第一篇:平行线证明难题
第二章平行线的性质和判定拔高训练
1.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C的位置.若∠EFB=65°,则AED等于__________.
(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.
(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.
''
'
2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是()A.30°和150°
B.42°和138°
C.都等于10°
D.42°和138°或都等于10°
3.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有()个数 A.1
B.2
C.3
D.4
4.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=__________.
5.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC. 6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.
7.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF
8.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.
9.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.
10.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.
11.如图,AB∥CD,∠ABF=∠DCE,求证∠BFE=∠FEC
第二篇:相交线与平行线难题
第一讲 相交线与平行线
【难题巧解点拨】
例1求证三角形的内角和为180度。
例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对?
B
C
例
3例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.例4如图,∠1+∠2=∠BCD,求证AB∥DE。
A B
CDA E
【典型热点考题】
例1 如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗? AC∥BD吗?为什么?
例2平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点.怎样安排才能办到?
例3已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.
一、选择题
1.图2—17中,同旁内角共有
()
A.4对B.3对C.2对D.1对
2、光线a照射到平面镜CD上,然后在平面镜AB和CD之
间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=()A.50°B.55°C.66° D.65°
3、如图为中华人民共和国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为()
000045303640ABC
4、如图3,把长方形纸片沿EF折叠,使D,C分别落在D,C的位置,若∠EFB65,则∠AED等于()
A.
5.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么()
A.8角均相等B.只有这一对内错角相等
B.55C.
60D.
5C.凡是内错角的两角都相等,凡是同位角的两角也相等 D.凡是内错角的两角都相等,凡是同位角的两角都不相等
6、如图,在ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,那么A的度数是(B)
A、30°B、45°C、35°D、60°
C7、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上
平行前进,则这两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40°
8、已知:如图,AB//CD,则图中、、三个角之间的数量关系为().A、++=360B、++=180C、+-=180D、--=90
9、如图,把三角形纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是().(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2(D)3∠A=2(∠1十∠2)
二、填空题
1、用等腰直角三角板画∠AOB45,并将三角板沿OB方向平移到如图17所示的虚线处后绕点M逆时针方向旋转22,则三角板的斜边与射线OA的夹角为______
2、如图2—30,直线CD、EF相交于点A,则在∠
1、∠
2、∠
3、∠
4、∠B和∠C这6个角中.
(1)同位角有______;(2)内错角有______;(3)同旁内角有_____。
3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,(1)∠1和∠2是_______角;
(2)若∠1与∠2互补,则∠1-∠
3=_______.4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.
(千万别遗漏)
三、解答题
1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.
2、在3×3的正方形ABCD的方格中,1+2+3+4+5+6+7+8+9之和是多少度? 解:
3、已知:如图,CD//EF,∠1=65,∠2=35,求∠3与∠4的度数.解:
4、如图,哪些条件能判定直线AB∥
CD?
A B
C D5、如图,已知DE、BF平分∠ADC和∠ABC,∠ABF=∠AED,∠ADC=∠ABC,由此可推得图中哪些线段平行?并写出理由.
6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、3=°时,可以使任何射到平面镜a经过平面镜a、b的两次反射后,入射光线
b的夹角∠
a1m
上的光线m,m与反射光线
n平行.你能说明理由吗?
b
n
7、潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗?为什么?
8、如图:已知ABC与DEF是一副三角板的拼图,A,E,C,D在同一条线上.(1)、求证EF//BC ;(2)、求1与2的度数
第三篇:相交线与平行线(难题)
戴氏中·高考学校新余分校要考试找戴氏相交线与平行线复习题
A D
1、如图,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是_____度。
BC
第1题第2题第3题
2、(2009年崇左)如图,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF=
(),250°,3、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130°
则3的度数等于()
4、(2007年·福州中考)(阅读理解题)直线AC∥BD,连结AB,直线AC,BD及线段AB把平面分
成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角.)
(1)当动点P落在第①部分时,求证:∠APB =∠PAC +∠PBD;
(2)当动点P落在第②部分时,∠APB =∠PAC +∠PBD是否成立(直接回答成立或不成立)?
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
校址:新余市渝水区五一北路红海名仕公馆258号(城北青少年宫旁)校区联系电话:
0790--63663885、(2009年金华市)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠
2第6题
第5题
6、光线a照射到平面镜CD上,然后在平面镜 AB和CD之间来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4。若已知∠1=55°,∠3=75°,那么∠2等于()
7、如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠
1、∠2,求∠1+∠2的度数。
8、如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.
9、如图,直线AB、CD被直线EF所截,∠AEF+∠CFE=180°,∠1=∠2,则图中的∠H与∠G相等吗?说明你的理由.(12分)
E
G
H10、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;
(2)另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
11、把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()
A、115° B、120° C、145° D、135°
第11题第12题第13题
12、(2011•天水)如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是()
A、30° B、45° C、40° D、50°
13、(2011•泰安)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()
A、25° B、30° C、20° D、35°
14、(2011•江汉区)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A、23° B、16° C、20° D、26°
15、(2011•恩施州)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()
A、43° B、47° C、30° D、60°
16、如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).
(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).
17、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜
a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由
吗?
a
31m
b
n18、潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗?为什么?
19、如图(6),DE⊥AB,EF∥AC,∠A=35°,求∠DEF的度数。
第四篇:平行线的证明
平行线的证明:命题:判断一个事情的句子。
命题一般由条件和结论组成。通常可以写成如果…那么…的形式。如果引出的是条件那么引出的是结论。
正确的为真命题不正确的为假命题
要证明一个命题是假命题通常要举一个例子,使它具备问题得条件不具备问题得结论,我们称这样的例子为反例。
经过证明的真命题为定理
平行线的判定:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
(内错角相等,两直线平行)
两条直线被第三条直线所截,如果同位角相等,那么
两条直线平行。
(同位角相等,两直线平行)
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
(同旁内角互补,两直线平行)
平行线的性质:两直线平行同位角相等
两直线平行内错角相等
两直线平行同旁内角互补
平行线及其判定练习题
一、选择题:
1.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
AE
DA
E
C
(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空题:
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.CD3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是(2)由∠CBE=∠C可以判断______∥______,根据是
三、训练平台:(每小题15分,共30分)
1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.A
2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥CD.E
AC
四、提高训练:
K
H
BD
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc
五、探索发现:
如图所示,请写出能够得到直线AB∥CD的所有直接条件.24AC
B
657D
六、中考题与竞赛题:
(2000.江苏)如图所示,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()
A.①②B.①③C.①④D.③④
c
41a
57b
第五篇:平行线的证明
优毅教育2014年3月22日春季数学同步提高课导学案设计人:杜老师学生:
第八章平行线的有关证明
一、知识点归纳
(一)关于命题、定理及公理
1.对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的。
2.判断一件事情的句子,叫做。3.每个命题都由和两部分组成。4.正确的命题称为,不正确的命题称为。想要判定一个命题是假命题只需要,而要说明一个命题是真命题则需.(二)平行线的性质及判定
判定:(1)(公理)(2)(3)性质:(1)(公理)(2)(3)
1.如图1,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是()
A.∠2+∠3=180°B.∠1+∠5=180°
C.∠4=∠7D.∠1=∠8
5.公认的真命题称为公理(所有公理)6.推理的过程称为。7.经过证明的真命题称为。
8.由一个公理或定理直接推出的定理,叫做这个公理或定理的同步练习:
1.把命题“对顶角相等”改写成“如果„„那么„„”形式为。2.请给出命题:“如果两个数的积是正数,那么这两个数一定都是正数”是(真命题或假命题),理由:______________________________________。3.下列语句不是命题的是()
A.2008年奥运会的举办城是北京B.如果一个三角形三边a,b,c满足a=b+c,则这个三角形是直角三角形C.同角的补角相等D.过点P作直线l的垂线4.下列命题是真命题的是()
ca3 25b
7图1图23.如图2,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()
A同位角相等两直线平行 B.同旁内角互补,两直线平行 C内错角相等两直线平行D平行于同一条直线的两直线平行4.已知,如右图AB∥CD,若∠ABE = 130°,∠CDE = 152,则∠BED =__________.AFB
E5、如下图,平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.6、如下图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度是.A.a一定是负数B.a0
C.平行于同一条直线的两条直线平行
D.有一角为80°的等腰三角形的另两个角都为50° 5.举例说明“两个锐角的和是锐角”是假命题.第5题图
中考(平行线)
1.(山东济宁)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70方向到达B地,然后再沿北偏西20方向走了500m到达目的地C,此时小霞在营地A的A.北偏东20方向上B.北偏东30方向上C.北偏东40方向上D.北偏西30方向上 5.(湖南郴州)下列图形中,由ABCD,能得到12的是()
6.(2010湖北襄樊)如图1,已知直线AB//CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150° B.130° C.120° D.100°
图1.
2.(山东威海)如图,在△ABC中,∠C=90°.若BD∥AE,7.(甘肃)如图,AB∥CD,EFAB于E,EF
交CD 于F,已知160°,则2()∠DBC=20°,则∠CAE的度数是 A.30°B.20°C.25°D.35° A.40°
B.60°D C.70°D.80°E A
B A E3.(山东聊城)如图,l∥m,∠1=115º,∠2=95º,则
∠3=()8.如图1,直线a∥b,C与a、b均相交,则
=()
A.120ºB.130ºC.140ºD.150º
4.(山东省德州)如图,直线AB∥CD,∠A=70,∠C=40,则∠E等于
第2题图
C9.(荷泽)如图,直线PQ∥MN,C是MN上一点,CE交
PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为
A.60° B.50° C.40° D.30°
M
Q N
(A)30°(B)40°(C)60°(D)70°
C 5题图
10.(新疆维吾尔)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()
A.45°B.35°C.55°D.125°
11.(2010贵州遵义)如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是 A.80°B.100°C.110°D.120 °
15.(福建三明)如图,已知∠C=100°,若增加一个条件,使得AB//CD,试写出符合要求的一个条件:。
(三)三角形的内角和外角的定理
1.三角形内角和定理:。2.三角形一个外角等于和它不相邻的两个内角的和。
12.(2010广东肇庆)如图1,AB∥CD,∠A=50°,∠C=∠E,则∠C等于()
B.25°
D.40°
3.三角形的一个外角大于任何一个和它不相邻的内角。
1、(2011•昭通)将一副直角三角板如图所示放置,使含30°
角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
13.(2010山东日照)如图,C岛在A岛的北偏东50o方向,C岛在B岛的北偏西40方向,则从C岛看A,B两岛的视角∠ACB等于.
o
A、45°B、60°
C、75°D、85°
2、(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()
14.(2010山东烟台)将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____________。
A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°
3、(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()
4、(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、975、直角三角形中两锐角平分线所交成的角的度数是()
6、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()
2.如图所示,XOY=90°,点A、B分别在射线OX,OY上移动,BE是ABY的平分线,BE的反向延长线与OAB的平分线相交于点C,试问ACB的大小是否变化,如果保持不变,请给出证明,如果随点A、B的移动变化,请给出变化范围。
7、关于三角形的内角,下列判断不正确的是()
A、至少有两个锐角B、最多有一个直角
C、必有一个角大于60°D、至少有一个角不小于60°
8、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()
3.一件商品如果按定价打九折出售可以盈利20%;如果打八
9如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大
小为()
折出售可以盈利10元,问此商品的定价是多少?
4.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
10、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()
解答题
1.已知:如图15,AD⊥BC于D,EG⊥BC于G,∠E =∠3。求证:AD平分∠BAC。