第一篇:向量法证明三点共线的又一方法及应用
向量法证明三点共线的又一方法及应用
平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明.原题 已知OBλOAμOC,其中λμ1.求证:A、B、C三点共线
思路:通过向量共线(如ABkAC)得三点共线.证明:如图,由λμ1得λ1μ,则 OBλOAμOC(1μ)OAμOC
OBOAμ(OCOA)
ABμAC A、B、C三点共线.思考:1.此题揭示了证明三点共线的又一向量方法,点O具有灵活性;
2.反之也成立(证明略):若A、B、C三点共线,则存在唯一实数对λ、μ,满 足OBλOAμOC,且λμ1.揭示了三点贡献的又一个性质;
113.特别地,λμ时,OB(OAOC),点B为AC的中点,揭示了2
2中线OB的一个向量公式,应用广泛.应用举例
例1 如图,平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN
用向量法证明:M、N、C三点共线.OAC 1BD.利
3C思路分析:选择点B,只须证明BNλBMμBC,且λμ1.A证明:由已知BDBABC,又点N在BD上,1BD,得 31111BNBD(BABC)BABC 3333
又点M是AB的中点,1
BMBA,即BA2BM 2且BNB
21BNBMBC 33
21而1 33
M、N、C三点共线.点评:证明过程比证明MNmMC简洁.BD例2如图,平行四边形OACB中,11OD与AB相交于E,BC,求证:.BEBA.3
4思路分析:可以借助向量知识,只须证明:
1BEBA,而BABOBC,又O、D、E三
4点共线,存在唯一实数对λ、μ,且λμ1,使CBEλBOμBD,从而得到BE与BA的关系.O证明:由已知条件,BABOBC,又B、E、A三点共线,可设BEkBA,则
BEkBOkBC①
又O、E、D三点共线,则存在唯一实数对λ、μ,使BEλBOμBD,且λμ1.1又BDBC 31BEλBOμBC
3根据①、②得 ②
1kkλ411λ,解得 kμ433λμ1μ41BEBA
41BEBA 4
点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.2
第二篇:三点共线的证明方法
三点共线的证明方法
袁竞成题目 已知点A(1,2)、B(2,4)、C(3,6),求证:A、B、C三点共线。方法1:利用定比分点坐标公式证明三点共线
设P(1。)分AC所成的比为,则=
方法2:利用向量平行的充分条件来证明三点共线,向量
方法3:其中一个点到另外两个点所在直线的距离为0
由两点式求得直线AB的方程为
方法4:的面积为0证明三点共线
方法5:直线夹角为0来证明三点共线
注意梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1
方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。”可知:如果三点同属于两个相交的平面则三点共线。
方法六:运用公(定)理 “过直线外一点有且只有一条直线与已知直线平行(垂直)”。其实就是同一法。
方法七:证明其夹角为180°
方法八:设A B C,证明△ABC面积为0
方法九:帕普斯定理
注意帕普斯(Pappus)定理:如图,直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于P,AF,DC交于Q,BF,EC交于R,则P,Q,R共线。
帕普斯定理
[
第三篇:三点共线与三线共点的证明方法
三点共线与三线共点的证明方法
公理1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。公理2.过不在一条直线上的三点,有且只有一个平面。推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。
公理3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。例1.如图,在四面体ABCD中作截图PQR,PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.求证M、N、K三点共线.
由题意可知,M、N、K分别在直线PQ、RQ、RP上,根据公理1可知M、N、K在平面PQR上,同理,M、N、K分别在直线CB、DB、DC上,可知M、N、K在平面BCD上,根据公理3可知M、N、K在平面PQR与平面BCD的公共直线上,所以M、N、K三点共线.
D1M、例2.已知长方体ABCDA1B1C1D1中,求证:M、N分别为AA1与AB的中点,DA、CN三线共点.
由M、N分别为AA1与AB的中点知MN//A1B且MN行且相等,所以MN//D1C且MN1A1B,又A1B与D1C平21D1C,根据推论3可知M、N、C、D1四点共面,2且D1M与CN相交,若D1M与CN的交点为K,则点K既在平面ADD1A1上又在平面ABCD上,所以点K在平面ADD1A1与平面ABCD的交线DA上,故D1M、DA、CN三线交于点K,即三线共点.
从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。
第四篇:向量法证明不等式
向量法证明不等式
高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n=2,3时的情况.设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)
规定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.(注:a·b可记为(a,b),表示两向量的内积),有
由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.一、利用向量模的和与和向量的模的不等式(即
例1设a,b,c∈R+,求证:(a+b+c)≤++≤.证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),则由
综上,原不等式成立.点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.作单位向量j⊥AC
j(AC+CB)=jAB
jAC+jCB=jAB
jCB=jAB
|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)
即|CB|sinC=|AB|sinA
a/sinA=c/sinC
其余边同理
在三角形ABC平面上做一单位向量i,i⊥BC,因为BA+AC+CB=0恒成立,两边乘以i得i*BA+i*AC=0①根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC
步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步骤3.证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
第五篇:用向量法证明
用向量法证明
步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步骤3.证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式.希望对你有所帮助!
设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形
则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c
平方(1)
向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d
平方(2)
(1)+(2)2a平方+2b平方=4d平方+4c平方
c平方=1/2(a+b)-d平方
AM^2=1/2(AB^2+AC^2)-BM^2
已知EF是梯形ABCD的中位线,且AD//BC,用向量法证明梯形的中位线定理
过A做AG‖DC交EF于p点
由三角形中位线定理有:
向量Ep=½向量BG
又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四边形性质)
∴向量pF=½(向量AD+向量GC)
∴向量Ep+向量pF=½(向量BG+向量AD+向量GC)
∴向量EF=½(向量AD+向量BC)
∴EF‖AD‖BC且EF=(AD+BC)
得证
先假设两条中线AD,BE交与p点
连接Cp,取AB中点F连接pF
pA+pC=2pE=Bp
pB+pC=2pD=Ap
pA+pB=2pF
三式相加
2pA+2pB+2pC=Bp+Ap+2pF
3pA+3pB+2pC=2pF
6pF+2pC=2pF
pC=-2pF
所以pC,pF共线,pF就是中线
所以ABC的三条中线交于一点p
连接OD,OE,OF
OA+OB=2OF
OC+OB=2OD
OC+OC=2OE
三式相加
OA+OB+OC=OD+OE+OF
OD=Op+pD
OE=Op+pE
OF=Op+pF
OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp
由第一问结论
2pA+2pB+2pC=Bp+Ap+Cp
2pA+2pB+2pC=0
1/2Ap+1/2Bp+1/2Cp
所以OA+OB+OC=3Op+pD+pE+pF=3Op
向量Op=1/3(向量OA+向量OB+OC向量)