关于“对向量法证明线面垂直一法质疑”的回应

时间:2019-05-14 13:31:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于“对向量法证明线面垂直一法质疑”的回应》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于“对向量法证明线面垂直一法质疑”的回应》。

第一篇:关于“对向量法证明线面垂直一法质疑”的回应

关于“对向量法证明线面垂直一法质疑”的回应

我在不同的场合提到过”用向量法证明线面垂直“的内容,大体思路是:

一个平面α和三条直线a、m、n,m和n在α上,m和n相交,a⊥m且a⊥n,证明a⊥α。要证明a⊥α,只需要在α里任意取一直线c,只要证明a⊥c就行。根据平面向量理论,c向量可以用m向量和n向量表示(这里就直接用a和b表示向量了),于是我们设c=km+hn,其中k、h为常数。那么:

a·c=a·(km+hn)=ka·m+ha·n 因为a⊥m,所以a·m=0,同理a·n=0,从而a·c=0,所以a⊥c。

这方法一直以来被奉为上宾,不只是学夫子,很多名师都提倡这方法。不过新疆的一位老师却提出质疑,因为在他看来,此方法犯了”循环论证“的错误。因为在这样一个证明过程里面,用到了”空间向量数量积的分配率“,这是关键的地方,因为我们在证明”空间向量数量积满足分配率“的问题上,又必须用到线面垂直的内容,因此犯了循环论证的错误,具体可以参考彭翕成老师博客里的配图,那里有论文全文。

首先我得感谢这位老师,我不得不承认,至始至终我都忽略了空间向量分配率的证明,在此对我是当头棒喝,深感惭愧。当一个人的思想观念受到质疑时,只有两条路可走:一是推翻质疑,一定要有足够的理由;二就是承认自己的错误和无知。对于这一个问题的解决办法,有这么一条路可以走,那就是绕过”线面垂直“。

1:一个比较”耍赖“的办法就是,我们用”证明线面垂直“的办法直接证明线线垂直(配图截取

自原论文)

现在不是要证明OA⊥HF吗?我们这里就不直接用线面垂直的判定定理,我们直接用证明线面垂直的证明方法来证明OA⊥HF。想想线面垂直不就是证明平面里的任何一条直线都垂直于OA吗?那我们就直接用这方法证明OA⊥HF得了,很简单地绕过”线面垂直“这个话题。整体说来这个过程就是:用证明结论P的方法来证明另一个结论Q,反过来Q的证明可以大大简化P的证明。我觉得这并不算循环论证。

2:另外一个稍微有点好的方法就是,完全利用向量数量积的定义,跨过分配率,直接证明

向量数量积的坐标表示

现在有a,b,c三向量,现在把他们的起点都移动到原点,并且设其坐标为

a=(x1,y1,z1),b=(x2,y2,z2).根据定义a·b=|a|·|b|·cosα。|a|=√x12+y12+z12,|b|=√x22+y22+z22,在a和b构成的三角形里,第三条边的长度为|c|=√(x1-x2)2+(y1-y2)2+(z1-z2)2,利用余弦定理:

从而跳过了分配率直接得到数量积坐标公式:a·b=x1x2+y1y2+z1z2.这样我们就可以通过这个

公式开始我们的证明了 现在是要证明:a·(b+c)=a·b+a·c 设a=(x1,y1,z1),b=(x2,y2,z2).c=(x3,y3,z3),b+c=(x2+x3,y2+y3,z2+z3).左边=a·(b+c)=x1(x2+x3)+y1(y2+y3)+z1(z2+z3)

=x1x2+x1x3+y1y2+y1y3+z1z2+z1z3.右边=a·b+a·c

=x1x2+y1y2+z1z2+x1x3+y1y3+z1z3.左边=右边,从而分配率得证。

第二篇:向量法证明不等式

向量法证明不等式

高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n=2,3时的情况.设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

规定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.(注:a·b可记为(a,b),表示两向量的内积),有

由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.一、利用向量模的和与和向量的模的不等式(即

例1设a,b,c∈R+,求证:(a+b+c)≤++≤.证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),则由

综上,原不等式成立.点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.作单位向量j⊥AC

j(AC+CB)=jAB

jAC+jCB=jAB

jCB=jAB

|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

即|CB|sinC=|AB|sinA

a/sinA=c/sinC

其余边同理

在三角形ABC平面上做一单位向量i,i⊥BC,因为BA+AC+CB=0恒成立,两边乘以i得i*BA+i*AC=0①根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC

步骤1

记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

第三篇:用向量法证明

用向量法证明

步骤1

记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式.希望对你有所帮助!

设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形

则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c

平方(1)

向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d

平方(2)

(1)+(2)2a平方+2b平方=4d平方+4c平方

c平方=1/2(a+b)-d平方

AM^2=1/2(AB^2+AC^2)-BM^2

已知EF是梯形ABCD的中位线,且AD//BC,用向量法证明梯形的中位线定理

过A做AG‖DC交EF于p点

由三角形中位线定理有:

向量Ep=½向量BG

又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四边形性质)

∴向量pF=½(向量AD+向量GC)

∴向量Ep+向量pF=½(向量BG+向量AD+向量GC)

∴向量EF=½(向量AD+向量BC)

∴EF‖AD‖BC且EF=(AD+BC)

得证

先假设两条中线AD,BE交与p点

连接Cp,取AB中点F连接pF

pA+pC=2pE=Bp

pB+pC=2pD=Ap

pA+pB=2pF

三式相加

2pA+2pB+2pC=Bp+Ap+2pF

3pA+3pB+2pC=2pF

6pF+2pC=2pF

pC=-2pF

所以pC,pF共线,pF就是中线

所以ABC的三条中线交于一点p

连接OD,OE,OF

OA+OB=2OF

OC+OB=2OD

OC+OC=2OE

三式相加

OA+OB+OC=OD+OE+OF

OD=Op+pD

OE=Op+pE

OF=Op+pF

OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp

由第一问结论

2pA+2pB+2pC=Bp+Ap+Cp

2pA+2pB+2pC=0

1/2Ap+1/2Bp+1/2Cp

所以OA+OB+OC=3Op+pD+pE+pF=3Op

向量Op=1/3(向量OA+向量OB+OC向量)

第四篇:向量法证明正弦定理

向量法证明正弦定理

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

2如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤

1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三级

记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4过三角形ABC的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB与向量AD的夹角为90°-B,向量AC与向量AD的夹角为90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB*向量AD=向量AC*向量AD即向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

第五篇:余弦定理的证明 向量法

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小

∴c·c=(a+b)·(a+b)∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)(以上粗体字符表示向量)又∵cos(π-θ)=-Cosθ

∴c^2=a^2+b^2-2|a||b|cosθ(注意:这里用到了三角函数公式)再拆开,得c^2=a^2+b^2-2*a*b*CosC 即 cosC=(a^2+b^2-c^2)/2*a*b 同理可证其他,而下面的cosC=(a^2+b^2-c^2)/2ab就是将cosC移到左边表示一下。

下载关于“对向量法证明线面垂直一法质疑”的回应word格式文档
下载关于“对向量法证明线面垂直一法质疑”的回应.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量法证明正弦定理[最终版]

    向量法证明正弦定理证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的......

    用向量法证明平行关系

    2010 山东省昌乐二中 高二数学选修2-1导学案时间:2010-12-21班级:姓名:小组:教师评价:课题: 3.2.1用向量法证明平行关系编制人:刘本松、张文武、王伟洁审核人:领导签字: 【使用说明......

    用向量法证明直线与直线平行

    用向量法证明直线与直线平行、直线与平面平行、平面与平面平行导学案一、知识梳理1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。2、......

    浅谈用向量法证明立体几何中的几个定理

    浅谈用向量法证明立体几何中的几个定理15号海南华侨中学(570206)王亚顺摘要:向量是既有代数运算又有几何特征的工具,在高中数学的解题中起着很重要的作用。在立体几何中像直线与......

    用向量法证明正弦定理教学设计(推荐)

    用向量法证明正弦定理教学设计一、 教学目标1、知识与技能:掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。2、过程与方法:让学生通过向量方法......

    向量法证明三点共线的又一方法及应用

    向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题......

    对构造函数法证明不等式的再研究

    龙源期刊网 http://.cn 对构造函数法证明不等式的再研究 作者:时英雄 来源:《理科考试研究·高中》2013年第10期 某刊一文阐述了构造法证明不等式的九个模型,笔者深受启发,对其......

    人大对一法一条例执法检查情况的工作汇报(一稿)

    九原区关于贯彻实施《中华人民共和国 人口与计划生育法》及《内蒙古自治区人口与计划生育条例》情况的工作汇报 首先,热烈欢迎市人大常委会人口与计划生育执法检查组各位领导......