第一篇:《高等数学》的教学改革与实践探讨
《高等数学》的教学改革与实践探讨
【摘要】文章就如何进一步提高学生学习高等数学的兴趣进行分析,提出了几点建议,为高等数学的教学提供一个借鉴。
【关键词】高等数学教学改革
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)06-0160-02
高等数学所给予学生的不仅仅是一些理论知识,更重要的是数学思想方法、能力和优良的个性品质,其内容、思想与方法对于提高学生的数学素质起着十分重要的作用。近年来,它不仅是非数学理工科类各个专业的一门必修基础课程,而且在一部分院校文史类专业中也开始必修高等数学课。因此,《高等数学》课程对于培养学生素质有着不可替代的作用,其教学质量的好坏直接影响到学生后继课程的学习,但是现实中由于中学阶段片面追求升学率和过分强调成绩而忽视学生能力的培养,从而导致学生对老师的依赖性增强,缺乏自主性,学生进入大学后对大学这种课时少、信息量大、进展速度较快和以培养学生的独立性和思维能力为主的大学教学方式很难适应。再者,由于大学高等数学对学生的理论知识、逻辑推理、空间想象、综合分析能力等有更高的要求,而学生专业知识的匮乏,对于高等数学了解也不够深入,使得学生从一开始对学习高等数学失去了兴趣和信心,甚至造成有些学生厌学、怕学等不利的恐惧心理。这些给大学高等数学的教学工作带来一定的困难,同时在实际的高等数学教学过程中,学生普遍反映高等数学难学,理论抽象,计算枯燥繁琐,符号复杂繁多,使得许多学生望而生畏,这就要求教师在教学过程中不断改进教学方法、充分的调动学生的学习积极性,从而提高该课程的教学质量,来实现预期的教学效果。本文重点就如何提高学生学习高等数学的学习兴趣进行讨论。
(一)注重高等数学课和学生所学专业课的联系,使学生知道高等数学在专业上的用途,激发学生学习高等数学的兴趣,变“要我学”为“我要学”
很多学生一开始产生要放弃高等数学学习的念头的原因是高等数学很难和认为高等数学没用,这需要教师自己弄清楚高等数学与专业之间的联系,帮助学生解决疑惑,使学生明白这门课和后续的专业课之间的联系,认识高等数学的重要性。只有解决了这一点,才能调动起学生学习的自觉性,不再被动、漫无目的的学习。同时,教师在高等数学的教学过程中,可以运用数学建模方法来解决专业实际问题。把专业实际问题转化成数学模型,通过对数学模型包括(对客观事物进行分析、简化、假设、运用适合数学工具)表述、求解、解释、检验等全过程讲解来展示数学的应用的魅力,从而提高学生分析和解决问题的能力,激发学生学习高等数学的兴趣。
(二)融合多种教学方法,提高教学效率激发学生的学习兴趣和热情,增强教学效果
现行的高等数学课堂教学,“满堂灌”的现象依然突出,教学过程呆板,讲解枯燥无味,缺乏探究和学生的主动参与,缺乏相互的合作与交流,而采用的教学手段依然是粉笔加黑板的传统模式,没有充分利用现代化的教学手段。随着多媒体技术越来越多地应用到课堂教学中,使原本艰难的教学活动充满了魅力,其不但包含文字和图形,还能呈现声音、动画、录像以及模拟的三维景象,变抽象为形象,让学生在学习时,看、听、想相结合,化难为易,给学生创造一个丰富、轻松的学习环境,也有利于实行双向教学,提高教学效率。教师在授课过程中,如果能够将传统的“粉笔+黑板”的教学方法与现代教学手段相结合,借助计算机技术辅助教学,则会使课堂教学直观、生动、有趣,进而激发学生的学习兴趣,增强教学效果,提高教学效率。其次,教学过程中应适当实施一些先进的教学方法如启发式、讨论式、研究式教学,同时重视学生在教学中的主体地位,增加互动环节,把“教”和“学”有机地结合起来,充分调动学生的积极性。再者,在教学过程中,高等数学教师可以将教材中相关的数学背景知识,数学家轶事,数学史和数学趣谈,以及身边的数学实例介绍给学生,这样既可以扩大学生的知识面,活跃课堂气氛,又可以增加学生学习的兴趣,提高教学质量。同时,教师在教学时首先应注意面部表情和手势等肢体语言,良好的表情和肢体语言的引导,会让学生有一种轻松的感觉,有利于提高教学质量。
(三)引导学生对所学知识进行反思
数学思维是创新型人才不可缺少的基本素质,而一切能力的形成中,教师只是外因,必须通过学生(内因)发生作用。学生数学知识和技能的获得,能力的发展,都要以学生积极主动的建构为前提和归宿。这个过程的核心就是学生的反思。主要是对数学学科、数学学习认知活动过程的再认知。它是不同于一般意义上的反思,不再是简单的对某个问题的思考,而是科学意义上的对数学学科、数学学习过程中的问题、学习策略、学习方法、学习体验等一系列问题的深入探究和深刻反思。数学反思能力是认知者对数学知识、数学学习方法和策略、数学学习中的问题,进行有意识的、深刻的数学理性思考的综合性能力。它以其它数学能力为基础,又高于其它数学能力。拥有这种能力的一个重要标志是,学生的数学学习实现了“由要我学到我要学,由不会学到会学,由会学到善学”三个质的转变。所以,教师在教学中要充分注重培养学生对数学知识的反思,有意引导学生学会自我反思、自我评价、自我分析。在课堂教学中为学生创设反思的机会,培养学生的参与意识。
(四)注重培养学生自学的能力
“学会学习”是21世纪的教育主题之一。按数学知识“建构主义”观点看,学生是一个相对独立的“认识主体”,知识建构最终由学生自己完成,所以“学比教更为重要”。为此,我们应该认识到学生的自学能力是他们在学习中所有能力中最重要的一种能力,学生只有学会自学,培养较强的自学能力,才能适应大学阶段学习的需要。高等数学的抽象性注定了单靠课堂教学是无法完成的,重要的是需要学生在课前课后自行体会和学习,因此,培养自学能力是主要任务之一。指导学生探索自学的方法和规律;采取教师提出教学要求,放手让学生通过自学某段教材来提高自学能力和水平的方法。在培养学生自学能力的过程中,教师要重在从方法上进行指导,要特别注意调动、发挥学生的自学兴趣和积极性,要使学生之间有广泛交流。同时教师应引导学生掌握诸如推广、归纳、类比的思想,不但要教学生严格演绎思维证明问题,也要教学生怎样猜测问题,针对具体问题进行自我独立思考。另外,可以挑选一些典型的往年考研试题留给学生,引导他们自己动脑,自己动手查阅相关的资料和书籍,逐步培养他们的自学能力。
(五)重视情感教育艺术,注重情感交流,让学生爱上学习,增强学生自主学习的能力和意识
我国传统的教育观念过分强调“师道尊严”,因此教师严肃有余,学生“活泼”不足,学生在教师面前最好是毕恭毕敬,循规蹈矩,教师与学生之间是一种教育与被教育、管理与被管理的关系,这与现代教育理念是不同的。在高等数学的教学过程中,需要教师应与学生建立良好的师生关系。数学教学是数学活动的教和学,是师生之间、学生之间交往互助与共同发展求知的过程,因此我们应该与学生建立平等友好的关系,和学生成为朋友,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生。在课堂中,根据学生掌握知识的情况,提问难易适度的问题。倘若学生答不上来,教师应该循循善诱,而且应该给予最大的鼓励,让学生有一种成就感,保持旺盛的学习兴趣。教师要对每一名学生倾注满腔的爱,这样才能使学生充满自信,积极向上学习,才能在师生互敬互爱的和谐气氛中产生学习的动力。教学中教师还应根据学生喜欢表扬等特点,对学生在学习中的表现尽可能做到“多表扬,多鼓励”,从而达到乐学的目的。在高等数学课程分层次教学的过程中,教师有必要在情感教育方面多动一些脑筋,并找出一些切实可行的办法。可以说,融洽的师生关系是顺利开展教学活动的前提,是化解学生心理障碍的最佳途径,也有助于调动学生的学习积极性。
爱因斯坦说过,“兴趣是最好的老师”,学习兴趣是学习动机中最现实、最活跃的成分,是使学生乐于获得知识、技能和不断探索、发现客观规律的一种宝贵的心理因素。兴趣驱动教学,不仅仅是有效的讲授方法,更重要的是它体现了一种教学的新理念,改变了知识传输的方式,激发了学生的学习动力和兴趣,是提高高等数学教学质量的重要内容。
参考文献:
[1]王华昌等.试论大一新生在学习高等数学中的困惑及对策[J].高等教育,2012,5:55.[2]徐利治.关于高等数学教育与数学改革的看法及建议[J].数学教育学报,2000,9(2):1-6.
第二篇:高等数学教学改革实践总结报告
高等数学教学改革实践总结报告
郑丽霞 朝鲁
(内蒙古工业大学理学院数学系)众所周知,高等数学是工科院校最重要的课程之一.其重要的原因不仅在于可以学到一些数学概念,公式和结论,为其它数学课和专业课的学习打好基础,更重要的是通过学习数学可以培育人的理性思维品格和思辩能力;能启迪智慧,开发创造力.因而数学教学的好坏直接影响到21世纪人才的培养,进而影响到我国的科技发展水平与现代化进程.然而怎样实现数学教学的目的,改变数学教学效果低下的局面呢 很多数学教育研究者在教学模式,教学方法,教学内容上都做了深入广泛的研究,教学内容的改革是其核心.因此,我们在理学院领导的支持下,根据我校的实
情况,在教学内容的改进上做了一些探讨.我们选用了面向21世纪课程教材,《微积分简明教程》(上,下册,内蒙古大学 曹之江,刘元俊著),在学校部分院系展开试点工作.也作为我校承担的教育部世行贷款21世纪初高等教育教学改革项目“理工科少数民族本科教育的教学模式及主要基础课程体系及教学内容改革和实践(1282A05031)”的配套教学改革内容的一部分,与预科教学改革进行
了交流和借鉴.教学实践总结如下.教材的特点
1.起点高 系统性强 体系完整 思想与应用兼顾
本教材和同济第四版相比内容有所增加,使其起点高 系统性强 体系完整.该教材第一章 实数及其上的映射,其中第一节为无理数与微积分危机.在这一节,从自然数的产生,到有理数的出现, “无理”的数的存在,微积分的危机,一直讲到实数的构造成功.结合具体的历史事实,阐述了数学的发展过程.这段描述生动有趣,不仅使我们了解到我们将要研究的微积分,其立论的基础―实数的来之不易,更重要的是能使读者体会到数学的严密性与抽象性,体会到数学的思维方法.即数学不是直观经验的归纳和总结,而是一种理性的抽象理论.对于学生数学思想方法的形成有积极的作用.紧接着在第二节讲了一维连续统――实数,使学生知道实数的连续性是它与有理数本质的不同点,是全部微积分原理的出发点,从而使微积分的研究有了坚实的基础.而高等数学传统的做法是对数域的连续性避而不谈,只告诉学生在实数域上考虑.事实上是教学生怎样做,而没告诉为什么,以至于《高等数学》学完了,竟不能说出实数域是连续的这种本质特征.教材在内容上作了适当补充,如序列与上,下极限,n!与Euler常数,三角级数的均方逼近等概念的引入,不仅使该书有丰富的数学内容,同时实现了自身的完整性与严密性.另外,本教材增强了数学概念背景材料介绍,加强了数学知识与实际应用的结合.例如,在第五章“动力机制的数学模型――微分方程”中,除了我们熟悉的力学,电学问题外,还增加了人口增长,溶液淡化,二体运动(行星绕日运动)的模型.充分体现了各学科对数学的依赖程度,开阔了学生的认识领域,提升了学生的学习兴趣.有效地培养了学生综合运用知识分析问题,解决问题的能力.起到既教数学,又教思想的作用.该教材通过数学知识这个载体,反复不断的向学生传递着数学思想,数学方法,使这种思想方法
根植在我们的脑海中,终身受益.2.局部章节采用了一些新思路,新观点,新讲法.局部章节采用了一些新思路,新观点,新讲法.有效地化解了数学中的难点,使学生视数学为畏途的局面有所改变.我们知道极限是微积分实现其严密化的一种理论方法,是构筑微积分坚实理论体系的基石,是每种《高等数学》教材都要讲的内容.同时它也是课程的难点,每当讲到这部分时,学生如坠雾里云中,晕头转向,摸不着头脑.这部分内容传统的讲法是:数列的极限,函数的极限,无穷小与无穷大,极限四则运算法则,极限存在准则 两个重要极限,无穷小的比较.其中在讲数列极限时,往往是先通过具体事例,建立极限思想,然后给出数列{}以A为极限的定义及几何解释,最后给出收敛数列的性质:极限的唯一性,收敛数列的有界性.该教材的讲法是:离散变量的极限[包括1).以正整数为定义的函数――序列,2).无穷小量,3).序列的极限,4).无穷大量5).夹逼定理,6).单调有界序列的收敛性, 7).超越数e,8).n!与Euler常数C,9).重要序列极限例举,10).无穷小与无穷大的比较与级,11).子序列与上,下极限],连续变量的极限.通过比较可以看出,本教材在这部分内容的处理上采用了一些新思路,新讲法.它强调无穷小分析是微积分的思想与方法的核心.所以首先给出无穷小量的定义,进一步对无穷小进行量级的比较,给出同级无穷小中的规范形式.无穷小分析方法在后面多次被使用,特别是在级数部分,定理的叙述及例题计算中.由于无穷小量比较直观,所以学生很快就掌握了无穷小量的含义,同时由于无穷小量的运算的引入,使得后面的一些定理证明得到简化,从而使这部分的学习变的较为容易.此外该教材在Fourier级数部分也做了较大改动,例如三角级数均方逼近概念的引入极大提高了学生对收敛的认识程度,拓展了“距离”的概念.教材统一处理了定积分和不定积分,从具体模型提出黎曼可积的概念,给出了定积分的定义.利用连续函数变上限(即变区间)在一点对区间的导数是被积函数这一结论给出了“牛顿――莱布尼兹”,至于不定积分的出现是为了计算定积分的需要.不定积分的计算及技巧,只不过是求导的逆运算,这种处理逻辑自然,还了定积
分不定积分的历史面目.3.语言精练,详略得当.该教材增加了许多内容,但篇幅并没有增加,其主要原因是详略得当.该教材注重数学思想与数学方法的学习,而只做必要的基本解题技能的训练.在微积分中,有两大运算――微分运算与积分运算.在这两部分往往要花大量的笔墨放到例题上,而该教材这方面却比较经济.例如定积分的换元积分法,同济第四版有27 个例题,本教材只有16个;函数的几何形态部分,同济第四版有18 个,该教材有8个.这样做可以把学生从学数学就是学会算题的误区中解放出来,而把主要精力放在数学方法的掌握上.在语言表达方面该教材也很有特点,可谓言简意赅,切中要害.这一点从一些章节的标题中可体现出来,例如,微分――函数局部平直化,函数的多项式局部拟合――泰勒公式等.这些通俗直观的语言,容易记忆,便于联想,使掌握的知识牢固可靠.二,教材的使用情况
《高等数学》授课时数为180 学时.所以我们没有时间把《微积分简明教材》的内容全部讲完.考虑到学生的实际情况,比如考研,及课业负担,我们把教改教材与同济第四版做了比较,授课原则是第四版要求讲的内容,不管《微积分简明教材》是否打*号都讲.对《微积分简明教材》的必讲内容,而在第四版为选讲的内容,根据不同情况而定.讲课版本以《微积分简明教材》为准,尽量保持该教材的体系与特色,这样也就增加了教学难度,内容多学时少的矛盾尤为突出.因此在这一年的教学中,教师的课外投入偏大,除了刻苦钻研教材外,还经常需兼顾方方面面的因素反复推敲,决定讲课内容,讲课方式.在讲课过程中做到尽力改变教学的低效性,克服教学中的认知难度,使学生最大限度地掌握必要的数学知识.从学生的学习过程来看,大多数学生能做到认真听课,认真复习,认真做作业,他们从中感到了数学的乐趣.抽象思维的能力得到培养和提高,数学的知识面得到拓宽.但是,书中的一些抽象概念及定里,也让同学们付出了较多的时间与精力.我们应该承认,该教材有一定难度,学生水平存在差异,有约四分之一的学生感到吃力,甚至跟不上.从作为检验教学效果的唯一手段――考试的情况来看,教改班的学生的成绩略好一些.2000年到2001年第一学期末,教改班的同学需参加两次高数考试.一次是由认课教师自己出题,要求有难度,有特色.另一次是参加全校统一考试,两次成绩取其高分作为其高等数学成绩(实际上对大多数同学来说,参加统考的分数高),我班的不及格率为29.8%(校平均不及格率为32.1%).第二学期只参加全校统一考试,我班的不及格率为16.7%(校平均不及格率为26.1%).考试成绩较为理想.显然使用该教改教材的同学,其整体数学成绩有了明显提高.因此该教改教材在教学中的优势是应该肯定的.三,总结
这一阶段教改实践工作,在老师与同学的共同努力下已圆满结束.通过这次教改活动,锻炼了老师,取得了经验,为进一步教学改革奠定了基础.我认为该教改教材既有深度也有广度,是一部好教材.它的诸多特点和风格,使学生的数学能力得到了培养,对提高学生的数学成绩有所裨益,它的作用是应该肯定的.该教材自始至终注重数学思想教育,数学方法教育.它能使优秀生得到很好的训练但也能使较差学生学习的比较吃力,所以我们建议,对预科学生和类似预科班基础较弱的班级不宜使用该类教材.其他班级可分层次使用该教材.所谓分层次指的是数学基础好,所学专业对数学要求高的学生可以使用,而其他学生暂缓使用.教学应该因人而易,只有受到与自身能力相适应的教育,才能取得好的效果.对于我校高数教学效果低下,不及格率偏高的局面,不但有好教材,还需要教师队伍的建设,提高学生的积极性等多方面的改革才能得到解决.工科数学教学改革是一个复杂的系统工程,要使数学教学改革有突破性的进展,必须做多方面的改进,它是几方面综合作用的产物.只有处理好教学手段与课堂教学形式等问题,理论与应用的问题,经典与现代的问题等,能让大多数同学变被动学习为主动学习,认为数学有趣,有用,那末我们的数学教学改革就可以说成功了.总之,数学教学改革任重而道远,还需继续探讨.只有千千万万第一线的工科数学任课教师广泛参与,才会走出数学教学改革的成功之路.这是我们进行教育教学改革的初步实践工作,还有很多艰巨的任务有待进行
参考文献
高等数学(第四版),同济大学数学教研 主编,高等教育出版社
微积分简明教程,曹之江,刘元俊编,高等教育出版社.教育部世行贷款21世纪初高等教育教学改革项目(1282A05031)结题材料
高等数学教学改革实践总结报告
关键字: 总结 教学改革 报告 高等 数学 实践
第三篇:高等数学教学改革实践总结报告
高等数学教学改革实践总结报告
郑丽霞朝鲁
(内蒙古工业大学理学院数学系)
众所周知,高等数学是工科院校最重要的课程之一。其重要的原因不仅在于可以学到一些数学概念、公式和结论,为其它数学课和专业课的学习打好基础,更重要的是通过学习数学可以培育人的理性思维品格和思辩能力;能启迪智慧,开发创造力。因而数学教学的好坏直接影响到21世纪人才的培养,进而影响到我国的科技发展水平与现代化进程。然而怎样实现数学教学的目的,改变数学教学效果低下的局面呢?很多数学教育研究者在教学模式、教学方法、教学内容上都做了深入广泛的研究,教学内容的改革是其核心。因此,我们在理学院领导的支持下,根据我校的实际情况,在教学内容的改进上做了一些探讨。我们选用了面向21世纪课程教材,《微积分简明教程》(上、下册,内蒙古大学 曹之江、刘元俊著),在学校部分院系展开试点工作。也作为我校承担的教育部世行贷款21世纪初高等教育教学改革项目“理工科少数民族本科教育的教学模式及主要基础课程体系及教学内容改革和实践(1282A05031)”的配套教学改革内容的一部分,与预科教学改革进行了交流和借鉴。教学实践总结如下。
一、教材的特点
1.起点高 系统性强 体系完整 思想与应用兼顾
本教材和同济第四版相比内容有所增加,使其起点高 系统性强 体系完整。该教材第一章 实数及其上的映射,其中第一节为无理数与微积分危机。在这一节,从自然数的产生,到有理数的出现,“无理”的数的存在,微积分的危机,一直讲到实数的构造成功。结合具体的历史事实,阐述了数学的发展过程。这段描述生动有趣,不仅使我们了解到我们将要研究的微积分,其立论的基础—实数的来之不易,更重要的是能使读者体会到数学的严密性与抽象性,体会到数学的思维方法。即数学不是直观经验的归纳和总结,而是一种理性的抽象理论。对于学生数学思想方法的形成有积极的作用。紧接着在第二节讲了一维连续统——实数,使学生知道实数的连续性是它与有理数本质的不同点,是全部微积分原理的出发点,从而使微积分的研究有了坚实的基础。而高等数学传统的做法是对数域的连续性避而不谈,只告诉学生在实数域上考虑。事实上是教学生怎样做,而没告诉为什么,以至于《高等数学》学完了,竟不能说出实数域是连续的这种本质特征。教材在内容上作了适当补充,如序列与
上、下极限,n!与Euler常数,三角级数的均方逼近等概念的引入,不仅使该书有丰富的数学内容,同时实现了自身的完整性与严密性。
另外,本教材增强了数学概念背景材料介绍,加强了数学知识与实际应用的结合。例如,在第五章“动力机制的数学模型——微分方程”中,除了我们熟悉的力学、电学问题外,还增加了人口增长、溶液淡化、二体运动(行星绕日运动)的模型。充分体现了各学科对数学的依赖程度,开阔了学生的认识领域,提升了学生的学习兴趣。有效地培养了学生综合运用知识分析问题、解决问题的能力。起到既教数学,又教思想的作用。该教材通过数学知识这个载体,反复不断的向学生传递着数学思想、数学方法,使这种思想方法根植在我们的脑海中,终身受益。
2.局部章节采用了一些新思路、新观点、新讲法。
局部章节采用了一些新思路、新观点、新讲法。有效地化解了数学中的难点,使学生视数学为畏途的局面有所改变。我们知道极限是微积分实现其严密化的一种理论方法,是构筑微积分坚实理论体系的基石,是每种《高等数学》教材都要讲的内容。同时它也是课程的难点,每当讲到这部分时,学生如坠雾里云中,晕头转向,摸不着头脑。这部分内容传统的讲法是:数列的极限,函数的极限,无穷小与无穷大,极限四则运算法则,极限存在准则 两个重要极限,无穷小的比较。其中在讲数列极限时,往往是先通过具体事例,建立极限思想,然后给出数列{xn}以A为极限的定义及几何解释,最后给出收敛数列的性质:极限的唯一性,收敛数列的有界性。该教材的讲法是:离散变量的极限[包括1).以正整数为定义的函数——序列,2).无穷小量,3).序列的极限,4).无穷大量5).夹逼定理,6).单调有界序列的收敛性,7).超越数e,8).n!与Euler常数C,9).重要序列极限例举,10).无穷小与无穷大的比较与级,11).子序列与上、下极限],连续变量的极限。通过比较可以看出,本教材在这部分内容的处理上采用了一些新思路、新讲法。它强调无穷小分析是微积分的思想与方法的核心。所以首先给出无穷小量的定义,进一步对无穷小进行量级的比较,给出同级无穷小中的规范形式。无穷小分析方法在后面多次被使用,特别是在级数部分,定理的叙述及例题计算中。由于无穷小量比较直观,所以学生很快就掌握了无穷小量的含义,同时由于无穷小量的运算的引入,使得后面的一些定理证明得到简化,从而使这部分的学习变的较为容易。此外该教材在Fourier级数部分也做了较大改动,例如三角级数均方逼近概念的引入极大提高了学生对收敛的认识程度,拓展了“距离”的概念。
教材统一处理了定积分和不定积分,从具体模型提出黎曼可积的概念,给出了定积分的
2定义。利用连续函数变上限(即变区间)在一点对区间的导数是被积函数这一结论给出了“牛顿——莱布尼兹”,至于不定积分的出现是为了计算定积分的需要。不定积分的计算及技巧,只不过是求导的逆运算,这种处理逻辑自然,还了定积分不定积分的历史面目。
3.语言精练,详略得当。
该教材增加了许多内容,但篇幅并没有增加,其主要原因是详略得当。该教材注重数学思想与数学方法的学习,而只做必要的基本解题技能的训练。在微积分中,有两大运算——微分运算与积分运算。在这两部分往往要花大量的笔墨放到例题上,而该教材这方面却比较经济。例如定积分的换元积分法,同济第四版有27 个例题,本教材只有16个;函数的几何形态部分,同济第四版有18 个,该教材有8个。这样做可以把学生从学数学就是学会算题的误区中解放出来,而把主要精力放在数学方法的掌握上。在语言表达方面该教材也很有特点,可谓言简意赅,切中要害。这一点从一些章节的标题中可体现出来,例如,微分——函数局部平直化,函数的多项式局部拟合——泰勒公式等。这些通俗直观的语言,容易记忆,便于联想,使掌握的知识牢固可靠。
二、教材的使用情况
《高等数学》授课时数为180 学时。所以我们没有时间把《微积分简明教材》的内容全部讲完。考虑到学生的实际情况,比如考研、及课业负担,我们把教改教材与同济第四版做了比较,授课原则是第四版要求讲的内容,不管《微积分简明教材》是否打*号都讲。对《微积分简明教材》的必讲内容,而在第四版为选讲的内容,根据不同情况而定。讲课版本以《微积分简明教材》为准,尽量保持该教材的体系与特色,这样也就增加了教学难度,内容多学时少的矛盾尤为突出。因此在这一年的教学中,教师的课外投入偏大,除了刻苦钻研教材外,还经常需兼顾方方面面的因素反复推敲,决定讲课内容,讲课方式。在讲课过程中做到尽力改变教学的低效性,克服教学中的认知难度,使学生最大限度地掌握必要的数学知识。
从学生的学习过程来看,大多数学生能做到认真听课,认真复习,认真做作业,他们从中感到了数学的乐趣。抽象思维的能力得到培养和提高,数学的知识面得到拓宽。但是,书中的一些抽象概念及定里,也让同学们付出了较多的时间与精力。我们应该承认,该教材有一定难度,学生水平存在差异,有约四分之一的学生感到吃力,甚至跟不上。从作为检验教学效果的唯一手段——考试的情况来看,教改班的学生的成绩略好一些。2000年到2001年第一学期末,教改班的同学需参加两次高数考试。一次是由认课教师自己出题,要求有难度、3有特色。另一次是参加全校统一考试,两次成绩取其高分作为其高等数学成绩(实际上对大多数同学来说,参加统考的分数高),我班的不及格率为29.8%(校平均不及格率为32.1%)。第二学期只参加全校统一考试,我班的不及格率为16.7%(校平均不及格率为26.1%)。考试成绩较为理想。显然使用该教改教材的同学,其整体数学成绩有了明显提高。因此该教改教材在教学中的优势是应该肯定的。
三、总结
这一阶段教改实践工作,在老师与同学的共同努力下已圆满结束。通过这次教改活动,锻炼了老师,取得了经验,为进一步教学改革奠定了基础。我认为该教改教材既有深度也有广度,是一部好教材。它的诸多特点和风格,使学生的数学能力得到了培养,对提高学生的数学成绩有所裨益,它的作用是应该肯定的。该教材自始至终注重数学思想教育,数学方法教育。它能使优秀生得到很好的训练但也能使较差学生学习的比较吃力,所以我们建议,对预科学生和类似预科班基础较弱的班级不宜使用该类教材。其他班级可分层次使用该教材。所谓分层次指的是数学基础好,所学专业对数学要求高的学生可以使用,而其他学生暂缓使用。教学应该因人而易,只有受到与自身能力相适应的教育,才能取得好的效果。对于我校高数教学效果低下,不及格率偏高的局面,不但有好教材,还需要教师队伍的建设,提高学生的积极性等多方面的改革才能得到解决。工科数学教学改革是一个复杂的系统工程,要使数学教学改革有突破性的进展,必须做多方面的改进,它是几方面综合作用的产物。只有处理好教学手段与课堂教学形式等问题,理论与应用的问题,经典与现代的问题等,能让大多数同学变被动学习为主动学习,认为数学有趣、有用,那末我们的数学教学改革就可以说成功了。总之,数学教学改革任重而道远,还需继续探讨。只有千千万万第一线的工科数学任课教师广泛参与,才会走出数学教学改革的成功之路。
这是我们进行教育教学改革的初步实践工作,还有很多艰巨的任务有待进行
参考文献
1.高等数学(第四版),同济大学数学教研 主编,高等教育出版社
2.微积分简明教程,曹之江,刘元俊编,高等教育出版社。
第四篇:高等数学教学改革探讨
高等数学教学改革探讨
摘要在分析部分高等院校的高等数学教学现状的基础上,对高等数学的教学内容、教学方法进行研究与探讨。并针对南阳师范学院的实际情况提出符合本校高等数学教育理念的改革方案。
关键词高等数学;教学现状;教学方法;改革方案
中图分类号G642.0文献标识码A文章编号1673-9671-(2010)081-0169-01
1普通高校高等数学教学现状分析
1.1在校学生状况
刚刚进入大学的学生,他们有着崇高的抱负和理想,希望自己能够在大学期间有良好的发展,所以他们的学习积极性比较高,加上高等数学前期的内容也相对的比较容易理解,因此一年级上学期学生的数学成绩普遍相对比较高,不及格的人数比较少。但到了大一第二学期,一部分同学开始因为毅力不够坚强和基础知识不够扎实从而对学习高等数学失去信心。还有一部分同学由于学哥学姐的影响,认为在大学期间学习不是最主要的,开始在思想上放松了学习,学习的积极性大大的降低,甚至有的学生沉迷于网络,这样就造成了下学期高等数学学习成绩大幅度下降,很多学生挂科的现象。
1.2教师队伍
目前一般的高等学校的高等数学教师队伍呈现于老龄化和年轻化。学校因为种种原因缺少教师而不得不聘请退休老教师,这些老教师他们有着大量的教学经验但精力十分有限。少部分是具有多年的教学的年富力强的青中年教师,而大部分是刚刚走出校门的年轻教师,他们有着充沛的精力,但教学经验不足;他们可以和学生打成一片,但震慑力不足。这部分老师在教学中需要一个很长的成长历程。
1.3教学方式
目前,有很多的高等数学教师在对学生进行数学教学的时候通常都采用不沟通的教学方式授课。在教学过程中,老师往往采用最简单的教学方式,课堂上老师只是将课本上的例题讲一下,没有举一反三,也并不将重点、要点进行总结,也不进行课堂讨论,只是照本宣科的把知识强加给学生,没有自己的观点和创见。这样学生只是被动的接受,很多对高等数学不太感兴趣的学生就在课堂上睡觉或干其他事,从而导致高等数学教学质量提不上去。
2改革方案
为使高等数学教学更加符合高等院校教育各专业人才的培养目标,提出如下改革方案。
2.1注重学生兴趣培养
美国心理学家布鲁纳说:“学习的最好动机,乃是对所学教材本身的兴趣”;这就是说,浓厚的学习兴趣可激起强大的学习动力,使学生自强不息,奋发向上。而高等数学它本身是一门比较枯燥的课程,他要求学生有很强的逻辑思维能力。缜密的思维就要求学生在课堂上高度集中,稍有疏忽,就不知道老师在讲什么。从而影响一节课的听课效果。而浓厚的兴趣则是上课专心听讲的首要条件。如果学生本来对数学的兴趣不大,甚至感到厌恶,则会在上课和课余时间将数学弃之一边,不屑一顾,或者提起数学就头疼,这样我们就不难想象他们是学不好高等数学的。那么怎样做才能激发学生学习高等数学的积极性呢?
教师要注意培养学生学习的积极性,培养学生学习动机,例如要将每种类型的积分的物理背景和几何背景加以阐述说明,这对学生的学习高等数学的兴趣有很大的帮助。还有就是在课堂上多举些生动的实例,这些例子能够引进相关的知识背景及有关花絮就能活跃课堂气氛,避免只有枯燥的理论和繁琐的计算状况,使学生学起来觉得轻松愉快,使他们怀有浓厚的兴趣,并对所学知识有深刻的印象。
而从学生本身来说,培养自身对学习高等数学的兴趣尤为重要。首先,我们要在注重课前预习,把握重点、难点,不懂点,以便在课堂上有所侧重的听讲。其次,课堂听讲尤为重要。再者,课后预习。将课堂所讲吃透。最后,我们还要注重知识面的扩展,丰富的知识是培养对高等数学兴趣的重要一环节。
2.2凸显数学的文化价值
张楚廷教授强调:“教育并不总是在让学生认知,教育很大程度上是让学生欣赏,只有这样,才有最佳的教育效益。”同时张奠宙教授也指出:“数学文化必须走进课堂,在实际数学教学中使得学生在学习数学的过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位和世俗的人情味。”可见将数学文化作为一种教育理念已受到许多学者的重视。
什么是数学文化?我认为数学文化有狭义和广义两种之分,狭义的解释是指数学的思想、精神、方法、观点、语言,以及它们的形成和发展;广义的解释是除这些以外,还包含数学史、数学美、数学教育、数学与人文的交叉、数学与各种文化的关系。其实数学作为一种文化现象,早已是人们的常识。
怎样将其数学文化渗透到高等数学的教学中呢?首先要拓展教材内容的文化内涵。教材是学生学习数学的重要依据,它主要是逻辑加工的产物,淡化了数学文化的色彩,但它确实是扎根于数学文化中的。只要我们对教材的相关内容适当地加工、拓展和补充,使教材的内容回归自然,焕发出其固有的文化活力,学生就一定能体会到教材中浓厚的文化气息。其次要突出数学艺术的价值。通过数学在音乐、绘画、文学等艺术领域的应用的介绍,提高学生的艺术鉴赏能力。通过合作、交流与讨论,使学生从数学理性的角度去分析和欣赏艺术作品,体验数学的艺术美,能达到提高数学文化品味的目的。再次就是注重执行。如在教授知识之前介绍有关的背景文化;做专题演讲;鼓励和指导学生就某个专题查找、阅读、收集资料文献,在此基础上,编写一些形式丰富的小作文,科技报告,组织学生进行交流等。当然只要大家发挥自身的智慧,多去实践,总结方法,这样就很容易凸显高等数学文化价值。
2.3教学方法改革探讨
针对目前高等数学教学方式所存在的弊端,在近几年我校老师采用了新的教学方法,进行大量的实践证明,这些方法对高等数学的教学有很大的帮助,在此我将这些方法下来,用于分享讨论。
1)内容向导式教学。内容向导式教学就是要求在老师的讲授下一部分内容之前给出其中的重点和注意点,最好给一个提纲,并在下一次授课时提问,这对学生在学习中存在的普遍问题给予重点讲解,而不需要花费大量的时间从头到尾的讲解。这样既有重点性,又培育了学生自觉学习的好习惯,提高了教学质量。
向导教学法的基本原则是:学生主体性原则、教师向导性原则、教育全面性原则、自学主导性原则、素质发展性原则。向导教学法的基本指导思想表明:学生主动掌握学习内容实现素质发展目标是教学活动主线,教师适时提供必要帮助,激励、诱导、启发、评价、回馈、调整,积极为学生主动学习发挥向导服务作用,有利于充分发掘培养学生潜在能力。在新的教学过程中,教师辅导学生自学,相机点拨,“启”而不“发”,让学生独立思考,积极探索,应时而“发”,展开丰富联想,主动开展互助学习活动。学生在主动学习的活动中,在分析、归纳和推理过程中,在辨别正确和错误的争论中,在质疑问难发表独立见解中,辩证思维的各种方式方法,在实践应用中不断内化成为闪烁创造天才火花的最可珍贵的思想素质。
2)交流互动式教学。在传统教学中,一般都是老师在讲堂上讲,学生在底下听,做笔记,师生之间的互动性相对不够,学生在整个教学过程中仅仅充当了只是一个被动的知识接受者。而所谓的互动式教学就是指“学生为主体,教师为主导”的教学原则。以启发式为主导,让学生和老师共同参与课程教学。学生和老师一起调研、讨论交流设计心得等方式学习,来提高学生的学习兴趣和学校的教学质量。
3)类比思维教学法。类比思维是解答化学竞赛题的基本方法,类比思维包括两方面的含义:联想,即由新信息引起的对已有知识的回忆;类比,在新、旧信息间找相似和相异的地方,即异中求同或同中求异.通过类比思维,在类比中联想,从而升华思维,既有模仿又有创新。这种利用类比思维方法可以培养出学生的联想能力、知识与技能的迁移能力,特别是有利于培养学生的发现问题、分析问题和解决问题的能力,因而能够促进学生综合能力的进一步提高,同时也为学生的终身学习奠定下伏笔。因而,在高等数学教学中渗透着讲一些科学发现及数学发现的思维方法,对促进学生的发展具有至关重要的作用。
4)分层教学法,因材施教。由于各专业学生的基础良莠不齐,即使是同一专业的学生,其初等数学基础也是相差悬殊,同时我们还考虑到学生毕业后的职业目标不同。鉴于此,我们对高等数学采用了分层教学法,对不同层次的学生采用不同的教学方法,从总体上提高了高等数学的教学质量。
2.4教学手段的改革
教师是教学改革的积极参与者,改革的成败关键在于教师。高等数学教师多数都是数学专业的本科、研究生,他们对数学理论知识有着扎实的基础功底,对于数学学科的内容掌握较好,知识结构体系完整,而对于高等数学在实际生活上的应用能力较差,这样的老师很难培养学生的实际应用能力。为此从事高等数学教学的教师应该努力加强自身学习,积极参与数学建模课程的学习以及带领学生参加数学建模竞赛,加强这方面的训练,真正成为教育改革的终身学习者和实践者。
本文系南阳师范学院项目支持:基金项目:南阳师范学院校级项目,编号nynu200727;南阳师范学院数学分析精品项目。
参考文献
[1]卢玉峰.关于数学基础课程的一些思考[J].高等数学研究,2003,6.[2]关东月.类比思维法在高等数学及教学中的应用[J].内蒙古农业大学学报,2005,03.[3][美]R克朗,H罗宾.什么是数学[M].上海:复旦大学出版社,2007.[4]张顺燕.数学的思想、方法和应用[M].北京:北京大学出版社,1997.作者简介
王佩(1980―),女,汉族,陕西西安人,本科,理学学士,助教。
田颢(1982―),男,贵州黄平人,助教,研究方向为微分几何。
第五篇:高等数学教学改革探究论文
1高等数学教学现状和存在问题
1.1高等数学课作用的定位不准确
高等数学作为一门公共基础课,有些人把它简单的看成是一个工具,过分看重它为专业课服务的功能,忽略了高等数学的逻辑推导、思维缜密对学生综合能力和数学素养的提高,导致学生仅仅把数学看成是工具,学习掌握以“必须、够用”为原则,忽视了高等数学课的培养学生数学素养和综合能力的重要功能,没有意识到学生数学文化的培养和终身学习的需求。
1.2学生基础较差,目标不明确
随着高校招生规模的扩大,生源总体质量有所下降,学生数学基础较差,数学素养参差不齐,学生高考数学成绩差距也较大,有些学生中学没有养成良好的数学学习习惯和学习方法,高等数学是纯理论课,定义、定理、公式较多,比较枯燥,有些学生学习起来有一定难度,特别是多元函数微积分学部分,有很大一部分学生基本放弃,高等数学不及格率也居高不下。部分学生学习目的不明确,态度不端正,对于数学的要求,仅限于考试及格即可,缺乏进取心和学习兴趣。
1.3教学方法单一,不能与专业结合有的教师在高等数学的讲授过程中依旧采用传统的教学方法,教师在讲台上认认真真地讲授高等数学的内容,台下学生枯燥无味地被动地听,更有甚者玩手机。教学方法和授课内容过分强调理论的严谨性、科学性、逻辑性,而忽略学生专业学习的需求;知识点背景信息介绍,相关例题、习题、作业的选取,教学内容的编排,概念定理的叙述证明,都缺乏创新意识,各专业都一样,没有体现专业特色;重视推导、计算,忽略大学生解决专业实际问题的能力培养;重视解题能力的训练,忽略了大学生数学思想方法的熏陶。
1.4教学内容陈旧,没考虑学情
现有高等数学与中学数学在教学内容上有些地方衔接不好,比如反三角函数,极坐标、参数方程等等知识中学并没有讲解,但大学教师认为中学已经学过,高等数学教材中也没有进行补充和解释,这就造成高等数学与中学数学教学内容存在脱节现象,导致高等数学部分内容学习效果不好;同时将高等数学的部分内容下放到中学数学中讲授,部分教学内容重复,引不起学生的学习兴趣,殊不知他们只知其然不知其所以然,比如简单的导数和积分计算等。另一方面,教材体系一成不变,多选用同济大学《高等数学》,内容显得有些陈旧。
2基于专业的高等数学教学改革
2.1制定与专业课相结合的教学计划
数学教师要多与专业任课教师加强联系,可以通过调查问卷、座谈会、专题会等方式,深入了解各专业所需的高等数学知识点,如在哪些专业课中用、用到哪些高等数学知识、哪些数学知识学生掌握的不好不够用、还需补充哪些知识、哪些问题要用到数学知识解决等等。掌握这些情况后,教研室可根据专业课的需要和特点,在遵循教学大纲要求和教材完整性、科学性、系统性的前提下,适当的调整部分教学内容。通过与专业任课教师的沟通交流,兼顾学生实际和专业特点,有目的制定合理的高等数学授课计划。专业课教师(课程负责人或教研室主任)要积极配合数学教师的工作,将专业课中好的数学案例提供给数学老师,并重视数学教师的反馈意见,认真吸收高等数学教材中好的思想与方法,将专业课中所用到的数学定理、公式等通过讲授能引起学生的共鸣,共同提高教学效果。在内容上增加来自于专业的实际案例,使数学更加生动和富有吸引力,调动了学生学习数学能动性。
2.2改进教学方法,激发学习兴趣
高等数学这门课有点抽象,逻辑性强,知识构架严密,部分学生学习起来有些难度。在课堂授课过程中,如果教师只是重视分析概念、定理、证明公式,学生学起来比较枯燥,必须选择适合的教学方法。教师应积极利用先进的多媒体技术和自制的课件进行教学,以此提高学生对高等数学的学习兴趣,以便于学生掌握教材中的难点和重点,弥补传统教学方式在视觉、立体感和动态意义上的不足,使一些抽象、难懂的内容易于学生理解和掌握。教学过程中,需要用到研究性、探究式和讨论式等教学方法,可以让学生参与到高等数学教学环节的全过程之中,发挥学生的主体作用。条件成熟还可以让学生当小老师,讲授某些知识点或某个例题,教师做点评。
2.3引进具有专业背景的例题,提高学生的数学应用能力
在高等数学的课堂教学过程中,例题的选取也很有学问,例题的设计要慎重,要把某些专业知识或公式提前介绍一下。为了体现数学对于专业课学习的重要作用,教师在授课时,多采用一些与专业课有关的例题。比如经管专业讲解导数时,可以引入成本函数与边际成本的关系,工科专业讲解二重积分应用时可以引入理论力学中质心坐标计算的例题、习题或试题等。还可以将数学建模的思想引入到高等数学课堂教学中,往年典型赛题可以充实到教学内容中。让学生体会到高等数学对于他们的后续专业课的学习至关重要,从而提高学生的学习积极性。教学中所用到的例题不仅要符合教学内容和教学目的的需要,而且要兼顾学生的认知水平,有利于大学生掌握教学内容,能够为学生运用所学数学知识解决实际问题打下基础。
2.4教师要树立高等数学专业教学意识
教师要及时更新高等数学教学观念,考虑学生的专业背景,体现学生专业化的要求。教师在教学过程中在强调高等数学理论知识体系的完备性的同时,还要重视高等数学与专业课相结合培养学生的综合能力;不仅要注重数学知识的传授,还要重视数学应用能力的培养,提高学生专业应用能力。
3结论
总之,高等数学的教学各环节要与学生的专业背景紧密结合,加强高等数学与各专业课之间的密切联系,让学生端正学习高等数学的目的,培养大学生的职业创新能力。数学教师应该多与专业课教师交流,学习专业知识,完善自己的教学经验,寻找专业教学案例,加强高等数学的实际应用能力,在教学中体现高等数学的实用性和有效性,提高教学效果。