第一篇:代数中的向量证明方法
代数中的向量证明方法
利用向量知识解题具有很多优越性:思路直观,运算简单,能把“数”与“形”有机地结合起来.学好平面向量,不仅是掌握生活、学习的一种工具,还能提高自己的数形结合能力和创新能力,而且能陶冶情操,享受数学思想方法带来的向量学的美.利用向量解决中学数学题目已经相当普遍,下面举例运用向量方法证明代数中的一些问题.y
一 利用平面向量巧证三角证明题
例1 利用向量证明
cos10cos130cos2500,
130°
x
sin10sin130sin2500.
A
图
1证明:设正三角形ABC的边长为1.如图1,置于坐标系中则
ABcos10,sin10,BCcos130,sin130,CAcos250,sin250,ABBCCAcos10cos130cos250,sin10sin130sin250,ABBCCA0,0,cos10cos130cos250,sin10sin130sin2500,0.cos10cos130cos2500,sin10sin130sin2500.评析:依本题的证法,我们使x轴的正方向绕A点逆时针旋转到向量AB的最小角为,(而不是本题的特殊角10)可以得到以正三角形为依托的较为一般的两个三角等式:
coscos(120)cos(240)0,
y
sinsin(120)sin(240)0.
G
A
例2用向量的方法还可以解决如下的问题,求值:cos
27cos
47cos
67cos27
87cos
107
cos
127
C
解:因正七边形的外角为系中,则
ABcos0,sin0{1,0},,设正七边形的边长为1,如图2所示置于坐标
22
BCcos,sin,7744
CDcos,sin
7766
DEcos,sin
77
, ,
88
EFcos,sin,771010
FGcos,sin
771212
GAcos,sin
77
图
2
, .
ABBCCDDEEFFGGA0.1coscos
2727cos4747cos6767cos8787cos
107
cos
127
0,coscoscoscos
107
cos
127
1.评析:此题是应用上面的证明方法来分析求解,在中学数学中可以遇到不少类似的题目,都可以类似来求解.例3 用向量证明三角公式:
cos()coscossinsin.证明:如图3,作一个单位圆,取平面上的两个单位向量a、b使它们与x轴上的单位向量
i形成α、角,即 OA
a,OBb.abcos()cos(),又acos,sin,bcos,sin, abcoscossinsin,cos()coscossinsin.图
评析:该公式在教材中采用构造法证明,先构造一个单位圆,再在单位圆上构造四点,形成两个全等三角形,利用两点间的距离公式证得.这种方法在构造图形上要求太高,很难与我们学过的知识相联系起来.当我们学过平面向量后,可以简洁地将此公式证明.同法,我们可以证明:
例4coscos
cos()cos().证明:设三个单位向量:
acos,sin,bcos,sin,ccos,sin, abcoscossinsincos(), accoscossinsincos().abaccos()cos().又abaca(bc),bc2cos,0, a(bc)2coscos.综上所述,可得: coscos
cos()cos().二 构造向量证明不等式
利用以下定理,可以用向量证明代数不等式.定理: a,b为两个非零向量,则
:例5 设a,b,cR+,试证:证明:构造向量:
ab
bc
ca
(ab)1a1b1c
.a
1bc11a,,b,.bcabca
(ab),得
(ab
bc
ca)1a
1b
1c
1a
1b
1c,即
ab
bc
ca
当且仅当abc时,不等号成立.用向量证明问题还应该注意一些符号问题,如:
例6
2)
证明:由于a和b方向的不确定性,可按分类讨论的思想进行证明.(1)若a与b共线且方向相同时,则
2
所以2).(2)若a与b共线且方向相反,则
2
所以2).(3)若a与b不共线时,如图4,设OAa,OBb,作平行四边形OACB,可得
OCab,BAab;
在三角形OAB
中,BOA;在三角形OAC
中,OAC.因为BOAOAC
所以两式相加可得
B
C
2).O
A
图4
评析:由于平面向量具有“数”和“形”的双重功能,涉及“数”与“形”的许多问题需要分类讨论,所以用分类讨论思想解决平面向量问题是顺理成章的事.通过分类讨论把向量中的问题分门别类转为局部问题,使繁复的向量问题简单化,从而达到解决问题的目的.同样地,我们可以用构造向量的方法来证明三角不等式: 例7 设,,均为锐角,满足sin2sin2sin21则
sinsin
sinsin
sinsin
1。
证明:构造两个向量:
2sin
a
,sinsin
sin
sinsin,
, sinsinsin
b
sin,sinsin,sin.
sinsinsin
(ab).即
(
sin
sinsin
sinsinsin)(sinsinsinsinsinsin)
(sinsin
sin)
所以
sinsin
sinsin
sinsin
(sinsin
sin)
sinsinsinsinsinsin
(sinsinsin)sinsinsin
2222
sinsinsin1
评析:证明此类不等式证明,若能观察到向量的“影子”,通过构造向量,利用向量的数量积运算公式,能使繁复的问题简单化.例8 若x,y,zR,且xyz1.n为正整数.求证:
x
n
y(1y)
y
n
z(1z)
z
n
x(1x)
n2
n
9
.证明:由已知条件,知1xn0,1yn0,1zn0.构造向量:
a
x
n,y
n,y(1y)
z(1z)
,bn
x(1x)z
y(1y),n
z(1z),n
x(1x)
n
(xy
(ab).得
y
n
z)
[
x
n
y(1y)z(1z)
z
n
x(1x)
][y(1y)z(1z)x(1x)]
n
n
n
所以
x
n
y(1y)
y
n
z(1z)
z
n
x(1x)
(xyz)
(xyz)(x
n1
2222
y
n1
z
n1)
[3(
xyz)]
(xyz)3(xyz)
n1
122
[3()]n
n2.1n139
13()
若取n1,得
x
y(1y)
y
z(1z)
z
x(1x)
.(《上海中学数学》1993(2)数学问题1)若取n2,得
x
y(1y)
y
z(1z)
z
x(1x)
.(《数学通报》1994(11)数学问题921)
评析:此题也是巧妙构造向量的例子,题中n的取值不同可以得到不同的不等式方程,对应解决不同的数学问题.小结:爱因斯坦说:“提出一个问题往往比解决一个问题更重要”.善于观察的人可以将常人熟视无睹的问题提出来,并加以研究解决.在引入向量的知识后,因为“向量”具有几何形式和代数形式的“双重身份”,它可以作为联系代数和几何的纽带,是中学数学知识的一个交汇点.本文主要从代数问题的角度利用向量方法证明,打破常规,构造向量,利用平面向量的数量积获得妙解.思路直观,运算简单,能把“数”与“形”有机的结合起来.
第二篇:向量代数与空间解析几何
1.向量代数与空间解析几何
向量代数:向量的线性运算,向量的坐标,向量的数量积,向量积,两向量平行与垂直的条件。平面与直线:会利用已知条件求平面的方程、直线的方程。
曲面与空间曲线:了解曲面的概念,如坐标轴为旋转轴的旋转曲面,母线平行于坐标轴的柱面方程;了解空间曲线的参数方程和一般方程,会求空间曲线在坐标面上的投影。
2.多元函数微分学
多元函数:会求简单的二元函数的极限与判断二元函数的连续性。
偏导数与全微分:偏导数的计算,复合函数二阶偏导数的求法、隐函数的求偏导;会求全微分; 偏导数的应用:方向导数和梯度;空间曲线的切线与法平面,曲面的切平面与法线;最大值、最小值问题,条件极值,拉格朗日乘数法。
3.多元函数积分学
二重积分:化二重积分为二次积分、交换二次积分的次序;二重积分的计算(直角坐标、极坐标);利用二重积分求曲面面积、立体体积。
三重积分:三重积分的计算(直角坐标、柱面坐标、球面坐标);
曲线积分:两类曲线积分的计算方法;格林公式,平面曲线积分与路径无关的条件。
曲面积分:两类曲面积分的计算方法;高斯公式。
4.无穷级数
常数项级数:级数收敛的判定,几何级数和P—级数的敛散性;正项级数的比较、比值及根值审敛法,交错级数的莱布尼兹定理,绝对收敛与条件收敛的概念及其关系。
幂级数:较简单的幂级数的收敛半径和收敛域的求法,幂级数求和函数;函数展开成幂级数。傅里叶级数:函数展开为傅里叶级数,函数与和函数的关系,函数展开为正弦或余弦级数。
5.常微分方程
可分离变量微分方程,齐次方程,一阶线性微分方程。可降阶的高阶微分方程。二阶常系数齐次线性微分方程。利用切线斜率建立简单的微分方程并求解。
牢固掌握下列公式:
1、向量的数量积、向量积计算公式;
2、全微分公式;
3、方向导数公式;
4、拉格朗日乘数法;
5、格林公式、高斯公式;
6、函数的麦克劳林展开公式。
7、一阶线性方程的通解公式;
第三篇:立体几何中的向量方法----证明平行与垂直练习题
§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直
一、选择题
1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则().
A.l1∥l2B.l1⊥l
2C.l1与l2相交但不垂直D.以上均不正确
2.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()
A.s1=(1,1,2),s2=(2,-1,0)
B.s1=(0,1,-1),s2=(2,0,0)
C.s1=(1,1,1),s2=(2,2,-2)
D.s1=(1,-1,1),s2=(-2,2,-2)
35153.已知a=1,-,b=-3,λ,-满足a∥b,则λ等于(). 222
2992A.B.C.-D.- 322
34.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是().
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
5.若平面α,β平行,则下面可以是这两个平面的法向量的是()
A.n1=(1,2,3),n2=(-3,2,1)
B.n1=(1,2,2),n2=(-2,2,1)
C.n1=(1,1,1),n2=(-2,2,1)
D.n1=(1,1,1),n2=(-2,-2,-2)
6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于().
62636065A.B.C.D.7777
7.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)3B.1,3,2
C.1,-3,2
二、填空题
D.-1,3,-
2
8.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则
l1与l2的位置关系是_______.
9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________.→
=0的_______.
→
12.已知→AB=(1,5,-2),→BC=(3,1,z),若→AB⊥→BC,→BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为________.
三、解答题
13.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:
→
11.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量是________.
→
→
→
→
→
10.已知点A,B,C∈平面α,点P∉α,则AP·AB=0,且AP·AC=0是AP·BC
a,b,c.14.如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:
MN∥平面A1BD.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直
线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,1
则M0,1,N,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),22→
1
1于是MN=,0,2
2设平面A1BD的法向量是n=(x,y,z). x+z=0,则n·DA1=0,且n·DB=0,得
x+y=0.→
→
取x=1,得y=-1,z=-1.∴n=(1,-1,-1). →
11
又MN·n=,0,·(1,-1,-1)=0,22→
∴MN⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.15.如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=
1.(1)求证:E,B,F,D1四点共面;
(2)若点G在BC上,BG=M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面
BCC1B1.→→
证明(1)建立如图所示的坐标系,则BE=(3,0,1),BF=(0,3,2),BD1=(3,3,3).
→→
→→→→
所以BD1=BE+BF,故BD1、BE、BF共面. 又它们有公共点B,所以E、B、F、D1四点共面.(2)如图,设M(0,0,z),→
→→
2
则GM=0,-,z,而BF=(0,3,2),3
→→
由题设得GM·BF=-×3+z·2=0,得z=1.→
因为M(0,0,1),E(3,0,1),所以ME=(3,0,0). →
→
又BB1=(0,0,3),BC=(0,3,0),→→→→
所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.16.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22
,0、(0,0,1).
22→22∴NE=-,-1.22
2
2又点A、M的坐标分别是2,2,0)、,1
22
→
22∴AM=-,-1.22
→→
∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22
(2)由(1)知AM=-,-1,22
→
∵D2,0,0),F(2,2,1),∴DF=(0,2,1)→→
∴AM·DF=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.→
第四篇:8.7 立体几何中的向量方法Ⅰ——证明平行与垂直
§8.7 立体几何中的向量方法Ⅰ——证明
平行与垂直
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a
a分别与AB,AC垂
直,则向量a为
A.1,1,1
B.-1,-1,-1
C.1,1,1或-1,-1,-1
D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-
23.已知a=1,,,b=3,,
A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.33154015,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0
B.a=1,3,5,n=1,0,1
C.a=0,2,1,n=-1,0,-1
D.a=1,-1,3,n=0,3,1
二、填空题每小题7分,共21分
6.设a=1,2,0,b=1,0,1,则“c=(,,的条件.7.若|a|,b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为
三、解答题共44分
9.14分已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量
10.(15分)如图,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA
1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;
2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:
3EM⊥面BCC1B1.11.(15分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB2,AF
=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.答案
1.C2.A3.B4.B5.D
6.充分不必要7.23132)”是“c⊥a,c⊥b且c为单位向量”3118118,2,或,2,8.1 555
5.9.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设
正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).∴2
211AM1,0,,AN0,1设平面AMN的一个法向量为22
n=x,y,z,1nAMyz02 nANx1yz02
令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).
∴(-3,2,-4)为平面AMN的一个法向量.
10.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).
→→所以BD1=BE+BF,故BD1,BE,BF共面.
又它们有公共点B,所以E、B、F、D1四点共面.
(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3
得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).
→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.11.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22,0、(0,0,1). 22
22∴NE=-1.22
又点A、M的坐标分别是,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F22,1),DF=(0,2,22
1).
→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF
=
F,∴AM⊥平面BDF.
第五篇:证明向量共面
证明向量共面
已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?
写详细点怎么做谢谢了~明白后加分!!
我假定你的O-A表示向量OA。
由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。
(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)
你给的右端向量都反向,所以2x+3y+4z=-1。
2充分不必要条件。
如果有三点共线,则第四点一定与这三点共面,因为线和直线外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。
而有四点共面,不一定就其中三点共线,比如四边形的四个顶点共面,但这四个顶点中没有三个是共线的。
“三点共线”可以推出“四点共面”,但“四点共面”不能推出“三点共线”。因此是充分不必要条件
任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积(AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。
3已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?
写详细点怎么做谢谢了我假定你的O-A表示向量OA。
由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。
(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)
你给的右端向量都反向,所以2x+3y+4z=-1。
4Xa-Yb+Yb-Zc+Zc-Xa=0
∴Xa-Yb=-(Yb-Zc)-(Zc-Xa)
由共面判定定理知它们共面。
简单的说一个向量能够用另外两个向量表示,它们就共面。详细的看高中课本
41.若向量e1、e2、e3共面,(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是
λe1+μe2-e3=0.即存在三个不全为零的实数λ,μ,υ=-1,使得
λe1+μe2+υe3=0”。
(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,就有e1=(-μ/λ)e2+(-υ/λ)e3,于是e1,e2,e3共面。