第一篇:数学思维与数学教学
数学思维与数学教学
摘要:思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。数学学习,从本质上来说是以思维为主的活动过程。开展丰富多彩的数学活动,让学生经历“数学化”与“再创造”的思维过程,形成自己对数学知识的理解,从而实现数学思维的升华。使数学教学从单纯的知识记忆、复现、再认向通过引导学生开展主体性数学活动以促进学生思维发展。
关键词:数学思维 数学教学 诱发思维
对于数学思维的突出强调是国际范围内新一轮数学课程改革的一个重要特征,如由美国的《学校数学课程与评估的标准》和我国的《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)关于数学教育目标的论述中就可清楚地看出。然而,就小学数学教育的现实而言,上述的理念还不能说已经得到了很好的贯彻,而造成这一现象的一个重要原因就是以下的认识:小学数学的教学内容过于简单,因而不可能很好地体现数学思维的特点。以下将依据国际上的相关研究对这一观点作出具体分析,希望能促进这一方向上的深入研究,从而能够对于实际教学活动发挥积极的导向作用。
一、数学教育是数学教育的核心 数学教育的意义在于用科学自身的品质,陶冶人、启迪人、充实人、促使人的素质全面发展。数学教育是一种文化,使人得到数学方面的修养,更好地理解、领略现代社会的文明;它是“思维的体操”,使人思维敏锐,表述清楚。一个人学习了数学可以得到自身品质的提高;广大青少年学习了数学可以使整个民族的素质得到提高。
数学教育作为一种文化来提出,思维能力的发展是至关重要的。思维是一个健全人的需要,甚至可以说是人存在的标志。现代社会使人对生活质量的要求更高了。而高质量生活的一个重要内涵,是人能更科学地、更健康思维,特别是人必须有很强的创造性。这种创造性不仅是为了发明或发现什么,还在于要使人更好地适应社会,更有创意地生活。创造力的培养是多方面的。数学给人一种正确的科学的创造思维的示范。人们为了寻找数学模型和运用数学模型,展开了有创造性的、辩证的思维。这些与数学的严格逻辑思维一起,成为基础教育中一种必须而可能的训练项目。也就是说,数学思维教育是培养健全的现代人的需要。
二、数学思维的定义及其特性
学生的学习,不仅要通过感知认识事物的个别属性和外部联系,获得感性认识,更重要的还须在感性认识的基础上,通过复杂的思维活动,认识事物的本质和规律,获得理性认识。所谓的思维是人脑对客观事物的本质和规律的概括的和间接的反映过程。概括性和间接性是思维的两个基本特征。在数学学习中,学生的许多知识都是通过概括认识而获得的。思维的另一个特征是间接性。思维当然要依靠感性认识,没有它就不可能有思维。但是,思维远远超脱于感性认识的界限之外,去认识那些没有直接感知过的,或根本无法感知到的事物,以及预见和推知事物发展的进程,我们说,举一反三,闻一知十,由此及彼,由近及远等,这些都是指间接性的认识。什么是数学思维?数学思维是人脑和数学对象交互作用并按一般的思维规律认识数学规律的过程。数学思维实质上就是数学活动中的思维。
初中学生的数学思维的发展具有两个主要特点:第一,抽象逻辑思维日益发展,并逐渐占有相对优势,但具体形象思维仍然起着重要作用;第二,思维的独立性和批判性有了显著的发展,他们往往喜欢怀疑和争论问题,不随便轻信教师和书本的结论。当然,初中学生思维的独立性和批判性还是很不成熟的,还很容易产生片面性和表面性,这些缺点是和他们的知识经验的不足相联系的。
三、数学教学中的诱发思维
问题是科学研究的起点,是一切思维活动的“源头”。现代教育理论认为:产生学习的根本原因是问题,没有问题就难以诱发和激起求知欲。因此,在数学教学中,我们应把问题作为数学活动的动力、起点和贯穿学习过程的主线。特别是在新课的导入环节,更应精心创设问题情境,通过设疑来激发学生的学习兴趣和思维的火花,通过组织生动、有趣、以学生为主体的活动来激发学生的思维,引导学生发现问题。
例如在学习《分数的基本性质》时,可以这样设计这样的活动:每人四张一样长的纸条,编号为A、B、C、D。首先是学生动手操作:①把A纸条对折平均分成2份,给其中的一份涂上颜色并用分数表示;②把B纸条对折平均分成4份,给其中的2份涂上颜色并用分数表示;③把C纸条对折平均分成6份,给其中的3份涂上颜色并用分数表示;④把D纸条对折平均分成16份,给其中的8份涂上颜色并用分数表示。然后把4张纸条按顺序排列,引导学生观察,结果会发现虽然几个分数不同,但用这些分数表示的纸条却一样长,并写出等式。此时学生一定会产生疑问:“这几个分数的分子分母都不相同,它们为什么会相等呢?是不是一个分数的分子分母随便怎么变,它们的大小都不变呢?”这时学生对这种现象产生一种追根问底的欲望。然后教师引入课题:“今天我们来学习《分数的基本性质》,学了分数的性质以后,同学们就会理解为什么这几个分数是相等的了。”这样一改传统的先复习旧知后讲授新知的教学模式,而是通过学生的动手操作和观察去发现问题,产生疑问。课堂教学一开始就让学生积极主动地参与到数学教学活动中来,使学生带着浓厚的兴趣转入新知识的探索阶段。学生的注意力达到高度集中,思维空前活跃,从而诱发了学生的创造性思维。
四、转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。
五、数学思维能力的培养
(1)激发学习兴趣,调动学生内在的思维能力
学生对数学的迷恋往往是从兴趣开始的,由兴趣产生动机,由动机到探索,由探索到成功,在成功的快感中产生的新的兴趣和动机,推动学习的不断成功。
(2)要教会学生思维的方法
孔子说:“学而不思则罔,思而不学则殆”。恰当地示明学思关系,才能取得良好的效果。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
(3)要培养学生良好的思维品质
数学教学重要的是培养学生的思维能力,而创造性思维又是数学思维的品质,是未来的高科技信息社会中,具有开拓、创新意识的开创性人才所必须具有的思维品质。①在数学教学中,要精心设计,创设一定的思维情境,巧设悬念,使学生对所要解决的问题产生浓厚的兴趣,诱发学生的创造欲。学生的创造性思维往往是由遇到要解决的问题而引起的,因此,教师在传授知识的过程中,要精心设计思维过程,创设思维情境,使学生在数学问题情境中,新的需要与原有的数学水平发生认知冲突,从而激发学生数学思维的积极性、启迪直觉思维,培养创造机智。②任何创造过程,都要经历由直觉思维得出猜想,假设,再由逻辑思维进行推理、实验,证明猜想、假设是正确的。许多科学发现,都是由科学家们一时的直觉得出猜想、假设,然后再由科学家们自己或几代人,经过几年,几十年甚至上百年不懈的努力研究而得以证明。如有名的“哥德巴赫猜想”“黎曼猜想”等等。因此,要培养学生创造思维,就必须培养好学生的直觉思维和逻辑思维的能力,而直觉对培养学生创造性思维能力有着极其重要的意义,在教学中应予以重视。教师在课堂教学中,对学生的直觉猜想不要随便扼杀,而应正确引导,鼓励学生大胆说出由直觉得出的结论。而直觉思维以已有的知识和经验为基础的,因此,在教学中要抓好“三基”教学,同时要保护学生在教学过程中反映出来的直觉思维,鼓励学生大胆猜想发现结论,为杜绝可能出现的错误,应“还原”直觉思维的过程,从理论上给予证明,使学生的逻辑思维能力得以训练,从而培养学生的创造机智。③ 加强对学生发散思维的培养,对造就一代开拓型人才具有十分重要的意义。在数学教学中可通过典型例题的解题教学及解题训练,尤其是一题多解、一题多变、一题多用及多题归一等变式训练,达到使学生巩固与深化所学知识,提高解题技巧及分析问题、解决问题的能力,增强思维的灵活性、变通性和独创性的目的。
培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。当然,良好的思维品质不是一朝一夕就能形成的,而是要根据学生实际情况,通过各种手段,坚持不懈,持之以恒。
第二篇:数学思维与数学教学
数学思维与数学教学
学号:
091090142
09春数本班
汪炜
目
录
一、几种数学思维能力
(一)抽象概括能力
(二)推理能力
(三)选择判断能力
(四)数学探索能力
二、中学生数学思维能力的特点
(一)思维的敏锐性
(二)思维的不成熟性
(三)思维的可训练性
三、如何培养中学生的数学思维能力
(一)找准数学思维能力培养的突破口
(二)教会学生思维的方法
(三)善于调动学生内在的思维力
<<数学思维与数学教学>>
-----------提纲
一、几种数学思维能力
(一)抽象概括能力
(二)推理能力
(三)选择判断能力
(四)数学探索能力
二、中学生数学思维能力的特点
(一)思维的敏锐性
(二)思维的不成熟性
(三)思维的可训练性
三、如何培养中学生的数学思维能力
(一)找准数学思维能力培养的突破口
(二)教会学生思维的方法
(三)善于调动学生内在的思维力
第三篇:数学思维与小学数学教学
数学思维与小学数学教学
郑毓信
(南京大学哲学系,江苏南京210093)
摘要:“帮助学生学会基本的数学思想方法”是新一轮数学课程改革所设定的一个基本目标。以国际上的相关研究为背景,对小学数学教学中如何突出数学思维进行具体分析表明,即使是十分初等的数学内容也同样体现了一些十分重要的数学思维形式及其特
征性质。
关键词:数学思维;小学数学教学 中图分类号:G623.5 文献标识码:C 收稿日期:2003-09-01;修回日期:2003-11-28
作者简介:郑毓信,南京大学哲学系教授,博士生导师,国际数学教育大会(ICME10)国际程序委员会委员。
对于数学思维的突出强调是国际范围内新一轮数学课程改革的一个重要特征,如由美国的《学校数学课程与评估的标准》和我国的《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)关于数学教育目标的论述中就可清楚地看出。然而,就小学数学教育的现实而言,上述的理念还不能说已经得到了很好的贯彻,而造成这一现象的一个重要原因就是以下的认识:小学数学的教学内容过于简单,因而不可能很好地体现数学思维的特点。以下将依据国际上的相关研究对这一观点作出具体分析,希望能促进这一方向上的深入研究,从而能够对于实际教学活动发挥积极的导向作用。
一、数学化:数学思维的基本形式
众所周知,强调与现实生活的联系正是新一轮数学课程改革的一个重要特征。“数学课程的内容一定要充分考虑数学发展进程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体。”就努力改变传统数学教育严重脱离实际的弊病而言,这一做法是完全正确的;但是,从更为深入的角度去分析,我们在此则又面临着这样一个问题,即应当如何去处理“日常数学”与“学校数学”之间的关系。
事实上,即使就最为初等的数学内容而言,我们也可清楚地看到数学的抽象特点,而这就已包括了由“日常数学”向“学校数
学”的重要过渡。
例如,在几何题材的教学中,无论是教师或学生都清楚地知道,我们的研究对象并非教师手中的那个木制三角尺,也不是在黑板上或纸上所画的那个具体的三角形,而是更为一般的三角形的概念,这事实上就已包括了由现实原型向相应的“数学模式”的过渡。再例如,正整数加减法显然具有多种不同的现实原型,如加法所对应的既可能是两个量的聚合,也可能是同一个量的增加性变化,同样地,减法所对应的既可能是两个量的比较,也可能是同一个量的减少性变化;然而,在相应的数学表达式中所说的现实意义、包括不同现实原型之间的区别(例如,这究竟表现了“二元的静态关系”还是“一元的动态变化”)则完全被忽视了:它们所对应的都是同一类型的表达式,如4+5=9、7-3=4等,而这事实上就包括了由特殊到一般的重要过渡。
应当强调的是,以上所说的可说是一种“数学化”的过程,后者集中地体现了数学的本质特点:数学可被定义为“模式的科学”,也就是说,在数学中我们并非是就各个特殊的现实情景从事研究的,而是由附属于具体事物或现象的模型过渡到了更为普遍的“模
式”。
也正由于数学的直接研究对象是抽象的模式而非特殊的现实情景,这就为相应的“纯数学研究”提供了现实的可能性。例如,就以上所提及的加减法运算而言,由于其中涉及三个不同的量(两个加数与它们的和,或被减数、减数与它们的差),因此,从纯数学的角度去分析,我们完全可以提出这样的问题,即如何依据其中的任意两个量去求取第三个量。例如,就“量的比较”而言,除去两个已知数的直接比较以外,我们显然也可提出:“两个数的差是3,其中较小的数是4,问另一个数是几?”或者“两个数的差是3,其中较大的数是4,问另一个数是几?”我们在此事实上已由“具有明显现实意义的量化模式”过渡到了“可能的量化模式”。
综上可见,即使就正整数的加减法此类十分初等的题材而言,就已十分清楚地体现了数学思维的一些重要特点,特别是体现了在现实意义与纯数学研究这两者之间所存在的辩证关系。当然,从理论的角度看,我们在此又应考虑这样的问题,即应当如何去认识所说的纯数学研究的意义。特别是,我们是否应当明确肯定由“日常数学”过渡到“学校数学”的必要性,或是应当唯一地坚持立足
[1]
于现实生活。
由于后一问题的全面分析已经超出了本文的范围,在此仅指明这样一点:与现实意义在一定程度上的分离对于学生很好地把握相应的数量关系是十分重要的。这正是国际上的相关研究、特别是近年来所兴起的“民俗数学”研究的一个重要结论:尽管“日常数学”具有密切联系实际的优点,但也有着明显的局限性。例如,如果仅仅依靠“自发的数学能力”,人们往往就不善于从反面去思考问题,与此相对照,通过学校中的学习,上述的情况就会有很大改变,这就是说,纯数学的研究“在帮助学生学会使用逆运算来解决问题方面有着明显的效果”;另外,同样重要的是,如果局限于特定的现实情景,所学到的数学知识在“可迁移性”方面也会表现出
很大的局限性。
一般地说,学校中的数学学习就是对学生经由日常生活所形成的数学知识进行巩固、适当重组、扩展和组织化的过程,这就意味着由孤立的数学事实过渡到了系统的知识结构,以及对于人类文化的必要继承。这正如著名数学教育家斯根普所指出的:“儿童来到学校虽然还未接受正式教导,但所具备的数学知识却比预料的多„„他们所需要的帮助是从(学校教学)活动中组织和巩固他们的非正规知识,同时需扩展他们这种知识,使其与我们社会文化部分中的高度紧密的知识体系相结合。”
当然,我们还应明确肯定数学知识向现实生活“复归”的重要性。这正如著名数学家、数学教育家弗赖登塔尔所指出的:“数学的力量源于它的普遍性。人们可以用同样的数去对各种不同的集合进行计数,也可以用同样的数去对各种不同的量进行度量。„„尽管运算(等)所涉及的方面十分丰富,但又始终是同一个运算──这即是借助于算法所表明的事实。作为计算者人们容易忘记其所涉及的数以及他所面对的文字题中的算术问题的来源。但是,为了真正理解这种存在于多样性之中的简单性,在计算的同时我们又必须能够由算法的简单性回到多样化的现实。”
总的来说,这就应当被看成“数学化”这一思维方式的完整表述,即其不仅直接涉及如何由现实原型抽象出相应的数学概念或问题,而且也包括了对于数量关系的纯数学研究,以及由数学知识向现实生活的“复归”。另外,相对于具体知识内容的学习而言,我们应当更加注意如何帮助学生很好地去掌握“数学化”的思想,我们应当从这样的角度去理解“情境设置”与“纯数学研究”的意义。这正如弗赖登塔尔所指出的:“数学化„„是一条保证实现数学整体结构的广阔途径„„情境和模型,问题与求解这些活动作为必不可少的局部手段是重要的,但它们都应该服从于总的方法。”
二、凝聚:算术思维的基本形式
由以下关于算术思维基本形式的分析可以看出,思维的分析相对于具体知识内容的教学而言并非某种外加的成分,而是有着重
要的指导意义。
具体地说,这正是现代关于数学思维研究的一项重要成果,即指明了所谓的“凝聚”,也即由“过程”向“对象”的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象──对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。例如,加减法在最初都是作为一种过程得到引进的,即代表了这样的“输入—输出”过程:由两个加数(被减数与减数)我们就可求得相应的和(差);然而,随着学习的深入,这些运算又逐渐获得了新的意义:它们已不再仅仅被看成一个过程,而且也被认为是一个特定的数学对象,我们可具体地去指明它们所具有的各种性质,如交换律、结合律等,从而,就其心理表征而言,就已经历了一个“凝聚”的过程,即由一个包含多个步骤的运作过程凝聚成了单一的数学对象。再如,有很多教师认为,分数应当定义为“两个整数相除的值”而不是“两个整数的比”,这事实上也可被看成包括了由过程向对象的转变,这就是说,就分数的掌握而言我们不应停留于整数的除法这样一种运算,而应将其直接看成一种数,我们可以此为对象去实施加减乘除等运算。
对于所说的“凝聚”可进一步分析如下:
第一,“凝聚”事实上可被看成“自反性抽象”的典型例子,而后者则又可以说集中地体现了数学的高度抽象性,即“是把已发现结构中抽象出来的东西射或反射到一个新的层面上,并对此进行重新建构”。这正如著名哲学家、心理学家皮亚杰所指出的:“全部数学都可以按照结构的建构来考虑,而这种建构始终是完全开放的„„当数学实体从一个水平转移到另一个水平时,它们的功能会不断地改变;对这类‘实体’进行的运演,反过来,又成为理论研究的对象,这个过程在一直重复下去,直到我们达到了一种结构为止,这种结构或者正在形成‘更强’的结构,或者在由‘更强的’结构来予以结构化。”例如,由加法到乘法以及由乘法到乘方的发展显然也可被看成更高水平上的不断“建构”。
第二,以色列著名数学教育家斯法德(A.Sfard)指出,“凝聚”主要包括以下三个阶段:(1)内化;(2)压缩;(3)客体化。其中,“内化”和“压缩”可视为必要的准备。前者是指用思维去把握原先的视觉性程序,后者则是指将相应的过程压缩成更小的单元,从而就可从整体上对所说的过程作出描述或进行反思──我们在此不仅不需要实际地去实施相关的运作,还可从更高的抽象
[6]
[5]
[4]
[3]
[2]
水平对整个过程的性质作出分析;另外,相对于前两个阶段而言,“客体化”则代表了质的变化,即用一种新的视角去看一件熟悉的事物:原先的过程现在变成了一个静止的对象。容易看出,上述的分析对于我们改进教学也具有重要的指导意义。例如,所说的“内化”就清楚地表明了这样一点:我们既应积极提倡学生的动手实践,但又不应停留于“实际操作”,而应十分重视“活动的内化”,因为,不然的话,就不可能形成任何真正的数学思维。另外,在不少学者看来,以上的分析在一定程度上表明了“熟能生巧”这一传
统做法的合理性。
第三,由“过程”向“对象”的过渡不应被看成一种单向的运动;恰恰相反,这两者应被看成同一概念心理表征的不同侧面,我们应善于依据不同的情景与需要在这两者之间作出必要的转换,包括由“过程”转向“对象”,以及由“对象”重新回到“过程”。
例如,在求解代数方程时,我们显然应将相应的表达式,如(x+3)2=1,看成单一的对象,而非具体的计算过程,不然的话,就会出现(x+3)2=1=x2+6x+9=1=„这样的错误;然而,一旦求得了方程的解,如x=-2和-4,作为一种检验,我们又必须将其代入原来的表达式进行检验,而这时所采取的则就是一种“过程”的观点。
正因为在“过程”和“对象”之间存在所说的相互依赖、互相转化的辩证关系,因此,一些学者提出,我们应把相应的数学概念看成一种“过程—对象对偶体”procept,这是由“过程”(process)和(作为对象的)“概念”(concept)这两个词组合而成的。,即应当认为其同时具有“过程”与“对象”这样两个方面的性质。再者,我们又应很好地去把握相应的思维过程(可称为“过程—对象性思维”〔proceptual thinking〕)的以下特征:(1)“对偶性”,是指在“过程”与相应的“对象”之间所存在的相互依存、互相转化的辩证关系;(2)“含糊性”,这集中地体现于相应的符号表达式:它既可以代表所说的运作过程,也可以代表经由凝聚所生成的特定数学对象;(3)灵活性,是指我们应根据情境的需要自由地将符号看成过程或概念。特殊地,数学中常常会用几种不同的符号去表征同一个对象,从而,在这样的意义上,上述的“灵活性”就获得了更为广泛的意义:这不仅是指“过程”与“对象”之间的转化,而且也是指不同的“过程—对象对偶体”之间的转化。例如,5不仅是3与2的和,也是1与4的和、7与2的差、1与5的积,等等。
综上可见,在算术的教学中我们应自觉地应用和体现“凝聚”这样一种思维方式。
三、互补与整合:数学思维的一个重要特征
以上关于“过程—对象性思维”的论述显然已从一个侧面表明了互补与整合这一思维形式对于数学的特殊重要性。以下再以有
理数的学习为例对此作出进一步的说明。
首先,我们应注意同一概念的不同解释间的互补与整合。
具体地说,与加减法一样,有理数的概念也存在多种不同的解释,如部分与整体的关系,商,算子或函数,度量,等等;但是,正如人们所已普遍认识到了的,就有理数的理解而言,关键恰又在于不应停留于某种特定的解释,更不能将各种解释看成互不相关、彼此独立的;而应对有理数的各种解释(或者说,相应的心理建构)很好地加以整合,也即应当将所有这些解释都看成同一概念的不同侧面,并能根据情况与需要在这些解释之间灵活地作出必要的转换。
例如,在教学中人们往往唯一地强调应从“部分与整体的关系”这一角度去理解有理数,特别是,分数常常被想象成“圆的一个部分”。然而,实践表明,局限于这一心理图像必然会造成一定的学习困难、甚至是严重的概念错误。例如,如果局限于上述的解
释,就很难对以下算法的合理性作出解释:
(5/7)÷(3/4)=(5/7)×(4/3)=„
其次,我们应注意不同表述形式之间的相互补充与相互作用。
这也正是新一轮数学课程改革的一个重要特征,即突出强调学生的动手实践、主动探索与合作交流:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式„„教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”[7](2)由于实践活动(包括感性经验)构成了数学认识活动的重要基础,合作交流显然应被看成学习活动社会性质的直接体现和必然要求,因此,从这样的角度去分析,上述的主张就是完全合理的;然而,需要强调的是,除去对于各种学习方式与表述形式的直接肯定以外,我们应更加重视在不同学习方式或表述形式之间所存在的重要联系与必要互补。这正如美国学者莱许(R.Lesh)等所指出的:“实物操作只是数学概念发展的一个方面,其他的表述方式──如图像,书面语言、符号语言、现实情
景等──同样也发挥了十分重要的作用。”
再次,我们应清楚地看到解题方法的多样性及其互补关系。
众所周知,大力提倡解题策略的多样化也是新一轮数学课程改革的一个重要特征:“由于学生生活背景和思考角度不同,所使用的方法必然是多样的,教师应当尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。”
[7](53)
当然,在大力提倡解题策略多样化的同时,我们还应明确肯定思维优化的必要性,这就是说,我们不应停留于对于不同方法在数量上的片面追求,而应通过多种方法的比较帮助学生学会鉴别什么是较好的方法,包括如何依据不同的情况灵活地去应用各种不同的方法。显然,后者事实上也就从另一个角度更为清楚地表明了“互补与整合”确应被看成数学思维的一个重要特点。
最后,我们应清楚地看到在形式和直觉之间所存在的重要的互补关系。特别是,就由“日常数学”向“学校数学”的过渡而言,不应被看成对于学生原先所已发展起来的素朴直觉的彻底否定;毋宁说,在此所需要的就是如何通过学校的数学学习使之“精致化”,以及随着认识的深化不断发展起新的数学直觉。在笔者看来,我们应当从这样的角度去理解《课程标准》中有关“数感”的论述,这就是,课程内容的学习应当努力“发展学生的数感”,而后者又并非仅仅是指各种相关的能力,如计算能力等,还包含“直觉”的含义,即对于客观事物和现象数量方面的某种敏感性,包括能对数的相对大小作出迅速、直接的判断,以及能够根据需要作出迅速的估算。当然,作为问题的另一方面,我们又应明确地肯定帮助学生牢固地掌握相应的数学基本知识与基本技能的重要性,特别是,在需要的时候能对客观事物和现象的数量方面作出准确的刻画和计算,并能对运算的合理性作出适当的说明──显然,后者事实上已超出了“直觉”的范围,即主要代表了一种自觉的努力。
值得指出的是,除去“形式”和“直觉”以外,著名数学教育家费施拜因曾突出地强调了“算法”的掌握对于数学的特殊重要性。事实上,即使就初等数学而言我们也可清楚地看出“算法化”的意义。这正如吴文俊先生所指出的:“四则难题制造了许许多多的奇招怪招。但是你跑不远、走不远,更不能腾飞„„可是你要一引进代数方法,这些东西就都变成了不必要的、平平淡淡的。你就可以做了,而且每个人都可以做,用不着天才人物想出许多招来才能做,而且他可以腾飞,非但可以跑得很远而且可以腾飞。”
[8]这正是数学历史发展的一个基本事实,即一种重要算法的形成往往就标志着数学的重要进步。也正因为此,费施拜因将形式、直觉与算法统称为“数学的三个基本成分”,并专门撰文对这三者之间的交互作用进行了分析。显然,就我们目前的论题而言,这也就更为清楚地表明了“互补与整合”确应被看成数学思维的一个重要特点。
综上可见,即使是小学数学的教学内容也同样体现了一些十分重要的数学思维形式及其特征性质,因此,在教学中我们应作出切实的努力以很好地落实“帮助学生学会基本的数学思想方法”这一重要目标。
第四篇:数学教学与发散思维
发散思维数学课堂的运用
内丘四中 施梅霞
“创造性思维需要有丰富的想象。”一位老师在课堂上给同学们出了一道有趣的题目“砖都有哪些用处?”,要求同学们尽可能想得多一些,想得远一些。马上有的同学想到了砖可以造房子、垒鸡舍、修长城。有的同学想到古代人们把砖刻成建筑上的工艺品。有一位同学的回答很有意思,他说砖可以用来打坏人。从发散性思维的角度来看,这位同学的回答应该得高分,因为他把砖和武器联系在一起了。同样袁老师的课堂深深的吸引了我。看着黑板上的六组平行线,心中疑问,袁老师这节课的内容是什么?手里的绳子怎么用?绳子的两端固定在黑板上,随意以处为顶点,把这个点至于某处,为了让学生轻松的记住几个点的位置,老师用形象的比喻来表述。鸟嘴,猪嘴,曲项向天歌,回眸一笑,诙谐幽默,又非常的形象。以期中一个为例说明∠A, ∠B, ∠P之间的关系。然后让学生讨论,分析,演示写出结论。有了前面的铺垫,学生的兴趣很高。取得了很好的效果。袁老师的教学也充分体现了
“一图多问、一图多变和一题多图”的教学思路是发散思维的典型例子。
图形发散习惯指图形中某些元素的位置不断变化,从而产生一系列新的图形。了解几何图形的演变过程,不仅可以举一反三。触类旁通,还可以通过演变过程了解它们之间的区别和联系,找出特殊与一般之间的关系。引导学生观察同一事物时,要从不同的角度、不同的方面仔细地观察,认识事物,理解知识,这样既能提高学生思维的灵活性,又能培养学生的发散思维能力。
通过适当变化几何题目的已知或结论,可使学生的发散思维能力得到进一步加强。进行一次适当的变式训练,不仅能巩固知识,开阔学生视野,还能活跃学生思维,提高学生的应变能力。
长期以来,初中数学教学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着一个模式,学生习惯于按照书上写的与教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于中学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在中学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为一种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。训练学生对同一条件,联想到多种结论的发散思维习惯。这种思维习惯是指确定了已知条件后,没有固定的结论,让学生自己尽可能多地确定未知结论,并这个过程充分去求解这些未知结论。揭示思维的广度和深度。不同层次的学生都能得到有益的尝试,符合素质教育面向全体学生的要求。
1、在课堂教学中应该适当给学生提供独立思考问题、自己提问题的条件与机会为发散思维的培养创造良好的内、外部的环境。
2、在课堂上善于创设思维情景,引导学生积极思维,运用已学过知识去解决新问题。其中组织课堂讨论是一种使用较普遍的有效方法。这样培养的学生敢于提问题、敢于批判、敢于质疑、思维敏捷。不受老师讲解的束缚,可为发散思维的培养创良好的内、外部环境。
3、既然事物是相互联系的,是多方面关系的总和。所以在教学中教育学生当一种方法,一个方面不能解决问题时,应主动地否定这一方法、方面,让思维向另一方法、另一方面跨越。不要满足已有的思维成果,力图向新的方法、领域探索,并力图在各种方法、方面中,寻找一种更好一点的方法、方面。
4、教学上运用相关的题目进行训练,促使学生在思维上善于从同一对象中产生多种分化因素的能力,从不同的方向去思考,揭示同一本质表现出来的现象、形式之间的差异。
5、使思维富于联想,思路宽阔,能对已知信息进行多方向、多角度的联想,从而能够发现新知识、提出新问题,得到多种解答或结论。
6、注意在学习过程中,对于学生提出的不同结论,如果讲得有道理,教师就应该给予肯定,即便是与教材中的叙述有所出入,教师也不应该硬将教材中的结论强加给学生,因为任何知识的学习都要经历由不完整到完整的过程。让学生真实的坦陈自己的想法,尊重孩子的思维成果,不轻易否定孩子在认真思维基础上的答案,这样,学生才会“放下包袱、开动机器”,这样,才会“百花齐放、百家争鸣”。
2.17.3.10
第五篇:数学思维与小学数学教学
数学思维与小学数学教学
内容摘要:数学教学的最终目的是使学生学会一种学习方法。随着社会的进步,人们逐渐认识到小学数学教学的首要目标是培养孩子的自主能力,培养孩子的智商。因此,小学数学教育的重点应该是培养学生的思维能力。这也是教学的重任和测试教学质量的关建。本文提到了数学思维的概念,讲到了小学数学教育要具备的基本功和通过学习数学要养成的思想方法。
关健词:数学思维 小学数学 基本功
思维即人脑对客观现实的一种反应和概括,同时还夹杂着自己的主观意识。从数学的角度对问题进行分析,并提出解决问题的方法称作数学思维。而数学本身是对模式的一种研究,是一种抽象化的过程。数学将具体的问题普遍化、抽象化为一个纯粹的数学问题,并通过抽象 的模式 解决实际问题。所以,对小学数学教学来讲,以他们生活中熟悉的具体事物为依据,逐步开始以数学抽象的思维方式去进行分析。
一.数学思维的概念
数学思维是一种有条件的,按部就班的,循序渐进的思维方式,主要以判断、推理等概念性的思维形式为主要依据,是小学生数学能力的核心体现。所以,在小学数学教学过程中,需要重点培养学生的逻辑思维能力,儿童时期是逻辑思维和数学概念形成的初期。数学知识本身就具有高度的逻辑性和抽象性,所以孩子通过逻辑推理和数学思考可以锻炼他们的分析问题,解决问题的能力,帮助孩子开发大脑潜能,提高孩子的创造力。
二.小学数学教学基本功的训练与提高
小学数学教学基本功之一――数学语言运用准确。作为小学数学教师,首先要具备讲数学语言的能力。数学教师在运用数学语言进行教学的时候,尽量要做到思路清晰、表述准确、语言简洁。把复杂话变简单,把简单的话变成容易让学生听懂。保证每个学生都能准确把握教学内容。比如,一些数学老师经常会说这样一句话:“15这个数字”,其实这是一个技术性的错误,数字只有0~9这十个,而15是个数,并非数字。如果老师在讲课中不强调清楚,就会给学生留下一个错误的概念,不能准确的区分,数和数字的差别。
小学数学教学基本功之二――会写,会画。板书是指教师根据课堂教学的需要,在黑板上书写的文字、符号、以及绘制的图表。一个完整的板书可以反映教师的许多基本技能,因此教师应重视板书的设计,注重基本功的训练。数学教学板书不是单一的,有很多内容往往要用图形来表达。因此,作为小学数学教师还要具备绘画的能力。
小学数学教学基本功之三――会制作教具。小学生的思维正处于从具体形象思维到抽象逻辑思维的过渡阶段。在小学,可以提供一些教具,但不能完全满足教学的需要。当我们找不到合适的教具时,教师不得不自己动手,以达到教学效果。这就要求教师要具有,会制作教具的能力。
小学数学教学基本功之四――制作试卷。对于一些信息闭塞的山村学校来说,教师的这项基本功就变的更加重要。教师要根据课程标准、教学内容和学生的实际情况,制定相应的试卷,来测试学生的水平,改进教学方法,以便促进教学质量的提高,缩小与城市学校的差距。
三.小学数学教学要从不同的角度分析问题,看待问题
事实证明,人的智力是有差别的。有些学生确实学不好数学,可能怎么教都学不好!对于这样的学生,我们也不必强求,可以换一种思维去对待。我们可以这样看待,他数学学不好,不一定语文学不好,他只要有一门学的好,或者有一门其他方面突出的技能,“三百六十行,行行出状元”,他就能在社会上生存,就能发挥出自己的聪明才智,为社会做贡献。同样会得到别人的认可。《非诚勿扰》的主持人孟非在主持的过程中,曾经说过一句话,他说他上学的时候,数学考20分,英语考20分,语文考150分,满分150分。就这样,孟非成为了中国最著名的主持人之一。其实从不同的角度去看待问题就会有不同的结果,事实也是这样,其实以上讲的,就是一种数学思维,从不同的角度去看待问题,从不同的角度去解答问题,就像解数学题的时候,一道题可能有好几种解法,其实在这个过程中就是在培养学生用不同的方法解决同一个问题的能力,这个角度不行,你换一个角度,说不定就会有不同的答案。
有句话说,授之以鱼不如授之以渔,数学教学不仅仅是教受学生数学课程,更多的是在传授一种学习方法,在学习的过程中,提升学生的思维能力,解决问题的能力。其实在这个过程中锻炼的,是人的思考方式。做为一名小?W数学老师,应该尽量开发学生的潜能,打开他们的思维能力,以达到教育的目的。
参考文献
[1]张月红.数学教学中如何激发学生学习兴趣[J].学周刊.2016(07)
[2]岳永芳.浅谈创新能力在数学教学中的运用[J].中国培训.2016(06)
[3]肖必平.电子书包在小学数学教学中的应用[J].教育现代化.2016(26)
[4]武志红.小学数学教学中如何培养学生的学习兴趣[J].生物技术世界.2014(12)
[5]王春兰.小学数学教学与生活实践相结合的策略[J].现代农村科技.2014(24)
(作者单位:重庆市垫江县凤山小学)