第一篇:2018年中考数学专题复习卷《四边形》含解析
2018年中考数学专题复习卷含解析
四边形
一、选择题
1.下列命题正确的是()A.对角线相等的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形
2.正十边形的每一个内角的度数为()A.B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°
B.40°
C.80°
D.120° 4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()
A.AB=AD
B.AC=BD
C.∠ABC=90°
D.∠ABC=∠ADC 5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。
A.35° B.45° C.55° D.65°
2018年中考数学专题复习卷含解析
6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。
A.20 B.24 C.40 D.48 7.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()
A.-
B.C.-2
D.2 8.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()
A.AB= EF
B.AB=2EF
C.AB= EF
D.AB=
EF 2
2018年中考数学专题复习卷含解析
9.如图,菱形 为()的对角线,相交于点,,则菱形 的周长
A.52
B.48
C.40
D.20 10.如图,将一张含有 大小为()角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则 的A.B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()
A.B.C.D.12
2018年中考数学专题复习卷含解析
12.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()
A.75°
B.60°
C.55°
D.45°
二、填空题
13.四边形的外角和是________度.
14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________
15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.
16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
2018年中考数学专题复习卷含解析
17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数
(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.
18.如图,在正五边形ABCDE中,AC与BE相交于点F,则 AFE的度数为________
19.如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)
三、解答题
2018年中考数学专题复习卷含解析
21.如图,,在一条直线上,已知 证:四边形 是平行四边形.,,连接.求
22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
求证:矩形ABCD是正方形
23.已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F,求证:AE=CF.
24.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断
① OA=OC
② AB=CD
③
∠BAD=∠DCB
④ AD∥BC 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:(1)构造一个真命题,画图并给出证明;(2)构造一个假命题,举反例加以说明.6
2018年中考数学专题复习卷含解析
25.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.
26.如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
2018年中考数学专题复习卷含解析
答案解析
一、选择题 1.【答案】C 【解析】 :A.改成为:对角线“互相平分”的四边形是平行四边形,故A不符合题意;B.改成为:对角线相等的“平行四边形”是矩形,故B不符合题意; C.正确,故C符合题意;
D.改成为:对角线互相垂直且相等的“平行四边形”是正方形,故D不符合题意; 故答案为:C.【分析】特殊四边形的对角线是比较特殊的,当两条对角线具有如下性质“互相平分,相等,互相垂直”中的一个或二个或三个时,这个四边形或是平行四边形、或是矩形、或是菱形、或是正方形. 2.【答案】D 【解析】 :方法一: 故答案为:D.【分析】方法一:根据内角和公式180°×(n-2)求出内角和,再求每个内角的度数;方法二:根据外角和为360°,求出每个外角的度数,而每个外角与它相邻的内角是互补的,则可求出内角. 3.【答案】C 【解析】 :∵∠A,∠B,∠C,∠D度数之比为1:2:3:3,∴设∠A=x,∠B=2x,∠C=3x,∠D=3x ∴x+2x+3x+3x=360° 解之:x=40° ∴∠B=2×40°=80° 故答案为:C 【分析】根据已知条件设∠A=x,∠B=2x,∠C=3x,∠D=3x,利用四边形的内角和=360°,建立方程,就可求出∠B的度数。4.【答案】A 【解析】 :∵▱ABCD,AB=AD ∴四边形ABCD是菱形,因此A符合题意; B、∵▱ABCD,AC=BD ∴四边形ABCD是矩形,因此B不符合题意;
;方法二:
.
2018年中考数学专题复习卷含解析
C、▱ABCD,∠ABC=90°
∴四边形ABCD是矩形,因此C不符合题意; D、∵▱ABCD,∴∠ABC=∠ADC,因此D不符合题意; 故答案为:A 【分析】根据菱形的判定定理,对各选项逐一判断,即可得出答案。5.【答案】C 【解析】 :如图,依题可得:∠1=35°,∠ACB=90°,∴∠ECA+∠1=90°,∴∠ECA=55°,又∵纸片EFGD为矩形,∴DE∥FG,∴∠2=∠ECA=55°,故答案为:C.【分析】由补角定义结合已知条件得出∠ECA度数,再根据矩形性质和平行线性质得∠2度数.6.【答案】A 【解析】 :设对角线AC、BC交于点O,∵四边形ABCD是菱形,AC=6,BD=8 ∴A0=3,BO=4,AC⊥BC,∴AB=5, 9
2018年中考数学专题复习卷含解析
∴C菱形ABCD=4×5=20.故答案为:A.【分析】根据菱形性质可得A0=3,BO=4,AC⊥BC,再由勾股定理可得菱形边长,根据周长公式即可得出答案.7.【答案】A 【解析】 ∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故答案为:A.【分析】根据A,B两点的坐标,得出OA=2,OB=1,根据矩形的性质得出BC=OA=2,AC=OB=1,根据C点的位置得出C点的坐标,利用反比例函数图像上的点的坐标特点得出k的值。8.【答案】D 【解析】 连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB= 故答案为:D.【分析】连接AC、BD交于点O,根据菱形的性质,得出OA=
AC,OB= BD,AC⊥BD,根据三角形的中
=
EF,2018年中考数学专题复习卷含解析
位线定理得出EH= BD,EF= 出AB的长。9.【答案】A
AC,又EH=2EF,故OA=EF,OB=2OA=2EF,在Rt△AOB中,由勾股定理得【解析】 :∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,BD⊥AC 在Rt△ABO中,AB= ∴菱形ABCD的周长=4AB=52,故答案为:A.
【分析】根据菱形的对角线互相平分且垂直得出OB=12,OA=5,再根据勾股定理得出AB的长度,从而得出菱形的周长。10.【答案】A 【解析】 :如图,=13,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°. 故答案为:A.
【分析】根据矩形的对边平行及平行线的性质,可求出∠3的度数,再根据三角形外角的性质,可求出结果。
11.【答案】B 【解析】 ∵正方形的边长为4 ∴BD=∴MN=FG=GH=EN=∴EF=MH==EN,∴六边形EFGHMN的周长为:EF+EN+GH+MH+MN+FG =++++
+
2018年中考数学专题复习卷含解析
=
【分析】根据正方形的性质和勾股定理,求出六边形EFGHMN的各边的长,再求出其周长即可。12.【答案】B 【解析】 :∵等边△ADE和正方形ABCD ∴AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60° ∴∠ABE=∠AEB,∠BAE=90°+60°=150° ∴∠ABE=(180°-150°)÷2=15° ∴∠CBF=90°-15°=75° ∵AC是正方形ABCD的对角线 ∴∠ACB=45°
∴∠BFC=180°-∠ACB-∠CBF=180°-45°-75°=60° 故答案为:B 【分析】根据等边三角形和正方形的性质,可证得AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60°及∠ACB的度数,可求得∠BAE,再利用三角形内角和定理求出∠CBF的度数,然后根据BFC=180°-∠ACB-∠CBF,就可求出结果。
二、填空题 13.【答案】360 【解析】 :四边形的外角和是360° 故答案为:360°
【分析】根据任意多边形的外角和都是360°,可得出答案。14.【答案】
【解析】 如图,作GH⊥BA交BA的延长线于H,EF交BG于O.
∵四边形ABCD是菱形,∠D=60°,2018年中考数学专题复习卷含解析
∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,∵AG=GD=1,∴AH= AG=,HG=,在Rt△BHG中,BG= ∵△BEO∽△BGH,∴,∴,∴BE=,故答案为: .
【分析】先根据题意作出图,先根据题目中的条件,解直角三角形AGH,从而求得AH与HG的长度,再解直角三角形BGH求得BG的长度,再由△BEO∽△BGH得到对应线段成比例,进而求得BE的值.15.【答案】
【解析】 :∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO= BD= ×8=4(cm),CO= AC= ×6=3(cm),在△BCO中,由勾股定理,可得 BC= ∵AE⊥BC,∴AE•BC=AC•BO,∴AE===
(cm),= =5(cm)
即菱形ABCD的高AE为 故答案为: . cm.
【分析】根据菱形的两条对角线互相垂直平分,结合勾股定理求得BC的长度,再利用菱形的面积等于底乘以高,也等于两条对角线的乘积的一半,可以求得AE的长.13
2018年中考数学专题复习卷含解析
16.【答案】
【解析】 :过点A作AG⊥BC于点G
∵▱ABCD ∴AD∥BC ∴∠DAE=∠AEB,∠BAD+∠B=180° ∴∠B=180°-120°=60° ∵AE平分∠BAD ∴∠DAE=∠BAE ∴∠BAE=∠AEB ∴AB=BE=2 ∴CE=3-2=1 ∴△ABE是等边三角形 ∴BG=1 AG=
∵CF∥AE,AD∥BC ∴四边形AECF是平行四边形 ∴四边形AECF的面积=CEAG=故答案为:
【分析】根据平行四边形的性质及角平分线的定义,证明AB=BE=2,求出CE的长,再证明△ABE是等边三角形,就可求出BG的长,利用勾股定理求出AG的长,然后证明四边形AECF是平行四边形,利用平行四边形的面积公式,可求解。17.【答案】
2018年中考数学专题复习卷含解析
【解析】 :过点F作CH⊥x轴
∵菱形ABCD ∴AD∥x轴,AB=BC,AB∥DC ∴∠ABO=∠DCO,S菱形ABCD=4k ∴△ABO∽△FHC ∴
∵点A(0,4)∴OA=4 ∴点E∵AE=CF,∴解之CF=
∴
∴FH=
∵S菱形ABCD=4k,S四边形ABFD=20,∴S△BFC=S菱形ABCD-S四边形ABFD=4k-20=∴
故答案为:【分析】根据菱形的性质得出AD∥x轴,AB=BC,AB∥DC,根据点A得出OA的长,表示出点E的坐标,再根据AE=CF,求出CF的长,证明△ABO∽△FHC,求出FH的长,然后根据S菱形ABCD=4k,S四边形ABFD=20,建立关于k的方程,求出k的值即可。18.【答案】72°
2018年中考数学专题复习卷含解析
【解析】 ∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.
【分析】根据正五边形的性质得出AB=BC=AE,∠ABC=∠BAE=108°,根据等腰三角形的性质及三角形的内角和即可得出∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,根据三角形的外角定理即可得出答案。19.【答案】
【解析】 :连接BE,∵平行四边形ABCD ∴AD∥BC,AD=BC ∵AB=OB,点E时OA的中点 ∴BE⊥OA ∵点E、点F分别是OA、OD的中点 ∴EF是△AOD的中位线 ∴
∴∠FEN=∠BMN=90° ∴∠CEF=∠ECB=45° ∴△BEC是等腰直角三角形 ∵EM⊥BC即EM是斜边BC边上的高
∴EF=BM 在△FEN和△BMN中
2018年中考数学专题复习卷含解析
∴△FEN≌△BMN ∴EN=MN即EF=2EN,BC=4EN 在Rt△FEN中,EN2+EF2=FN2 ∴EN2+4EN2=10,【分析】根据已知条件先证明BE⊥AC,再证EF是△AOD的中位线,根据∠CEF=45°,可证得△BEC是等腰直角三角形,可证得EF=BM,然后证明△FEN≌△BMN,证得EF=2EN,利用勾股定理求出EN的长,就可求出BC的长。20.【答案】π
【解析】 :连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣ ∴阴影部分的面积= ×2×4﹣(4﹣π)=π. 故答案为:π.
【分析】连接OE,如图,根据题意得出OD=2,OE⊥BC,易得四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD,又图中阴影部分的面积等于矩形面积的一半再减去由弧DE、线段EC、CD所围成的面积即可得出答案。
三、解答题
21.【答案】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF,∴BE+CE=CF+CE,=4﹣π,2018年中考数学专题复习卷含解析
∴BC=EF.
在△ABC和△DEF中,∴△ABC≌△DEF(ASA),∴AB=DE. 又∵AB∥DE,∴四边形ABED是平行四边形
【解析】【分析】根据二直线平行,同位角相等得出∠B=∠DEF,∠ACB=∠F.根据等式性质由BE=CF,得出BC=EF.然后用ASA判断出△ABC≌△DEF,根据全等三角形对应边相等得出AB=DE.根据一组对边平行且相等的四边形是平行四边形得出结论。22.【答案】∵四边形ABCD是矩形,∴∠B=∠D=∠C=90° ∵△AEF是等边三角形 ∴AE=AF,∠AEF=∠AFE=60°,又∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°-45°-60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD, ∴矩形ABCD是正方形。
【解析】【分析】证明矩形ABCD是正方形,根据有一组邻边相等的矩形是正方形,则可证一组邻边相等 23.【答案】证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠DAO=∠BCO,在△AEO和△CFO中,∵ , ∴△AEO≌△CFO(ASA), ∴AE=CF.【解析】【分析】根据平行四边形性质可得AO=CO,AD∥BC,根据平行线性质可得∠DAO=∠BCO,再由全等三角形判定ASA得△AEO≌△CFO,由全等三角形性质即可得证.18
2018年中考数学专题复习卷含解析
24.【答案】(1)解:①④作为条件时,如图,∵AD∥BC,∴∠ADB=∠DBC,在△AOD和△COB中,∵ , ∴△AOD≌△COB(AAS),∴AD=CB,∴四边形ABCD是平行四边形.(2)解:②④作为条件时,此时一组对边相等,一组对边平行,是等腰梯形.【解析】【分析】(1)如果①②作为条件,则两个三角形中的条件是SSA,不能证到三角形全等,就不能证明四边形是平行四边形;如果①③作为条件,也不能得到四边形是平行四边形;如果②③作为条件,也不能得到四边形是平行四边形;只有①④作为条件时,可根据全等三角形的判定AAS得两个三角形全等,总而得线段相等,再根据一组对边平行且相等的四边形是平行四边形;(2)如果②④作为条件时,根据梯形的定义,可知其为等腰梯形.25.【答案】(1)解:∵四边形ABCD是矩形,∴AD=BC,AB=CD.
由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD. 在△ADE和△CED中,∴△ADE≌△CED(SSS)
(2)解:由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形,2018年中考数学专题复习卷含解析
【解析】【分析】(1)根据矩形的性质得出AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,从而得出AD=CE,AE=CD.然后利用SSS判断出△ADE≌△CED;
(2)根据全等三角形对应角相等由△ADE≌△CED,得出∠DEA=∠EDC,根据等角对等边即可得出结论。26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE.∵E是AD的中点,∴AE=DE.又∵∠FEA=∠CED,∴△FAE≅△CDE(AAS),∴CD=FA.又∵CD∥AF,∴四边形ACDF是平行四边形.(2)BC=2CD.理由如下:
∵CF平分∠BCD,∴∠DCE=45°.∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD.∵AD=BC,∴BC=2CD.【解析】【分析】(1)此题方法不唯一,例如:证明△FAE≅△CDE,则CD=FA,又由CD∥FA即可判定,依据是:有一组对边平行且相等的四边形是平行四边形;(2)由CF平分∠BCD,得∠DCE=45°,则CD=DE,而BC=AD=2DE,从而可证明.20
第二篇:2018年中考数学专题《四边形》复习试卷含答案解析
2018年中考数学专题复习卷: 四边形
一、选择题
1.下列命题正确的是()
A.对角线相等的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形
2.正十边形的每一个内角的度数为()
A.B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()
A.30° B.40° C.80° D.120°
4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()
A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC 5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。
A.35°
B.45°
C.55°
D.65°
6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。
A.20
B.24
C.40
D.48 7.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()
A.- B.C.-2 D.2 8.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()
A.AB= EF B.AB=2EF C.AB= 的对角线,相交于点,EF D.AB=,EF 的周长9.如图,菱形 为(),则菱形
A.52 B.48 C.40 D.20 10.如图,将一张含有 大小为()角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则 的A.B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()
A.B.C.D.12 12.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()
A.75° B.60° C.55° D.45°
二、填空题
13.四边形的外角和是________度.
14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________
15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.
16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数 BC=k,AE=
(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,CF,且S四边形ABFD=20,则k=________.
18.如图,在正五边形ABCDE中,AC与BE相交于点F,则 AFE的度数为________
19.如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)
三、解答题 21.如图,四边形,,在一条直线上,已知,,连接.求证:是平行四边形.22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
求证:矩形ABCD是正方形
23.已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F,求证:AE=CF.
24.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断 ① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.25.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:△DEF是等腰三角形.
26.如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
答案解析
一、选择题 1.【答案】C
【解析】 :A.改成为:对角线“互相平分”的四边形是平行四边形,故A不符合题意;B.改成为:对角线相等的“平行四边形”是矩形,故B不符合题意; C.正确,故C符合题意;
D.改成为:对角线互相垂直且相等的“平行四边形”是正方形,故D不符合题意; 故答案为:C.【分析】特殊四边形的对角线是比较特殊的,当两条对角线具有如下性质“互相平分,相等,互相垂直”中的一个或二个或三个时,这个四边形或是平行四边形、或是矩形、或是菱形、或是正方形. 2.【答案】D
【解析】 :方法一: 故答案为:D.【分析】方法一:根据内角和公式180°×(n-2)求出内角和,再求每个内角的度数;方法二:根据外角和为360°,求出每个外角的度数,而每个外角与它相邻的内角是互补的,则可求出内角. 3.【答案】C
【解析】 :∵∠A,∠B,∠C,∠D度数之比为1:2:3:3,∴设∠A=x,∠B=2x,∠C=3x,∠D=3x ∴x+2x+3x+3x=360° 解之:x=40° ∴∠B=2×40°=80° 故答案为:C 【分析】根据已知条件设∠A=x,∠B=2x,∠C=3x,∠D=3x,利用四边形的内角和=360°,建立方程,就可求出∠B的度数。4.【答案】A
【解析】 :∵▱ABCD,AB=AD ∴四边形ABCD是菱形,因此A符合题意; B、∵▱ABCD,AC=BD ∴四边形ABCD是矩形,因此B不符合题意;
;方法二:
. C、▱ABCD,∠ABC=90°
∴四边形ABCD是矩形,因此C不符合题意; D、∵▱ABCD,∴∠ABC=∠ADC,因此D不符合题意; 故答案为:A 【分析】根据菱形的判定定理,对各选项逐一判断,即可得出答案。5.【答案】C
【解析】 :如图,依题可得:∠1=35°,∠ACB=90°,∴∠ECA+∠1=90°,∴∠ECA=55°,又∵纸片EFGD为矩形,∴DE∥FG,∴∠2=∠ECA=55°,故答案为:C.【分析】由补角定义结合已知条件得出∠ECA度数,再根据矩形性质和平行线性质得∠2度数.6.【答案】A
【解析】 :设对角线AC、BC交于点O,∵四边形ABCD是菱形,AC=6,BD=8 ∴A0=3,BO=4,AC⊥BC,∴AB=5, ∴C菱形ABCD=4×5=20.故答案为:A.【分析】根据菱形性质可得A0=3,BO=4,AC⊥BC,再由勾股定理可得菱形边长,根据周长公式即可得出答案.7.【答案】A
【解析】 ∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故答案为:A.【分析】根据A,B两点的坐标,得出OA=2,OB=1,根据矩形的性质得出BC=OA=2,AC=OB=1,根据C点的位置得出C点的坐标,利用反比例函数图像上的点的坐标特点得出k的值。8.【答案】D
【解析】 连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB= 故答案为:D.【分析】连接AC、BD交于点O,根据菱形的性质,得出OA= AC,OB= BD,AC⊥BD,根据三角形的中
=
EF,位线定理得出EH= BD,EF= AC,又EH=2EF,故OA=EF,OB=2OA=2EF,在Rt△AOB中,由勾股定理得出AB的长。9.【答案】A
【解析】 :∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,BD⊥AC 在Rt△ABO中,AB= ∴菱形ABCD的周长=4AB=52,故答案为:A.
【分析】根据菱形的对角线互相平分且垂直得出OB=12,OA=5,再根据勾股定理得出AB的长度,从而得出菱形的周长。10.【答案】A
【解析】 :如图,=13,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°. 故答案为:A.
【分析】根据矩形的对边平行及平行线的性质,可求出∠3的度数,再根据三角形外角的性质,可求出结果。
11.【答案】B
【解析】 ∵正方形的边长为4 ∴BD=∴MN=FG=GH=EN=∴EF=MH==EN,∴六边形EFGHMN的周长为:EF+EN+GH+MH+MN+FG =++++
+
=
【分析】根据正方形的性质和勾股定理,求出六边形EFGHMN的各边的长,再求出其周长即可。12.【答案】B
【解析】 :∵等边△ADE和正方形ABCD ∴AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60° ∴∠ABE=∠AEB,∠BAE=90°+60°=150° ∴∠ABE=(180°-150°)÷2=15° ∴∠CBF=90°-15°=75°
∵AC是正方形ABCD的对角线 ∴∠ACB=45°
∴∠BFC=180°-∠ACB-∠CBF=180°-45°-75°=60° 故答案为:B 【分析】根据等边三角形和正方形的性质,可证得AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60°及∠ACB的度数,可求得∠BAE,再利用三角形内角和定理求出∠CBF的度数,然后根据BFC=180°-∠ACB-∠CBF,就可求出结果。
二、填空题 13.【答案】360
【解析】 :四边形的外角和是360° 故答案为:360°
【分析】根据任意多边形的外角和都是360°,可得出答案。14.【答案】
【解析】 如图,作GH⊥BA交BA的延长线于H,EF交BG于O.
∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,∵AG=GD=1,∴AH= AG=,HG=,在Rt△BHG中,BG= ∵△BEO∽△BGH,∴,∴,∴BE=,. 故答案为:
【分析】先根据题意作出图,先根据题目中的条件,解直角三角形AGH,从而求得AH与HG的长度,再解直角三角形BGH求得BG的长度,再由△BEO∽△BGH得到对应线段成比例,进而求得BE的值.15.【答案】
【解析】 :∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO= BD= ×8=4(cm),CO=
AC=
×6=3(cm),在△BCO中,由勾股定理,可得 BC= ∵AE⊥BC,∴AE•BC=AC•BO,∴AE===
(cm),= =5(cm)
即菱形ABCD的高AE为 故答案为: . cm.
【分析】根据菱形的两条对角线互相垂直平分,结合勾股定理求得BC的长度,再利用菱形的面积等于底乘以高,也等于两条对角线的乘积的一半,可以求得AE的长.16.【答案】
【解析】 :过点A作AG⊥BC于点G
∵▱ABCD ∴AD∥BC ∴∠DAE=∠AEB,∠BAD+∠B=180° ∴∠B=180°-120°=60° ∵AE平分∠BAD ∴∠DAE=∠BAE ∴∠BAE=∠AEB ∴AB=BE=2 ∴CE=3-2=1 ∴△ABE是等边三角形 ∴BG=1 AG=
∵CF∥AE,AD∥BC ∴四边形AECF是平行四边形 ∴四边形AECF的面积=CEAG=故答案为:
【分析】根据平行四边形的性质及角平分线的定义,证明AB=BE=2,求出CE的长,再证明△ABE是等边三角形,就可求出BG的长,利用勾股定理求出AG的长,然后证明四边形AECF是平行四边形,利用平行四边形的面积公式,可求解。17.【答案】 【解析】 :过点F作CH⊥x轴
∵菱形ABCD ∴AD∥x轴,AB=BC,AB∥DC ∴∠ABO=∠DCO,S菱形ABCD=4k ∴△ABO∽△FHC ∴
∵点A(0,4)∴OA=4 ∴点E∵AE=CF,∴解之CF=
∴
∴FH=
∵S菱形ABCD=4k,S四边形ABFD=20,∴S△BFC=S菱形ABCD-S四边形ABFD=4k-20=∴
故答案为:【分析】根据菱形的性质得出AD∥x轴,AB=BC,AB∥DC,根据点A得出OA的长,表示出点E的坐标,再根据AE=CF,求出CF的长,证明△ABO∽△FHC,求出FH的长,然后根据S菱形ABCD=4k,S四边形ABFD=20,建立关于k的方程,求出k的值即可。18.【答案】72°
【解析】 ∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.
【分析】根据正五边形的性质得出AB=BC=AE,∠ABC=∠BAE=108°,根据等腰三角形的性质及三角形的内角和即可得出∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,根据三角形的外角定理即可得出答案。19.【答案】
【解析】 :连接BE,∵平行四边形ABCD ∴AD∥BC,AD=BC ∵AB=OB,点E时OA的中点 ∴BE⊥OA ∵点E、点F分别是OA、OD的中点 ∴EF是△AOD的中位线 ∴
∴∠FEN=∠BMN=90° ∴∠CEF=∠ECB=45° ∴△BEC是等腰直角三角形
∵EM⊥BC即EM是斜边BC边上的高
∴EF=BM 在△FEN和△BMN中
∴△FEN≌△BMN
∴EN=MN即EF=2EN,BC=4EN 222在Rt△FEN中,EN+EF=FN 22∴EN+4EN=10,【分析】根据已知条件先证明BE⊥AC,再证EF是△AOD的中位线,根据∠CEF=45°,可证得△BEC是等腰直角三角形,可证得EF=BM,然后证明△FEN≌△BMN,证得EF=2EN,利用勾股定理求出EN的长,就可求出BC的长。20.【答案】π
【解析】 :连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=2﹣ ∴阴影部分的面积= 故答案为:π.
【分析】连接OE,如图,根据题意得出OD=2,OE⊥BC,易得四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD,又图中阴影部分的面积等于矩形面积的一半再减去由弧DE、线段EC、CD所围成的面积即可得出答案。
三、解答题
21.【答案】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF,∴BE+CE=CF+CE,∴BC=EF. ×2×4﹣(4﹣π)=π.
=4﹣π,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),∴AB=DE. 又∵AB∥DE,∴四边形ABED是平行四边形
【解析】【分析】根据二直线平行,同位角相等得出∠B=∠DEF,∠ACB=∠F.根据等式性质由BE=CF,得出BC=EF.然后用ASA判断出△ABC≌△DEF,根据全等三角形对应边相等得出AB=DE.根据一组对边平行且相等的四边形是平行四边形得出结论。22.【答案】∵四边形ABCD是矩形,∴∠B=∠D=∠C=90° ∵△AEF是等边三角形 ∴AE=AF,∠AEF=∠AFE=60°,又∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°-45°-60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD, ∴矩形ABCD是正方形。
【解析】【分析】证明矩形ABCD是正方形,根据有一组邻边相等的矩形是正方形,则可证一组邻边相等 23.【答案】证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠DAO=∠BCO,在△AEO和△CFO中,∵ , ∴△AEO≌△CFO(ASA), ∴AE=CF.【解析】【分析】根据平行四边形性质可得AO=CO,AD∥BC,根据平行线性质可得∠DAO=∠BCO,再由全等三角形判定ASA得△AEO≌△CFO,由全等三角形性质即可得证.24.【答案】(1)解:①④作为条件时,如图,∵AD∥BC,∴∠ADB=∠DBC,在△AOD和△COB中,∵ , ∴△AOD≌△COB(AAS),∴AD=CB,∴四边形ABCD是平行四边形.(2)解:②④作为条件时,此时一组对边相等,一组对边平行,是等腰梯形.【解析】【分析】(1)如果①②作为条件,则两个三角形中的条件是SSA,不能证到三角形全等,就不能证明四边形是平行四边形;如果①③作为条件,也不能得到四边形是平行四边形;如果②③作为条件,也不能得到四边形是平行四边形;只有①④作为条件时,可根据全等三角形的判定AAS得两个三角形全等,总而得线段相等,再根据一组对边平行且相等的四边形是平行四边形;(2)如果②④作为条件时,根据梯形的定义,可知其为等腰梯形.25.【答案】(1)解:∵四边形ABCD是矩形,∴AD=BC,AB=CD.
由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD. 在△ADE和△CED中,∴△ADE≌△CED(SSS)
(2)解:由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形,【解析】【分析】(1)根据矩形的性质得出AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,从而得出AD=CE,AE=CD.然后利用SSS判断出△ADE≌△CED;
(2)根据全等三角形对应角相等由△ADE≌△CED,得出∠DEA=∠EDC,根据等角对等边即可得出结论。26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE.∵E是AD的中点,∴AE=DE.又∵∠FEA=∠CED,∴△FAE≅△CDE(AAS),∴CD=FA.又∵CD∥AF,∴四边形ACDF是平行四边形.(2)BC=2CD.理由如下:
∵CF平分∠BCD,∴∠DCE=45°.∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD.∵AD=BC,∴BC=2CD.【解析】【分析】(1)此题方法不唯一,例如:证明△FAE≅△CDE,则CD=FA,又由CD∥FA即可判定,依据是:有一组对边平行且相等的四边形是平行四边形;(2)由CF平分∠BCD,得∠DCE=45°,则CD=DE,而BC=AD=2DE,从而可证明.
第三篇:2018年中考数学专题复习卷《因式分解》含解析
2018年中考数学专题复习卷含解析
因式分解
一、选择题
1.下列各式中,不含因式a+1的是()
A.2a2+2a
B.a2+2a+1
C.a﹣1
D.22.下列因式分解错误的是()
A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1)
C.x2y﹣xy2=xy(x﹣y)
﹣y2=(x+y)(x﹣y)
3.下列因式分解中,正确的个数为()
①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(A.3个
个
个
4.若x=1,则x2+4xy+4y2的值是()
A.2
B.4
C.D.5.化简:(a+1)2-(a-1)2=()A.2
6.下列因式分解正确的是()A.(x-3)2-y2=x2-6x+9-y2
B.a2-9b2=(a+9b)(a-9b)1
B.x2
+2x+1=(x+1)2
D.x2x﹣y)
B.2
C.D.0个
B.C.4a
D.2a2
+2
2018年中考数学专题复习卷含解析
C.4x-1=(2x+1)(2x-1)
D.-x-y=(x-y)(x+y)7.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1
B.0
C.1
D.2 226338.下列各多项式中,不能用平方差公式分解的是().A.a2b2-1
B.4-0.25a2
C.-a2
-b2
D.-x2+1 9.分解因式x2y﹣y3结果正确的是().A.y(x+y)2
B.y(x-y)2
C.y(x2-y2)
D.y(x+y)(x-y)10.边长为a、b的长方形周长为12,面积为10,则 的值为()A.120
11.如果2x2+mx﹣2可因式分解为(2x+1)(x﹣2),那么m的值是()A.﹣1
12.下列各式从左边到右边的变形是因式分解的是()A.B.C.D.二、填空题
13.分解因式:x2﹣16=________.
B.C.80D.40 B.1 C.﹣ D.3
2018年中考数学专题复习卷含解析
14.两个多项式①a+2ab+b,②a﹣b的公因式是________ 15.分解因式:x﹣2x+1=________.
16.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=________ 17.把多项式x3-25x分解因式的结果是________.18.若x2﹣9=(x﹣3)(x+a),则a=________ 19.把多项式 20.已知,分解因式的结果是________.则代数式 的值是________ 2222221.当a=3,a﹣b=1时,代数式a2﹣ab的值是________. 22.若a﹣2a﹣4=0,则5+4a﹣2a=________.
三、解答题
23.把下列各式分解因式:(1)x2(a-1)+y2(1-a);(2)18(m+n)2-8(m-n)2;(3)x2-y2-z2+2yz.24.计算
(1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?
25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)3
2018年中考数学专题复习卷含解析
=(x﹣4x+4)(第四步)回答下列问题:
(1)该同学第二步到第三步运用了因式分解的()
A.提取公因式
B.平方差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果________.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
26.对于多项式x3-5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3-5x2+x+10的值为0,由此可以断定多项式x3-5x2+x+10中有因式x-2(注:把x=a代入多项式,能使多项式的值为0,则多项式中一定含有因式(x-a),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n),分别求出m,n后再代入x-5x+x+10=(x-2)(x+mx+n)中,就可以把多项式x-5x+x+10因式分解).(1)求式子中m,n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解因式x+5x+8x+4.32322
3222 4
2018年中考数学专题复习卷含解析
答案解析
一、选择题 1.【答案】D 【解析】 :A、∵2a2+2a=2a(a+1),故本选项不符合题意; B、a2+2a+1=(a+1)2,故本选项不符合题意; C、a﹣1=(a+1)(a﹣1),故本选项不符合题意; D、=,故本选项符合题意. 2故答案为:D.
【分析】根据因式分解的定义:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式;把各个选项因式分解,找出不含因式a+1的选项.2.【答案】A 【解析】 A、原式=(x﹣2)(2x﹣1),符合题意; B、原式=(x+1)2,不符合题意; C、原式=xy(x﹣y),不符合题意; D、原式=(x+y)(x﹣y),不符合题意,故答案为:A.
【分析】根据因式分解的定义,将一个多项式化为几个整式的积的恒等变形就是因式分解,然后利用整式的乘法将变形的右边利用整式的乘法法则得出结果,和左边进行比较即可得出答案。3.【答案】C 【解析 :①x3+2xy+x=x(x2+2y+1),故原题错误; ②x+4x+4=(x+2);正确;
③﹣x+y=(x+y)(y﹣x),故原题错误; 故正确的有1个. 故答案为:C.
【分析】第一个中的第一项的指数是3,第三项不是y的平方,所以不符合完全平方式的条件;第三个应该是(x+y)(y-x).4.【答案】B 2222 5
2018年中考数学专题复习卷含解析
【解析】 :原式=(x+2y)=(1+2×)=4.故答案为:B【分析】根据完全平方公式a222
22ab+b=(a
2b),分解因式x2+4xy+4y2=(x+2y)2,把x、y的值代入,求出代数式的值.5.【答案】C 【解析】 :(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.选C【分析】根据平方差公式a-b=(a+b)(a-b),分解即可.6.【答案】C 【解析】 :A、(x-3)2-y2=x2-6x+9-y2,不是两数积的形式的形式,不符合因式分解特点,故此选项不符合题意;
B、原式应该为:a2-9b2=(a+3b)(a-3b);故此选项不符合题意; C、4x-1=(2x+1)(2x-1),故此选项符合题意;
D、原式应该为:2xy-x-y=-(x-y),故此选项不符合题意;故答案为:C 【分析】根据因式分解的定义把一个多项式化为几个整式的积的形式,再根据平方差公式a2-b2=(a+b)(a-b)分解即可.7.【答案】B 【解析】 :∵代数式x2+ax可以分解因式,∴常数a不可以取0. 故答案为:B.
【分析】根据因式分解的定义,就是将一个多项式分解为几个整式的积的形式,从而可知x+ax能分解因式的话,必须是多项式,故a≠0,从而得出答案。8.【答案】C 【解析】 :A、a2b2-1=(ab)2-12,可以利用平方差公式分解因式,故A不符合题意; B、4-0.25a=2-(0.5a),可以利用平方差公式分解因式,故B不符合题意; C、-a-b=-(a+b),不能分解因式,故C符合题意;
D、-x2+1=-(x2-1),可以利用平方差公式分解因式,故D不符合题意;
故答案为:C【分析】平方差公式的特点:多项式含有两项,两项的符号相反,两项的绝对值都能写出平方形式,对各选项逐一判断即可。9.【答案】D 【解析】 :x2y﹣y3=y(x2-y2)=y(x+y)(x-y)故答案为:D 【分析】观察此多项式的特点,有公因式y,因此先提取公因式,再利用平方差公式分解因式。10.【答案】B 222222
2222
263322 6
2018年中考数学专题复习卷含解析
【解析】 :∵边长为a、b的长方形周长为12,面积为10, ∴2(a+b)=12,ab=10 ∴a+b=6 ∴a2b+ab2 =ab(a+b)=10×6=60
【分析】根据已知求出a+b、ab的值,再将a2b+ab2 分解因式,然后整体代入求值即可。11.【答案】C 【解析】 :∵2x+mx﹣2=(2x+1)(x﹣2)=2x﹣3x﹣2,∴m=﹣3. 故答案为:C.
【分析】根据多项式的乘法运算,把(2x+1)(x﹣2)展开,再根据对应项的系数相等进行求解即可.12.【答案】D 【解析】 A、是一个二元一次方程组,故A不符合题意;B、是单项式乘法的逆用,故B不符合题意;C是多项式乘以多项式的乘法运算,故C不符合题意;D是将一个多项式变形为两个整式的积,故D符合题意
【分析】根据因式分解的定义,把一个多项式分解为几个整式的积的形式,即可得出结论。
二、填空题
13.【答案】(x+4)(x-4)【解析】 :x﹣16=(x+4)(x﹣4).【分析】16=4,利用平方差公式分解可得.14.【答案】a+b.
【解析】 :①a+2ab+b=(a+b); ②a2﹣b2=(a+b)(a﹣b);
故多项式①a2+2ab+b2,②a2﹣b2的公因式是a+b. 故答案为:a+b.
【分析】利用完全平方公式和平方差公式化简和展开得到(a+b)和(a+b)(a﹣b),答案就很显然了.15.【答案】(x﹣1)
【解析】 :x2﹣2x+1=(x﹣1)2 . 【分析】利用完全平方公式分别即可。16.【答案】15 【解析】 :分解因式x2+ax+b,甲看错了b,但a是正确的,他分解结果为(x+2)(x+4)=x2+6x+8,∴a=6,2222
227
2018年中考数学专题复习卷含解析
同理:乙看错了a,分解结果为(x+1)(x+9)=x+10x+9,∴b=9,因此a+b=15. 故答案为:15.
【分析】由题意分析a,b是相互独立的,互不影响的,在因式分解中,b决定因式的常数项,a决定因式含x的一次项系数;利用多项式相乘的法则展开,再根据对应项系数相等即可求出a、b的值.17.【答案】
2【解析】 :解:x3-25x=x(x2-25)=x(x+5)(x-5)故答案为:x(x+5)(x-5)
【分析】观察此多项式的特点:含有公因式x,因此提取公因式x后,再利用平方差公式分解因式即可。18.【答案】3 【解析】 :∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3. 故答案为:3.
【分析】本题考查的是平方差公式,因为19.【答案】,所以可知a=3.【解析】 :原式=3a(a2﹣4a+4)=3a(a﹣2)2 . 故答案为:3a(a﹣2)2 .
【分析】先利用提公因式法分解因式,再利用完全平方公式分解到每一个因式都不能再分解为止。20.【答案】15 【解析】 故答案为:15.【分析】根据平方差公式分解因式,再利用整体代入法即可得出答案。21.【答案】3 【解析】 当
故答案为:3.
【分析】先利用提公因式法分解因式,再利用整体代入即可算出代数式的值。22.【答案】-3 【解析】 ∵ ∴原式 故答案为: 即
时,原式=3×1=3. =(a+b)(a-b)=3×5=15.【分析】根据已知方程,可得出a2−2a=4,再将代数式转化为5−2(a2−2a),再整体代入求值即可。
2018年中考数学专题复习卷含解析
三、解答题
23.【答案】(1)解:原式=x(a-1)-y(a-1)=(a-1)(x-y)=(a-1)(x+y)(x-y)(2)解:原式=2[9(m+n)2-4(m-n)2] =2{[3(m+n)]2-[2(m-n)]2} =2[(3m+3n)2-(2m-2n)2] =2[(3m+3n+2m-2n)(3m+3n-2m+2n)] =2(5m+n)(m+5n)(3)解:原式=x2-(y2+z2-2yz)=x2-(y-z)2 =(x+y-z)(x-y+z)【解析】【分析】(1)观察多项式的特点,有公因式a-1,因此提取公因式后再利用平方差公式分解因式即可。
(2)观察此多项式的特点,有公因数2,因此提取公因数后,将另一个因式写成平方差公式的形式,然后利用平方差公式分解因式即可。
(3)此多项式有4项,没有公因式,因此采用分组分解法,后三项可构造完全平方公式,因此将后三项结合,利用完全平方公式和平方差公式分解因式即可。24.【答案】(1)解:原式 =4 ab(a+b)-4(a+b)
=(4 ab-4)(a+b)=4(ab-1)(a+b)当a+b=-3,ab=5时,原式=4 =4 4(5-1)(-3)(-3)
222
2=-48
(2)解:解:原式=-3(x2-3x-1)当x2-3x-1=0,原式=-3 =0 【解析】【分析】(1)将代数式提取公因式4(a+b),转化为4(ab-1)(a+b),再整体代入求值即可。
(2)将代数式提取公因数-3,转化为-3(x2-3x-1),再整体代入求值即可。25.【答案】(1)C(2)不彻底; 0 9
2018年中考数学专题复习卷含解析
(3)解:设x﹣2x=y.(x﹣2x)(x﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)
【解析】【解答】(2)该式还可以继续因式分解,(x2﹣4x+4)2=【分析】运用换元法把x2﹣2x=y,再根据完全平方公式a226.【答案】(1)解:∵x-5x+x+10=(x-2)(x+mx+n)分别令x=0,x=1, 10=-2n,15=1+m+n 解之:m=-3,n=-5(2)解:当x=-1时,x3+5x2+8x+4=0 x3+5x2+8x+4=(x+1)(x2+ax+b)分别令x=0,x=1, 4=b,18=2(1+a+b)解之:a=4,b=4, ∴x+5x+8x+4=(x+1)(x+4x+4)=(x+1)(x+2)
【解析】【分析】(1)根据题意将x=0和x=1分别代入x3-5x2+x+10=(x-2)(x2+mx+n),建立关于m、n的方程组,求解即可。
(2)根据题意可知当当x=-1时,x+5x+8x+4=0,原式可转化为x+5x+8x+4=(x+1)(x+ax+b),将x=0和x=1分别代入x+5x+8x+4=(x+1)(x+ax+b),建立关于a、b的方程组,求解即可分解因式。32
2322
232
24222
=(x-2)4 b)2分解.2ab+b2=(a 10
第四篇:数学 中考A卷 四边形证明题(典型)
中考A卷四边形证明题(1)
1.如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H分别是BE,BC,CE的中点.
12BC,E H(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EFBC,且EF
证明平行四边形EGFH 是正方形.
2、已知:如图,D是△ABC的边BC上的中点,DE⊥AC,DF⊥AB,垂足
分别为E、F,且BF=CE.当∠A满足什么条件时,四边形AFDE是正
方形?请证明你的结论.
3、已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB
到点F,使BF=BC,连结DF交AB于E.求证:OE=()BF(在括号中填人一个适当的常数,再证明).
B D
F C4、(12分)已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.
(1)试猜想线段AE与BF有何关系?说明理由.
(2)若△ABC的面积为3 cm2,请求四边形ABFE的面积.
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.
5、如图,正方形ABCD的边长为1,G为CD边上的一
个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于H。
(1)求证:①△BCG≌△DCE。②BH⊥DE.(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由。
6、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,连结CG,且∠D=45o,(1)试说明ABCG为矩形;(2)求BF的长度。(6分)
7、已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8。求:梯形两腰AB、CD的长。
8、已知:如图,四边形ABCD是平行四边形,DE//AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF。
B
第7题图形
C
B9、四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.
10、(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
11、如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.
12、将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F
(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.D’
D
B13、如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
14.如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.A(1)求证:△AEB≌△ADC;
(2)四边形BCGE是怎样的四边形?说明理由.15.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并什么理由.B
D
A
第五篇:2012年中考数学一轮精品复习教案:四边形
初中数学辅导网:http://www.xiexiebang.com/
初中数学辅导网:http://www.xiexiebang.com/
初中数学辅导网:http://www.xiexiebang.com/
BH8-9ECAD初中数学辅导网:http://www.xiexiebang.com/