第一篇:平行四边形的性质习题(有答案)
平行四边形的性质测试题
一、选择题(每题3分共30分)
1.下面的性质中,平行四边形不一定具备的是()
A.对角互补 B.邻角互补 C.对角相等 D.内角和为360° 2.在中,∠A:∠B:∠C:∠D的值可以是()
A.1:2:3:4 B.1:2:1:2 C.1:1:2:2 D.1:2:2:1 3.平行四边形的对角线和它的边可以组成全等三角形()A.3对 B.4对 C.5对 D.6对 4.如图所示,在定成立的是()
A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD 5.如图所示,在
中,AD=5,AB=3,AE平分∠BAD交BC
BAECDAB中,对角线AC、BD交于点O,•下列式子中一
OCD边于点E,则线段BE、EC的长度分别为()
A.2和3 B.3和2 C.4和1 D.1和4 6.的两条对角线相交于点O,已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是()A.14cm B.15cm C.16cm D.17cm 7.平行四边形的一边等于14,它的对角线可能的取值是()
A.8cm和16cm B.10cm和16cm C.12cm和16cm D.20cm和22cm 8.如图,在中,下列各式不一定正确的是()
A.∠1+∠2=180° B.∠2+∠3=180 C.∠3+∠4=180°D.∠2+∠4=180° 9.如图,在于()
A、20° B、25° C、30° D、35°
10.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,那么 A.24 B.18 C.16 D.12 中,∠ACD=70°,AE⊥BD于点E,则∠ABE等的周长是()
二、填空题(每题3分共18分)11.在12.在13.在中,∠A:∠B=4:5,则∠C=______.
中,AB:BC=1:2,周长为18cm,则AB=______cm,AD=_______cm. 中,∠A=30°,则∠B=______,∠C=______,∠D=________. 的对角线的交点,•AC=•48mm,•BD=18mm,14.如图,已知:点O是AD=16mm,那么△OBC的周长等于_______mm.
15.如图,在中,E、F是对角线BD上两点,要使△ADF≌△CBE,还需添加一个条件是________. 16.如图,在平行四边形.
三、解答题 17.已知:如图,在中,E、F是对角线AC•上的两点,AE=CF.BE与DF的大小有什中,EF∥AD,MN∥AB,那么图中共有_______•个么关系,并说明理由。(7分)
18.如图,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,试说明OE=OF.19.如图,在分)
中,AB=8,AD=12,∠A,∠D的平分线分别交BC于E,F,求EF的长.(7
ADBFEC20.如图,在中,过对角线AC的中点O所在直线交AD、CB•的延长线于E、F.试问:DE与BF的大小关系如何?证明结论.(7分)
21.如图四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长及(8分).的面积。
22.如图,中,过其对角线的交点O引一直线交BC于E交AD于F,•若AB=3cm,BC=4cm,OE=1cm,试求四边形CDFE的周长.(8分)
23.如图,O为的对角线AC的中点,过点O•作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,把它们都写出来;(不用说明理由)(2)试说明:∠MAE=∠NCF.(8分)
24.已知:如图四边形ABCD是平行四边形,AF∥EC.求证:•△ABF≌△CDE.(7分)
25.如图所示,在中,E为AD中点,CE交BA的延长线于F.
(1)试证明AB=AF.(2)若BC=2AB,∠FBC=70°,求∠EBC的度数.(8分)
26.如图,在中,E、F分别是边AD、BC上的点,自己规定E、F•在边AD、BC上的位置,然后补充题设,提出结论并证明.(要求:至少编出两个正确命题,且补充题设不能相同)(8分)
答案: 1.A 点拨:利用平行四边形的性质. 2.B 点拨:根据平行四边形对角相等. 3.B 4.B 5.B 点拨:由平行四边形的性质AD BC,∴∠BAE=∠EAD=∠BEA,∴BE=AB=3,•CE=BC-BE=AD-BE=5-3=2.
6.C 点拨:OA+OB=18-8=10,∵OB=OD,∴△AOD的周长等于OA+OD+AD=(10+6)•cm=16cm. 7.D 点拨:平行四边形的对角线互相平分,再根据三角形的三边关系. 8.D 点拨:平行四边形的对角相等,但不一定互补. 9.C 10.D 点拨:由题设可得∠NDC=∠MDA=∠M=∠N,∴DC=CN=AB,MA=DA=BC,BN=•BM=6,2(AB+BC)=12. 11.80° 点拨:设∠A=4x,∠B=5x,∠A+∠B=180°,4x+5x=180°,x=20°,•∴∠A=80°,又∵∠A=∠C,∴∠C=80°.
12.3 6 点拨:2(AB+BC)=18,设AB=x,BC=2x,x+2x=3x=9,AB=3,BC=•6,•AD=•BC=6cm 13.150° 30° 140° 14.49 15.答案不唯一.如:BE=DF或BF=DE或∠BCE=∠DAF或AF∥EC等. 16.9 点拨:有ABCD,EBCF,EBNO,ONCF,AEOM,MOFD,AEFD,ABNM,MNCD.
17.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.
∵AD∥BC,∴∠DEC=∠BCE.
∵AF∥CE,∴∠AFB=∠BCE,∴∠DEC=∠AFB,∴△ABF≌△CDE.
18.点拨:证明△ABE≌△CDF. 19.9cm
20.解:DE=BF.证明如下:
∵O为AC的中点,∴OA=OC.
又AE∥CF,∴∠EAO=∠FCO.
故在△AOE与△COF中,EAOFCO AOCO
AOECOF(对顶角相等) ∴△AOE≌△COF(ASA),∴AE=CF.
又∵AD=CB(平行四边形的对边相等),∴AE-AD=CF-CB,即DE=BF. 21.解:(1)∵ABCD,∴AB=CD,DC∥AB,∴∠ECD=∠EFA ∵DE=AE,∠DEC=∠AEF ∴△DEC≌△AEF ∴DC=AF ∴AB=AF(2)∵BC=2AB,AB=AF ∴BC=BF ∴△FBC为等腰三角形
再由△DEC≌△AEF,得EC=EF ∴∠EBC=∠EBF=11∠CBF=×70°=35° 2222.(1)解:有4对全等三角形.
分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA.
(2)证明:如图,∵OA=OC,∠1=∠2,OE=OF.
∴△OAE≌△OCF,∴∠EAO=∠FCO.
在ABCD中,AB∥CD,∴∠BAO=∠DCO.
∴∠EAM=∠NCF.
23.(1)取AE=CF,从而可得BE=DF(或BE∥DF),证明过程略;
(2)取AE=BF,可得结论四边形ABFE(或FCDE)是平行四边形,证明略.
第二篇:平行四边形性质和判定综合习题精选(答案详细)
《平行四边形性质和判定》综合练习题
1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状
2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形.
3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.
7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.
8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?
9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.
10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.
11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上. 求证:EF和GH互相平分. 12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.
13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;
(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)
14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.
15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.
16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD. 17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.
20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
第三篇:平行四边形性质
1复习回顾:说出平行四边形的定义,教师展示教具.2.观察思考:平行四边形和一般四边形的不同点,尝试归纳平行四边形的性质。
3.合作探究:
⑴学生分组用提前准备好的透明平行四边形通过测量、计算、对折剪开、旋转、平移等探索发现平行四边形的邻角、对角、邻边、对边对角线之间的数量关系。
⑵小组汇报发现。
⑶几何画板验证。
⑷拼图活动:用两个全等的三角形纸片拼出不同的平行四边形。
⑸尝试证明性质。
⑹归纳总结解决四边形问题的常用方法。
⑺小组研讨:归纳总结平行四边形的性质,并用三种数学语言表述(表格形式
4.尝试应用
(1).能积极参与测量、计算、拼图等活动。
(2).能够发挥小组合作学习的作用,实现智慧共享。
(3).能正确使用几何画板进行验证
第四篇:平行四边形的性质
《平行四边形的性质》教学设计
一、教材分析
《平行四边形的性质》是人教版数学八年级(下)第十九章第一节,通过展示图片,学生欣赏创设情境,激发学生的好奇心和求知欲,通过图片实例抽象出平行四边形的定义及特征,让学生感受数学与我们生活的联系。学生在加强对平行四边形特征的感性认识的同时,感受动手测量,猜想的乐趣,培养猜想的意识。引导学生推理证明,培养学生推理能力。通过证明,验证猜想的正确性,让学生感受数学结论的确定性和证明的必要性。通过小结归纳,培养学生概括能力,学生在总结反思的同时使知识得到拓展升华。
二、教学重点和难点
教学重点:掌握平行四边形概念及性质
教学难点:利用平行四边形的性质解决相关问题
教学目标知识与技能:理解平行四边形的概念,掌握平行四边形的性质。过程与方法:通过观察、度量等直观手法体会平行四边形的性质,是学生初步体会感性认识与认识之间的关系。
情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学,同时培养学生注重观察,勇于探索的创新能力。
教学方法1.情境导入法。2.问答学习法。3.分析研讨法。4.猜想验证法。
三、教学过程
(一).创设情境,引入新课展示一组图片:1.活动衣架 2.篱笆格3.楼梯扶手等,是学生认识平行四边形,并感受数学来源于生活又应用于生活。
(二).合作交流,解读探究观察:在所展示的图片中我们都看到了哪一种大家所熟悉的基本图形呢?(让学生自由回答)(平行四边形)观察:这种图形有什么特征?定义:有两组对边分别平行的四边形叫做平行四边形。观察思考:如图,如四边形ABCD是平行四边形,那么,它的边、角之间存在什么样的关系?仔细看一看,猜一猜。在学生由平行四边形的定义的两组对边分别平行,即AB‖DC,AD‖BC后引导学生再进一步观察。
操作:画一个平行四边形ABCD,拿出刻度尺量一量个边的长,再用量角器量一量各角的大小,看你刚才的猜想是否正确。(学生分组讨论,学生代表发言。)师结:平行四边形对边相等平行四边形对角相等。试一试:你能将这两个结论证明出来吗?(学生分组讨论,总结。)
三.应用迁移,巩固提高
例:已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()
A.AB=CDB.AB=BCC.∠BAD=∠DACD.∠BAD=∠DCB
(学生代表发言,学生点评,教师点评。)
例2:如图,小明用一根36m的绳子围成了一个平行四边形场地,其中一条边AB长为8cm,其他三条边长各是多少米?
(学生分组讨论,学生代表发言,教师恰当点评。)
例3学生分组探究,教师适当点拨,学生代表发言。
四.总结反思,拓展升华
1.本节课你有那些收获?
(学生总结,教师适当补充或点评。)
2.本节课开始展示了一些平行四边形的图片,同学们再找一找,看看生活中还有哪些使用 的物品中有平行四边形,并想一想这些物品为什么做成平行四边形?
教学反思:本节课通过展示图片创设情境,让学生感知数学来源于生活,激发学生学习兴趣,然后
质疑探索,层层深入,激发学生求知欲,通过分组讨论学生代表发言,培养学生探索精神和合作意识,以及学生解决的能力,并锻炼了学生总结问题的能力。最后,让学生在找生活的实例,在生活中捕捉平行四边形的应用,让学生感受学习数学的意义和乐趣,进一步调动了学生学习的积极性。
第五篇:平行四边形性质 说课稿
《平行四边形性质》说课稿
钟祥四中
宁家明
我说课的内容是人教版八年级下册第一十九章第一节《平行四边形的性质》,下面我从教学背景分析;教学目标设计;教学重点难点;教法学法分析;教学过程;教学反思六个方面对本课的设计进行说明。一.教学背景分析
(一)教材的地位和作用
1.平行四边形的性质是学习和掌握了《图形的平移与旋转》、《中心对称和中心对称图形》的基础上编排的.平行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识.而用中心对称作为工具,借助图形的旋转变化来研究平行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础.且为下节学习习近平行四边形的识别提供了良好的认知基础.2.教学内容的选择和处理
本节课所选教学内容是教材中四条性质及例题.为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力.我采取把平行四边形所有性质集中在一课时中一起研究.(二)学情分析
学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础.八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺.而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲.二.教学目标
1.知识与技能
使学生掌握平行四边形的四条性质,并能运用这些性质进行简单计算.2.过程与方法
让学生体会通过操作,观察,猜想,验证获得数学知识的方法.注意发展学生的分析,归纳能力,提升数学思维品质.3.情感态度与价值观
注意学生独立探究及合作交流的结合,促进自主学习和合作精神.三.重点,难点
重点: 理解并掌握平行四边形的性质.难点: 通过探究得到平行四边形的性质.四.教学方法和教学手段
1.教学方法
采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学.2.教学手段
教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验平行四边形是中心对称图形,并得出平行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略.五. 教学过程
(一)创设情境,导入新课
以录像和照片形式展现平行四边形在生活中的应用,伸缩晾衣架,活动铁门等,引导学生回忆起平行四边形相关知识,明确平行四边形的定义,对边,对角,对角线的概念.教师提出问题:平行四边形具有什么性质呢并板书课题.(教师直接提出问题,提供给学生较大的探究空间,为发现法学习创建情景.)
(二)自主探究,发现性质
组织学生以小组为单位,充分利用手中的工具,通过观察,测量等方法进行大胆猜测,尽可能多的寻找,发现平行四边形的有关性质.(几分钟后,揭示研究结果)
平行四边形对边相等;平行四边形对角相等;平行四边形邻角互补等.对于学生的结论,不论正确与否,鼓励学生对猜想进行探讨,加以证明,并对错误结论进行调整,得出
性质一:平行四边形对边相等.性质二:平行四边形对角相等.此时,教师提问;除了测量方法,还可以用怎样的图形变换?学生在尝试翻折,旋转后,发现图形旋转180度以后重合,于是又有新发现: 性质三:平行四边形对角线互相平分.性质四:平行四边形是中心对称图形,两条对角线交点是对称中心.(让学生自己独立或以小组形式合作学习探究平行四边形性质后,使学生在亲身体验中获得知识,使学生对知识的发生发展过程有了一个清晰的了解.)(三)归纳交流,形成概念
以小组为单位,请学生交流平行四边形性质,并用规范语言描述.请学生总结整个探究的过程:提出问题——试验操作——猜想——验证——归纳总结.若验证后发现不合理,则重新探索,不断往复,形成新知.(四)性质应用,形成技能
问题一:
平行四边形ABCD中,∠A比∠B大40度,AB=8,周长等于24.从这些信息中你能得到哪些结论。(提供了开放的情景,可让学生充分运用已有的性质1,2,加强了对新知识的应用意识.)问题二:
将问题一中“周长等于24”改为“对角线AC,BD交于O,△AOB的周长为24”, 求AC与BD的和是多少.(此题为课本例题的变形,进一步加强了对平行四边形性质的运用.)(五)归纳小结,巩固提高
让学生谈谈本节课的收获及在知识获得过程中的体验和感受.(六)分层作业,发展深化
1.必做题:课本P62练习1,2,习题1,2,3 2.选做题:在直角坐标平面内,平行四边形ABCD有三个顶点的坐标分别为(0,0),(5,0),(2,2).求第四个顶点的坐标.六. 教学反思
1.本节课贯彻了以教师为主导,以学生为主体的原则.以学生动手操作,独立思考,合作交流贯穿始终.2.从问题的提出,引导学生观察,动手操作,猜想,验证,归纳,整个过程让学生充分感受到知识的产生和发展过程,促使学生积极思维,主动探索,勇于发现.3.平行四边形性质的表述不是由教师直接给出,而是在教师指导下由学生归纳,交流,最后达成共识,形成规范的语言描述四条性质,有助于提高学生的概括表达能力.4.根据学生的个体差异,遵循因材施教的原则,设计分层作业,分必做题和选做题,使不同层次的学生都能通过作业有所收获.附板书设计: 一.平行四边形的定义
对边,对角,对角线的概念
二、平行四边形性质 三.平行四边形性质应用
例1: 例2:
问题: