代数中的向量证明方法(共五则)

时间:2019-05-13 06:37:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《代数中的向量证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《代数中的向量证明方法》。

第一篇:代数中的向量证明方法

代数中的向量证明方法

利用向量知识解题具有很多优越性:思路直观,运算简单,能把“数”与“形”有机地结合起来.学好平面向量,不仅是掌握生活、学习的一种工具,还能提高自己的数形结合能力和创新能力,而且能陶冶情操,享受数学思想方法带来的向量学的美.利用向量解决中学数学题目已经相当普遍,下面举例运用向量方法证明代数中的一些问题.y

一 利用平面向量巧证三角证明题

例1 利用向量证明

cos10cos130cos2500,

130°

x

sin10sin130sin2500.

A

1证明:设正三角形ABC的边长为1.如图1,置于坐标系中则

ABcos10,sin10,BCcos130,sin130,CAcos250,sin250,ABBCCAcos10cos130cos250,sin10sin130sin250,ABBCCA0,0,cos10cos130cos250,sin10sin130sin2500,0.cos10cos130cos2500,sin10sin130sin2500.评析:依本题的证法,我们使x轴的正方向绕A点逆时针旋转到向量AB的最小角为,(而不是本题的特殊角10)可以得到以正三角形为依托的较为一般的两个三角等式:

coscos(120)cos(240)0,

y

sinsin(120)sin(240)0.

G

A

例2用向量的方法还可以解决如下的问题,求值:cos

27cos

47cos

67cos27

87cos

107

cos

127

C

解:因正七边形的外角为系中,则

ABcos0,sin0{1,0},,设正七边形的边长为1,如图2所示置于坐标

22

BCcos,sin,7744

CDcos,sin

7766

DEcos,sin

77

, , 

88

EFcos,sin,771010

FGcos,sin

771212

GAcos,sin

77

2

, .

ABBCCDDEEFFGGA0.1coscos

2727cos4747cos6767cos8787cos

107

cos

127

0,coscoscoscos

107

cos

127

1.评析:此题是应用上面的证明方法来分析求解,在中学数学中可以遇到不少类似的题目,都可以类似来求解.例3 用向量证明三角公式:

cos()coscossinsin.证明:如图3,作一个单位圆,取平面上的两个单位向量a、b使它们与x轴上的单位向量

i形成α、角,即 OA

a,OBb.abcos()cos(),又acos,sin,bcos,sin, abcoscossinsin,cos()coscossinsin.图

评析:该公式在教材中采用构造法证明,先构造一个单位圆,再在单位圆上构造四点,形成两个全等三角形,利用两点间的距离公式证得.这种方法在构造图形上要求太高,很难与我们学过的知识相联系起来.当我们学过平面向量后,可以简洁地将此公式证明.同法,我们可以证明:

例4coscos

cos()cos().证明:设三个单位向量:

acos,sin,bcos,sin,ccos,sin, abcoscossinsincos(), accoscossinsincos().abaccos()cos().又abaca(bc),bc2cos,0, a(bc)2coscos.综上所述,可得: coscos

cos()cos().二 构造向量证明不等式

利用以下定理,可以用向量证明代数不等式.定理: a,b为两个非零向量,则

:例5 设a,b,cR+,试证:证明:构造向量:

ab

bc

ca

(ab)1a1b1c



.a

1bc11a,,b,.bcabca

(ab),得

(ab

bc

ca)1a

1b

1c

1a

1b

1c,即

ab

bc

ca

当且仅当abc时,不等号成立.用向量证明问题还应该注意一些符号问题,如:

例6

2)

证明:由于a和b方向的不确定性,可按分类讨论的思想进行证明.(1)若a与b共线且方向相同时,则

2

 

所以2).(2)若a与b共线且方向相反,则

2

 

所以2).(3)若a与b不共线时,如图4,设OAa,OBb,作平行四边形OACB,可得

OCab,BAab;

在三角形OAB

中,BOA;在三角形OAC

中,OAC.因为BOAOAC

所以两式相加可得

B

C

2).O

A

图4

评析:由于平面向量具有“数”和“形”的双重功能,涉及“数”与“形”的许多问题需要分类讨论,所以用分类讨论思想解决平面向量问题是顺理成章的事.通过分类讨论把向量中的问题分门别类转为局部问题,使繁复的向量问题简单化,从而达到解决问题的目的.同样地,我们可以用构造向量的方法来证明三角不等式: 例7 设,,均为锐角,满足sin2sin2sin21则

sinsin

sinsin

sinsin

1。

证明:构造两个向量:

2sin

a

,sinsin

sin

sinsin,

, sinsinsin

b

sin,sinsin,sin.

sinsinsin

(ab).即

(

sin

sinsin

sinsinsin)(sinsinsinsinsinsin)

(sinsin

sin)

所以

sinsin

sinsin

sinsin

(sinsin

sin)

sinsinsinsinsinsin

(sinsinsin)sinsinsin

2222

sinsinsin1

评析:证明此类不等式证明,若能观察到向量的“影子”,通过构造向量,利用向量的数量积运算公式,能使繁复的问题简单化.例8 若x,y,zR,且xyz1.n为正整数.求证:

x

n

y(1y)

y

n

z(1z)

z

n

x(1x)

n2

n

9

.证明:由已知条件,知1xn0,1yn0,1zn0.构造向量:

a



x

n,y

n,y(1y)

z(1z)



,bn

x(1x)z

y(1y),n

z(1z),n

x(1x)

n

(xy

(ab).得

y

n

z)

[

x

n

y(1y)z(1z)

z

n

x(1x)

][y(1y)z(1z)x(1x)]

n

n

n

所以

x

n

y(1y)

y

n

z(1z)

z

n

x(1x)

(xyz)

(xyz)(x

n1

2222

y

n1

z

n1)

[3(

xyz)]

(xyz)3(xyz)

n1

122

[3()]n

n2.1n139

13()

若取n1,得

x

y(1y)

y

z(1z)

z

x(1x)

.(《上海中学数学》1993(2)数学问题1)若取n2,得

x

y(1y)

y

z(1z)

z

x(1x)

.(《数学通报》1994(11)数学问题921)

评析:此题也是巧妙构造向量的例子,题中n的取值不同可以得到不同的不等式方程,对应解决不同的数学问题.小结:爱因斯坦说:“提出一个问题往往比解决一个问题更重要”.善于观察的人可以将常人熟视无睹的问题提出来,并加以研究解决.在引入向量的知识后,因为“向量”具有几何形式和代数形式的“双重身份”,它可以作为联系代数和几何的纽带,是中学数学知识的一个交汇点.本文主要从代数问题的角度利用向量方法证明,打破常规,构造向量,利用平面向量的数量积获得妙解.思路直观,运算简单,能把“数”与“形”有机的结合起来.

第二篇:向量代数与空间解析几何

1.向量代数与空间解析几何

向量代数:向量的线性运算,向量的坐标,向量的数量积,向量积,两向量平行与垂直的条件。平面与直线:会利用已知条件求平面的方程、直线的方程。

曲面与空间曲线:了解曲面的概念,如坐标轴为旋转轴的旋转曲面,母线平行于坐标轴的柱面方程;了解空间曲线的参数方程和一般方程,会求空间曲线在坐标面上的投影。

2.多元函数微分学

多元函数:会求简单的二元函数的极限与判断二元函数的连续性。

偏导数与全微分:偏导数的计算,复合函数二阶偏导数的求法、隐函数的求偏导;会求全微分; 偏导数的应用:方向导数和梯度;空间曲线的切线与法平面,曲面的切平面与法线;最大值、最小值问题,条件极值,拉格朗日乘数法。

3.多元函数积分学

二重积分:化二重积分为二次积分、交换二次积分的次序;二重积分的计算(直角坐标、极坐标);利用二重积分求曲面面积、立体体积。

三重积分:三重积分的计算(直角坐标、柱面坐标、球面坐标);

曲线积分:两类曲线积分的计算方法;格林公式,平面曲线积分与路径无关的条件。

曲面积分:两类曲面积分的计算方法;高斯公式。

4.无穷级数

常数项级数:级数收敛的判定,几何级数和P—级数的敛散性;正项级数的比较、比值及根值审敛法,交错级数的莱布尼兹定理,绝对收敛与条件收敛的概念及其关系。

幂级数:较简单的幂级数的收敛半径和收敛域的求法,幂级数求和函数;函数展开成幂级数。傅里叶级数:函数展开为傅里叶级数,函数与和函数的关系,函数展开为正弦或余弦级数。

5.常微分方程

可分离变量微分方程,齐次方程,一阶线性微分方程。可降阶的高阶微分方程。二阶常系数齐次线性微分方程。利用切线斜率建立简单的微分方程并求解。

牢固掌握下列公式:

1、向量的数量积、向量积计算公式;

2、全微分公式;

3、方向导数公式;

4、拉格朗日乘数法;

5、格林公式、高斯公式;

6、函数的麦克劳林展开公式。

7、一阶线性方程的通解公式;

第三篇:立体几何中的向量方法----证明平行与垂直练习题

§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则().

A.l1∥l2B.l1⊥l

2C.l1与l2相交但不垂直D.以上均不正确

2.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()

A.s1=(1,1,2),s2=(2,-1,0)

B.s1=(0,1,-1),s2=(2,0,0)

C.s1=(1,1,1),s2=(2,2,-2)

D.s1=(1,-1,1),s2=(-2,2,-2)

35153.已知a=1,-,b=-3,λ,-满足a∥b,则λ等于(). 222

2992A.B.C.-D.- 322

34.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是().

A.a=(1,0,0),n=(-2,0,0)

B.a=(1,3,5),n=(1,0,1)

C.a=(0,2,1),n=(-1,0,-1)

D.a=(1,-1,3),n=(0,3,1)

5.若平面α,β平行,则下面可以是这两个平面的法向量的是()

A.n1=(1,2,3),n2=(-3,2,1)

B.n1=(1,2,2),n2=(-2,2,1)

C.n1=(1,1,1),n2=(-2,2,1)

D.n1=(1,1,1),n2=(-2,-2,-2)

6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于().

62636065A.B.C.D.7777

7.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)3B.1,3,2



C.1,-3,2

二、填空题



D.-1,3,-

2

8.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则

l1与l2的位置关系是_______.

9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________.→

=0的_______.

12.已知→AB=(1,5,-2),→BC=(3,1,z),若→AB⊥→BC,→BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为________.

三、解答题

13.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:

11.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量是________.

10.已知点A,B,C∈平面α,点P∉α,则AP·AB=0,且AP·AC=0是AP·BC

a,b,c.14.如图所示,在正方体ABCD­A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:

MN∥平面A1BD.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直

线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,1

则M0,1,N,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),22→

1

1于是MN=,0,2

2设平面A1BD的法向量是n=(x,y,z). x+z=0,则n·DA1=0,且n·DB=0,得

x+y=0.→

取x=1,得y=-1,z=-1.∴n=(1,-1,-1). →

11

又MN·n=,0,·(1,-1,-1)=0,22→

∴MN⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.15.如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=

1.(1)求证:E,B,F,D1四点共面;

(2)若点G在BC上,BG=M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面

BCC1B1.→→

证明(1)建立如图所示的坐标系,则BE=(3,0,1),BF=(0,3,2),BD1=(3,3,3).

→→

→→→→

所以BD1=BE+BF,故BD1、BE、BF共面. 又它们有公共点B,所以E、B、F、D1四点共面.(2)如图,设M(0,0,z),→

→→

2

则GM=0,-,z,而BF=(0,3,2),3

→→

由题设得GM·BF=-×3+z·2=0,得z=1.→

因为M(0,0,1),E(3,0,1),所以ME=(3,0,0). →

又BB1=(0,0,3),BC=(0,3,0),→→→→

所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.16.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22

,0、(0,0,1).

22→22∴NE=-,-1.22

2

2又点A、M的坐标分别是2,2,0)、,1

22

22∴AM=-,-1.22

→→

∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22

(2)由(1)知AM=-,-1,22

∵D2,0,0),F(2,2,1),∴DF=(0,2,1)→→

∴AM·DF=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.→

第四篇:8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

§8.7 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.33154015,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题7分,共21分

6.设a=1,2,0,b=1,0,1,则“c=(,,的条件.7.若|a|,b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

三、解答题共44分

9.14分已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量

10.(15分)如图,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA

1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:

3EM⊥面BCC1B1.11.(15分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB2,AF

=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.答案

1.C2.A3.B4.B5.D

6.充分不必要7.23132)”是“c⊥a,c⊥b且c为单位向量”3118118,2,或,2,8.1 555

5.9.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设

正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).∴2

211AM1,0,,AN0,1设平面AMN的一个法向量为22

n=x,y,z,1nAMyz02 nANx1yz02

令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

10.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3

得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.11.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22,0、(0,0,1). 22

22∴NE=-1.22

又点A、M的坐标分别是,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F22,1),DF=(0,2,22

1).

→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF

F,∴AM⊥平面BDF.

第五篇:证明向量共面

证明向量共面

已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?

写详细点怎么做谢谢了~明白后加分!!

我假定你的O-A表示向量OA。

由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。

(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)

你给的右端向量都反向,所以2x+3y+4z=-1。

2充分不必要条件。

如果有三点共线,则第四点一定与这三点共面,因为线和直线外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。

而有四点共面,不一定就其中三点共线,比如四边形的四个顶点共面,但这四个顶点中没有三个是共线的。

“三点共线”可以推出“四点共面”,但“四点共面”不能推出“三点共线”。因此是充分不必要条件

任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积(AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。

3已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?

写详细点怎么做谢谢了我假定你的O-A表示向量OA。

由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。

(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)

你给的右端向量都反向,所以2x+3y+4z=-1。

4Xa-Yb+Yb-Zc+Zc-Xa=0

∴Xa-Yb=-(Yb-Zc)-(Zc-Xa)

由共面判定定理知它们共面。

简单的说一个向量能够用另外两个向量表示,它们就共面。详细的看高中课本

41.若向量e1、e2、e3共面,(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是

λe1+μe2-e3=0.即存在三个不全为零的实数λ,μ,υ=-1,使得

λe1+μe2+υe3=0”。

(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,就有e1=(-μ/λ)e2+(-υ/λ)e3,于是e1,e2,e3共面。

下载代数中的向量证明方法(共五则)word格式文档
下载代数中的向量证明方法(共五则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量空间证明

    向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关......

    向量证明重心

    向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD (1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC......

    向量空间证明

    向量空间证明解题的基本方法:1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的......

    45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版)

    第45课时立体几何中的向量方法(Ⅰ)——证明平行与垂直编者:刘智娟审核:陈彩余 班级_________学号_________姓名_________第一部分 预习案 一、学习目标1. 理解直线的方向向量......

    2.5.1平面几何中的向量方法(教案)(精选合集)

    2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 教学目标 1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.明了平面几何图形中的......

    【教案】3.2立体几何中的向量方法

    3.2.2向量法解决空间角问题 (习题课) (1)、三维目标 1.知识与能力:向量运算在几何计算中的应用.培养学生的空间想象能力和运算能力。 2.过程与方法:掌握利用向量运算解几何题的方法,......

    9-5用向量方法证明平行与垂直

    2012-2013学年度第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:例2.(线线垂直)如图所示,已知直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°.BC=1,AA1=,M是例5.(......

    向量与向量方法 教师

    研究考纲,回归课本,平面向量与向量方法上海南汇中学 李志一、考试大纲1理解平面向量的分解定理,会计算向量的模和夹角,初步何问题。2掌握向量的数量积运算及其性质,掌握向量的坐......