∈N,求证:xn+x-n≥xn-1+x1-n.7.a>0,b>0,m、n∈N,m>n,求证:2≥(am-n+bm-n).8.a、b、c∈R+,求证:≥2.9 . a>b>c>0,a2ab2bc2c>ab+cbc+aca+b.0.a、b∈R+,①求证:之间 ②问这二个数哪一个更接近于.www.5y kj.co m 求 证 : 比较法证明不等式 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。 a>b>0,求证:a^ab^b>(ab)^a+b/ 2因a^a*b^b=(ab)^ab,又ab>a+b/2 故a^a*b^b>(ab)^a+b/2 已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4.用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于- 4下面这个方法算不算“比较法”啊? 作差M=ab+bc+ca-(-4)=ab+bc+ca+4 构造函数M=f(c)=(a+b)c+ab+4 这是关于c的一次函数(或常函数),在cOM坐标系内,其图象是直线,而f(-2)=-2(a+b)+ab+4=(a-2)(b-2)>0(因为a<2,b<2) f(2)=2(a+b)+ab+4=(a+2)(b+2)>0(因为a>-2,b>-2) 所以函数f(c)在c∈(-2,2)上总有f(c)>0 即M>0 即ab+bc+ca+4>0 所以ab+bc+ca>-4 设x,y∈R,求证x^2+4y^2+2≥2x+4y (x-1)²≥0 (2y-1)²≥0 x²-2x+1≥0 4y²-4x+1≥0 x²-2x+1+4y²-4x+1≥0 x²+4y²+2≥2x+4x 除了比较法还有: 求出中间函数的值域: y=(x^2-1)/(x^2+1) =1-2/(x^2+1) x为R,y=2/(x^2+1)在x=0有最小值是2,没有最大值,趋于无穷校 所以有: -1<=y=1-2/(x^2+1)< 1原题得到证明 比较法: ①作差比较,要点是:作差——变形——判断。 这种比较法是普遍适用的,是无条件的。 根据a-b>0a>b,欲证a>b只需证a-b>0; ②作商比较,要点是:作商——变形——判断。 这种比较法是有条件的,这个条件就是“除式”的符号一定。 当b>0时,a>b>1。 比较法是证明不等式的基本方法,也是最重要的方法,有时根据题设可转化为等价问题的比较(如幂、方根等) 综合法是从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法。 用比较法证明不等式·教案 北京二十五中 冯睿 教学目标 1.理解,掌握比较法证明不等式. 2.培养渗透转化、分类讨论等数学思想,提高分析、解决问题能力. 3.锻炼学生的思维品质(思维的严谨性、灵活性、深刻性). 教学重点与难点 求差比较法证明不等式是本节课的教学重点;求差后,如何对“差式”进行适当变形,并判断符号是本节课教学难点. 教学过程设计 (一)不等式证明的含义 师:前面我们已经学习了不等式性质.今天我们要以这些性质作为依据研究不等式证明. 什么是不等式证明呢?(板书)1.什么是不等式证明 我们通过具体题说明. 例1 求证:(2x+1)(3x-2)>(5x+9)(x-2). 这道题含量是什么?(学生迟疑,教师给以启发) 师:同学们可以想一想恒等式证明的含义. 生:这道题含义是对任意实数x,这个不等式都成立. (二)引入比较法证明不等式,理解、认识比较法 师:很好,那么如何证明这个不等式呢?(让学生稍作思考)生:求差. (学生口述,教师板书) 证明:由于(2x+1)(3x-2)-(5x+9)(x-2)=(6x2-x-2)-(5x2-x-18)=x2+16≥16>0,则(2x-1)(3x-2)>(5x+9)(x-2). 师:怎么想到“求差”的呢? 生:以前比较两个实数大小时曾经用过这种方法. (学生回答虽较为肤浅,但教师仍应鼓励并进一步引导学生思考)师:在这里用“求差”有什么好处?(学生思考片刻回答) 生:直接证这个不等式有困难,转化为一个一般式子与0比大小比较容易证明. 师:是的,在这里,通过“求差”将不等问题转化为恒等问题;将二个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化. 这种证明的依据又是什么呢? 生:依据是a-b>0 a>b,所以要证a>b,只要证a-b>0. 师:这种证明的理论依据是a-b>0 a>b,由a-b>0来推a>b是证明不等式常用方种中的一种,叫比较法,这种比较法不妨称作求差比较法.(板书)2.不等式证明的常用方法(1)比较法(求差比较法) (三)在求差比较法中,求差后对“差式”适当变形并判断符号的方法 师:下面我们将通过例题来归纳、总结求差比较法证明不等式时,如何对差式变形并判断差式符号. 例2 求证:x2+3>3x. (学生口述解题过程,教师板书) 师:求差后,进行等价变形时用的什么方法? 生:配方法. 师:为什么用配方法? 生:因为求差后,式子中-3x的符号不确定,所以不容易判断符号,配方后变形为一个完全平方式子与一个常数和的形式,这种差式的符号可以判断. 师:也就是说变形的目的在于能判断差式的符号,这道题用的是配方法. 例3 已知:a,b∈R+.求证:a5+b5≥a3b2+a2b3. 师:这道题含义是什么? 生:对于a,b属于任意正实数,不等式都成立. 师:请同学们考虑如何用比较法证明.(学生口述,教师板书) 证明:a5+b5-a3b2-a2b3=(a5-a3b2)-(a2b3-b5)=a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2)由于a,b∈R+,则a+b>0.又a2+ab+b2>0,(a-b)2≥0,所以(a+b)(a-b)2(a2+ab+b2)≥0,即(a5+b5)(a3b2+a2b3)≥0. 因此a5+b5≥a3b2+a2b3. 师:这道题是用什么方法对差式进行等价变形. 生:对差式进行因式分解. 师:这样变形的目的是什么? 生:将差式因式分解变形为几个因式积的形式,对每个因式进行分析,判断符号,从而使因式积的符号可以判断,差式符号即可判断. 师:说得很好,变形的目的是能判断差式符号,这道题采用的是因式分解的方法,在判断符号时要注意表述严谨、周密,正确判断a,b∈R+范围内每个因式符号. 师:这道题含义是什么? 生:对任意实数x,不等式都成立.(此时有的学生有异议) 生:我觉得应该考虑左式分式有意义的条件. 师:左式分式有意义的条件是什么? 生:x∈R. 师:对.这道题忽视分式有意义的条件是不对的.只不过在这道题中条件就是x∈R,所以这道题的是对任意实数x,不等式都成立.请证明这道题. (学生口述,教师板书) 师:这道题又是如何变形的呢? 生:这道题求差后,先通分,然后将分子配方,最后判断符号. 师:通过以上例题,用比较法证明不等式可以归纳为哪些步骤. 生:有三步:(1)求差;(2)变形;(3)判断符号. 师:在这些步骤中哪一步最重要. 生:我认为变形最重要. 师:为什么? 生:因为变形适当才能判断差式符号. 师:怎么就叫“变形适当”? 生:通过变形将差式化为容易判断符号的式子. 师:对.求差后,把所得差式进行合理变形,化为容易判断符号的式子是求差比较证明不等式的关键.在变形中,有哪些具体方法呢? 生:变形时可以用配方法、因式分解、通分. 师:当然,除了这些主要的方法,在今后学习中还要不断积累方法. (学生审题,考虑片刻) 师:这道题问的是两个式子大小关系,如何判断? 生:可以利用求差比较法证明不等式的方法.先求差,再变形,转化为能与0比大小的式子,就可以判断这两个式子的大小关系. (学生口述,教师板书) 师:先通分,再对分子进行因式分解,现在如何判断符号呢?(让学生先讨论,再回答)生:需要分类讨论? 师:为什么要分类讨论? 生:因为分子中国式a-b的符号随着a,b大小关系的不同而有不同的符号. 师:如何分类? 生:分为a>b,a=b,a<b三类讨论.(学生口述,教师板书) 由于a,b<0,则a·b>0,a2>0,b2>0,a+b<0,进而2ab>0,a2+b2>0,则(a2+b2)(a+b)<0. 师:这道题在判断符号时用分类讨论,分类讨论是重要的数学思想,要知道为什么分类?怎么分类?分类时要不重不漏. (四)小结 在了解不等式证明的含义的基础上,今天主要学习了不等式证明常用方法之一,比较法(或称求差比较法)证明不等式,它是不等式证明中最基本、最重要的证明方法.要明确求差比较法证明不等式的依据,理解转化,使问题简化是求差比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在今后学习中继续积累方法. 比较法证明不等式除了求差比较法,还有没有其他方式呢?请同学们课下思考研究. (五)布置作业 用比较法证明下列不等式: (左式-右式=(q+1)(q-1)2(q2+1)(q2+q+1)) 4.已知a,b∈R+,求证:aabb≥abba.(此题可用求商比较法证明)课堂教学设计说明 1.本节课是不等式证明的第一节课,因此需要了解不等式证明的含义,在这里是通过具体例题说明的并不需要研究不等式证明的一般定义. 2.例1是一道很简单的题,学生会很自然地使用求差.这时教师引导学生深入思考这种方法正确性的依据以及这种方法中所蕴含的数学思想方法,提高学生对求差比较法的认识,同时使学生感受到浅显、平淡知识中仍有一些值得思索和注意的地方,逐渐培养学生良好思维品质,有利于学生能力提高. 3.例2,例3,例4三道题主要目的在于让学生归纳、总结,求差后对差式变形,并判断符号的方法,以及求差比较法的步骤.在这里如何对差式变形是难点,应着重解决.首先让学生明确变形目的,减少变形的盲目性;其次是总结变形时常用方法,有利于难点的突破.例5带有一些综合性,加强学生对求差比较法认识和掌握,并考查对分类讨论思想的认识,例题设计目的在于突出重点,突破难点. 4.本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,教师通过设疑、暗示,课堂讨论等多种教学形式和方法,启发诱导学生深入思考问题,培养学生思维灵活、严谨、深刻等良好思维品质. §4 不等式的证明 4.1 比较法证明不等式 1.设t=a+2b,s=a+b2+1,则下列t与s的大小关系中正确的是() A.t>sB.t≥s C.t 2解析:选D.∵s-t=(a+b+1)-(a+2b)=(b-1)2≥0,∴s≥t.12.已知P=Q=a2-a+1,那么P、Q的大小关系是()a+a+ 1A.P>QB.P C.P≥QD.P≤Q Q解析:选D.=(a2-a+1)·(a2+a+1)=(a2+1)2-a2=a4+2a2+1-a2=a4+a2+1≥1.P 13a-2>0,又∵Q=a2-a+1=2 411P=>0,a+a+123a+1+4 ∴P≤Q.113.已知a>b>-1,则()a+1b+1 1111A.B. 1111C.D.≤a+1b+1a+1b+1 b-a11解析:选B.∵a>b>-1,∴a+1>0,b+1>0,a-b>0,则=<0,a+1b+1a+1b+1 11∴a+1b+1 an4.已知数列{an}的通项公式an=,其中a,b均为正数,那么an与an+1的大小关系是bn+1 () A.an>an+1B.an C.an=an+1D.与n的取值有关 an+1an解析:选B.an+1-an=- bn+1+1bn+1 a=,bn+b+1bn+1 ∵a>0,b>0,n>0,n∈N+,∴an+1-an>0,an+1>an.5.设x2,y73,z=6-2,则x,y,z的大小关系是() A.x>y>zB.z>x>y C.y>z>xD.x>z>y 44解析:选D.y73,z6-2=,7+36 2∵7+3>6+2>0,∴z>y.3+2-43-24又x-z=2->0,6+6+262 ∴x>z,∴x>z>y.6.在等比数列{an}和等差数列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,则a5与b5的大小关系是() A.a5 5C.a5=b5D.不确定 解析:选B.∵{an}为等比数列设公比为q,∴a3=a1q2,又∵a1≠a3,∴q2≠1.{bn}为等差数列,设公差为d,∴b3=b1+2d.又∵a1=b1>0且a3=b3,∴b3=a1+2d,∴2d=a1q2-a1,∴a5=a1q4;b5=a1+4d=2a1q2-a1,∴a5-b5=a1(q4-2q2+1)=a1(q2-1)2>0.故a5>b5.bb+m7.设a,b,m均为正数,且,则a与b的大小关系是________. aa+m b+mbma-b解析:>0,a+maaa+m 又a,b,m为正数. ∴a(a+m)>0,m>0,因此a-b>0,a>b.答案:a>b 3A8.若f(x)A=4loga(x-1),B=4+[loga(x-1)]2,若a>1,则________1.Bxx-3 3x>3,又a>1,所以A>0,B>0.xx-3 又因为B-A=[loga(x-1)-2]2≥0,A所以B≥A≤1.B 答案:≤ 9.设n∈N,n>1,则logn(n+1)与logn+1(n+2)的大小关系是________. logn+1n+2解析:=logn+1(n+2)·logn+1n lognn+1 logn+1n+2+logn+1n2≤2 logn+1n2+2n2=2 logn+1n+122<2=1.答案:logn(n+1)>logn+1(n+2) 10.已知a、b都是正数,x、y∈R,且a+b=1.求证:ax2+by2≥(ax+by)2.证明:ax2+by2-(ax+by)2 =ax2+by2-a2x2-2abxy-b2y2 =(ax2-a2x2)+(by2-b2y2)-2abxy =ax2(1-a)+by2(1-b)-2abxy =abx2+aby2-2abxy=ab(x-y)2.∵a>0,b>0,x,y∈R,∴ab>0,(x-y)2≥0,∴ax2+by2≥(ax+by)2成立. a+b+c11.若a,b,c∈(0,+∞),证明:aabbcc≥(abc.3解析:因为f(x)= 证明:++=abc3aabbcc2a-b-c32b-c-a2c-a-bb3c3 aa-bbb-caa-c=()3()3(3bcc 由于a,b,c在题中的地位相当(全对称性),a-ba不妨设a≥b≥c>0,∴1,0,b3 aa-baa-cbb-c从而()31,同理3≥1,(3≥1.bcc 相乘即可得证. aa-bbb-caa-c∴()3()3(31,bcc abca+b+cabcabc即1,∴abc≥(abc)3.abc3 12.已知a>0,b>0,m>0,n>0,求证:amn+bmn>ambn+anbm.++证明:amn+bmn-(ambn+anbm) ++=(amn-ambn)-(anbm-bmn) =am(an-bn)-bm(an-bn) =(am-bm)(an-bn). 当a>b时,am>bm,an>bn,∴(am-bm)(an-bn)>0; 当a0; 当a=b时,am=bm,an=bn,∴(am-bm)(an-bn)=0.综上,(am-bm)(an-bn)≥0,++即amn+bmn≥ambn+anbm.++ XX届高考数学第一轮不等式专项复习教 案 本资料为woRD文档,请点击下载地址下载全文下载地址课 件www.xiexiebang.com 第六章不等式 ●网络体系总览 ●考点目标定位 .理解不等式的性质及应用.2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单地应用.3.掌握比较法、分析法、综合法证明简单的不等式.4.掌握不等式的解法.5.理解不等式|a|-|b|≤|a±b|≤|a|+|b|.●复习方略指南 本章内容在高考中,以考查不等式的性质、证明、解法和最值方面的应用为重点,多数是与函数、方程、三角、数列、几何综合在一起被考查,单独考查不等式的问题较少,尤其是不等式的证明题.借助不等式的性质及证明,主要考查函数方程思想、等价转化思想、数形结合思想及分类讨论思想等数学思想方法.含参数不等式的解法与讨论,不等式与函数、数列、三角等内容的综合问题,仍将是今后高考命题的热点.本章内容理论性强,知识覆盖面广,因此复习中应注意: .复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、判别式法、构造法、几何法,这些方法可作了解,但要控制量和度,切忌喧宾夺主.3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来.4.注意重要不等式和常用思想方法在解题中的作用.5.利用平均值定理解决问题时,要注意满足定理成立的三个条件:一“正”、二“定”、三“相等”.6.对于含有绝对值的不等式(问题),要紧紧抓住绝对值的定义实质,充分利用绝对值的几何意义.7.要强化不等式的应用意识,同时要注意到不等式与函数方程的对比与联系.6.1不等式的性质 ●知识梳理 .比较准则:a-b>0a>b; a-b=0a=b;a-b<0a<b.2.基本性质:(1)a>bb<a.(2)a>b,b>ca>c.(3)a>ba+c>b+c;a>b,c>da+c>b+d.(4)a>b,c>0ac>bc;a>b,c<0ac<bc;a>b>0,c>d>0ac>bd.(5)a>b>0 >(n∈N,n>1);a>b>0an>bn(n∈N,n>1).3.要注意不等式性质成立的条件.例如,重要结论:a>b,ab>0 <,不能弱化条件得a>b <,也不能强化条件得a>b>0 <.4.要正确处理带等号的情况.如由a>b,b≥c或a≥b,b>c均可得出a>c;而由a≥b,b≥c可能有a>c,也可能有a=c,当且仅当a=b且b=c时,才会有a=c.5.性质(3)的推论以及性质(4)的推论可以推广到两个以上的同向不等式.6.性质(5)中的指数n可以推广到任意正数的情形.特别提示 不等式的性质从形式上可分两类:一类是“”型;另一类是“”型.要注意二者的区别.●点击双基 .若a<b<0,则下列不等式不能成立的是 A.> B.2a>2b c.|a|>|b| D.()a>()b 解析:由a<b<0知ab>0,因此a•<b•,即>成立; 由a<b<0得-a>-b>0,因此|a|>|b|>0成立.又()x是减函数,所以()a>()b成立.故不成立的是B.答案:B 2.(XX年春季北京,7)已知三个不等式:ab>0,bc-ad>0,->0(其中a、b、c、d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是 A.0 B.1 c.2 D.3 解析:由ab>0,bc-ad>0可得出->0.bc-ad>0,两端同除以ab,得->0.同样由->0,ab>0可得bc-ad>0.ab>0.答案:D 3.设α∈(0,),β∈[0,],那么2α-的范围是 A.(0,) B.(-,) c.(0,π) D.(-,π) 解析:由题设得0<2α<π,0≤≤.∴-≤-≤0.∴-<2α-<π.答案:D 4.a>b>0,m>0,n>0,则,,的由大到小的顺序是____________.解析:特殊值法即可 答案:>>> 5.设a=2-,b=-2,c=5-2,则a、b、c之间的大小关系为____________.解析:a=2-=-<0,∴b>0.c=5-2=->0.b-c=3-7=-<0.∴c>b>a.答案:c>b>a ●典例剖析 【例1】已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.剖析:∵a+b,a-b的范围已知,∴要求2a+3b的取值范围,只需将2a+3b用已知量a+b,a-b表示出来.可设2a+3b=x(a+b)+y(a-b),用待定系数法求出x、y.解:设2a+3b=x(a+b)+y(a-b),∴解得 ∴-<(a+b)<,-2<-(a-b)<-1.∴-<(a+b)-(a-b)<,即-<2a+3b<.评述:解此题常见错误是:-1<a+b<3,① 2<a-b<4.② ①+②得1<2a<7.③ 由②得-4<b-a<-2.④ ①+④得-5<2b<1,∴-<3b<.⑤ ③+⑤得-<2a+3b<.思考讨论 .评述中解法错在何处? 2.该类问题用线性规划能解吗?并试着解决如下问题: 已知函数f(x)=ax2-c,满足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的最大值和最小值.答案:20-1 【例2】(XX年福建,3)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(-∞,-1]∪[3,+∞),则 A.“p或q”为假 B.“p且q”为真 c.p真q假 D.p假q真 剖析:只需弄清命题p、q的真假即可.解:∵|a+b|≤|a|+|b|,若|a|+|b|>1不能推出|a+b|>1,而|a+b|>1一定有|a|+|b|>1,故命题p为假.又函数y=的定义域为|x-1|-2≥0,∴|x-1|≥2.∴x≤-1或x≥3.∴q为真.答案:D 【例3】比较1+logx3与2logx2(x>0且x≠1)的大小.剖析:由于要比较的两个数都是对数,我们联系到对数的性质,以及对数函数的单调性.解:(1+logx3)-2logx2=logx.当或即0<x<1或x>时,有logx>0,1+logx3>2logx2.当①或②时,logx<0.解①得无解,解②得1<x<,即当1<x<时,有logx<0,1+logx3<2logx2.当x=1,即x=时,有logx=0.∴1+logx3=2logx2.综上所述,当0<x<1或x>时,1+logx3>2logx2; 当1<x<时,1+logx3<2logx2; 当x=时,1+logx3=2logx2.评述:作差看符号是比较两数大小的常用方法,在分类讨论时,要做到不重复、不遗漏.深化拓展 函数f(x)=x2+(b-1)x+c的图象与x轴交于(x1,0)、(x2,0),且x2-x1>1.当t<x1时,比较t2+bt+c与x1的大小.提示:令f(x)=(x-x1)(x-x2),∴x2+bx+c=(x-x1)(x-x2)+x.把t2+bt+c与x1作差即可.答案:t2+bt+c>x1.●闯关训练 夯实基础 .(XX年辽宁,2)对于0<a<1,给出下列四个不等式: ①loga(1+a)<loga(1+);②loga(1+a)>loga(1+);③a1+a<a1;④a1+a>a.其中成立的是 A.①③ B.①④ c.②③ D.②④ 解析:∵0<a<1,∴a<,从而1+a<1+.∴loga(1+a)>loga(1+).又∵0<a<1,∴a1+a>a.故②与④成立.答案:D 2.若p=a+(a>2),q=2,则 A.p>q B.p<q c.p≥q D.p≤q 解析:p=a-2++2≥4,而-a2+4a-2=-(a-2)2+2<2,∴q<4.∴p>q.答案:A 3.已知-1<2a<0,A=1+a2,B=1-a2,c=,D=则A、B、c、D按从小到大的顺序排列起来是____________.解析:取特殊值a=-,计算可得A=,B=,c=,D=.∴D<B<A<c.答案:D<B<A<c 4.若1<α<3,-4<β<2,则α-|β|的取值范围是____________.解析:∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.∴-3<α-|β|<3.答案:(-3,3) 5.已知a>2,b>2,试比较a+b与ab的大小.解:∵ab-(a+b)=(a-1)(b-1)-1,又a>2,b>2,∴a-1>1,b-1>1.∴(a-1)(b-1)>1,(a-1)(b-1)-1>0.∴ab>a+b.6.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N时,求证:A≥B.证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x) =x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得 当x≥1时,x-1≥0,x2n-1-1≥0; 当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.培养能力 7.设0<x<1,a>0且a≠,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.解:∵0<x<1,∴①当3a>1,即a>时,|log3a(1-x)3|-|log3a(1+x)3|=|3log3a(1-x)|-|3log3a(1+x)| =3[-log3a(1-x)-log3a(1+x)]=-3log3a(1-x2).∵0<1-x2<1,∴-3log3a(1-x2)>0.②当0<3a<1,即0<a<时,|log3a(1-x)3|-|log3a(1+x)3|=3[log3a(1-x)+log3a(1+x)] =3log3a(1-x2)>0.综上所述,|log3a(1-x)3|>|log3a(1+x)3|.8.设a1≈,令a2=1+.(1)证明介于a1、a2之间; (2)求a1、a2中哪一个更接近于; (3)你能设计一个比a2更接近于的一个a3吗?并说明理由.(1)证明:(-a1)(-a2)=(-a1)•(-1-)=<0.∴介于a1、a2之间.(2)解:|-a2|=|-1-|=|| =|-a1|<|-a1|.∴a2比a1更接近于.(3)解:令a3=1+,则a3比a2更接近于.由(2)知|-a3|=|-a2|<|-a2|.探究创新 9.已知x>-1,n≥2且n∈N*,比较(1+x)n与1+nx的大小.解:设f(x)=(1+x)n-(1+nx),则(x)=n(1+x)n-1-n=n[(1+x)n-1-1].由(x)=0得x=0.当x∈(-1,0)时,(x)<0,f(x)在(-1,0)上递减.当x∈(0,+∞)时,(x)>0,f(x)在(0,+∞)上递增.∴x=0时,f(x)最小,最小值为0,即f(x)≥0.∴(1+x)n≥1+nx.评述:理科学生也可以用数学归纳法证明.●思悟小结 .不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0a>b,a-b=0a=b,a-b<0a<b,这是比较两数(式)大小的理论根据,也是学习不等式的基石.2.一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用.3.对两个(或两个以上)不等式同加(或同乘)时一定要注意不等式是否同向(且大于零).4.对于含参问题的大小比较要注意分类讨论.●教师下载中心 教学点睛 .加强化归意识,把比较大小问题转化为实数的运算.2.通过复习要强化不等式“运算”的条件.如a>b、c>d在什么条件下才能推出ac>bd.3.强化函数的性质在大小比较中的重要作用,加强知识间的联系.拓展题例 【例1】已知f(x)=|log2(x+1)|,m<n,f(m)=f(n).(1)比较m+n与0的大小; (2)比较f()与f()的大小.剖析:本题关键是如何去掉绝对值号,然后再判断差的符号.解:(1)∵f(m)=f(n),∴|log2(m+1)|=|log2(n+1)|.∴log22(m+1)=log22(n+1).∴[log2(m+1)+log2(n+1)][log2(m+1)-log2(n+1)]=0,log2(m+1)(n+1)•log2=0.∵m<n,∴≠1.∴log2(m+1)(n+1)=0.∴mn+m+n+1=1.∴mn+m+n=0.当m、n∈(-1,0]或m、n∈[0,+∞)时,由函数y=f(x)的单调性知x∈(-1,0]时,f(x)为减函数,x∈[0,+∞)时,f(x)为增函数,f(m)≠f(n).∴-1<m<0,n>0.∴m•n<0.∴m+n=-mn>0.(2)f()=|log2|=-log2=log2,f()=|log2|=log2.-==->0.∴f()>f().【例2】某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果甲、乙两家旅行社的原价相同,请问该家庭选择哪家旅行社外出旅游合算? 解:设该家庭除户主外,还有x人参加旅游,甲、乙两旅行社收费总金额分别为y1和y2.一张全票价格为a元,那么y1=a+0.55ax,y2=0.75(x+1)a.∴y1-y2=a+0.55ax-0.75a(x+1)=0.2a(1.25-x).∴当x>1.25时,y1<y2; 当x<1.25时,y1>y2.又因x为正整数,所以当x=1,即两口之家应选择乙旅行社; 当x≥2(x∈N),即三口之家或多于三口的家庭应选择甲旅行社.课 件www.xiexiebang.com第二篇:比较法证明不等式
第三篇:用比较法证明不等式·教案
第四篇:4.1 比较法证明不等式
第五篇:XX届高考数学第一轮不等式专项复习教案