淀粉基生物降解材料(五篇模版)

时间:2019-05-14 02:14:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《淀粉基生物降解材料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《淀粉基生物降解材料》。

第一篇:淀粉基生物降解材料

海 南 大 学

毕 业 论 文(设计)

目:

淀粉基生物降解材料

号:

20110402310001

名:

陈广平

级:

2011

院:

材料与化工学院

业:

高分子材料与工程(塑料)

指导教师:

赵富春

完成日期: 2014 年月日

淀粉基生物降解材料

淀粉基生物降解材料

摘 要

淀粉基生物降解材料是一类很重要的可降解高分子材料。随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。

关键词:淀粉

生物降解

降解性能

应用与发展

合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。

1、淀粉的基本性质

淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[

3、4] 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过

淀粉基生物降解材料

羟基相互作用形成分子问和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水分子相互结合,从而形成颗粒状结构[4],因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。

淀粉是一种高度结晶化合物,分子问的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。

2、可生物降解材料的定义及降解原理

降解材料是指在材料中加人某些能促进降解的添加剂制成的材料,合成本身具有降解性能的材料以及由生物材料制成的材料或采用可再生的原料制成的材料。其在使用和保存期内能满足原来应用性能要求,使用后在特定环境条件下,在较短时间内化学结构发生变化,从而引起性能损失的材料[5]。生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[6]。理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。

生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。

首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄人体内,经过种种代谢路线,合成微生物体内所需要的物质或转化为微生物活动的能量,最终转化成CO2和H2O[7]。在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,降解作用的形式主要有以下几种[8]:(1)生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;(2)生物的生化作用,微生物对材料作用而产生新的物质;(3)酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解。

3、淀粉基生物降解塑料

普通淀粉粒径为25um左右,既可作为制备降解复合材料的一种填料,又可以通过一定改性处理制备降解塑料。淀粉基生物降解塑料分为破坏性生物降解塑

淀粉基生物降解材料

料和完全生物降解塑料。前者主要是指将淀粉与不可降解树脂共混,研究开发较早,是淀粉基可降解塑料研究的第一代产品。后者则包括淀粉与可降解聚酯共混材料和全淀粉塑料两种,这两种材料在使用后均能实现彻底降解,目前是国外生物降解材料开发的主流。由于淀粉的成本比普通塑料要低很多。普通食用淀粉的价格为每吨2200元,而通用塑料的价格为每吨13000元,因此开发全淀粉降解塑料是今后淀粉基生物降解材料的大趋势[9]。

3.1破坏性生物降解塑料

破坏性生物降解塑料主要是指淀粉填充型降解塑料,将淀粉或变性淀粉作为填料,与聚烯烃等热塑性塑料共混并加入一定添加剂制备的部分降解塑料[10]。制品在使用后,淀粉部分首先降解,制品崩裂为碎片,因此又称为崩溃性生物降解塑料。材料破碎后表面积增大,有利于树脂部分的进一步降解。

这类降解塑料研究较早。早在1973年英国Griffin就以淀粉为填料,直接与聚烯烃进行共混。此后一些国家以这一方法为依据开发出淀粉填充型生物降解塑料。但是填充量一般只有5%-30%,增大淀粉含量会导致材料性能无法达到要求。这是由于天然淀粉分子内含有大量的羟基,属于强极性物质,而聚烯烃的极性较小,两者相容性较差,很容易发生相分离,难以形成连续相[11]。多年来,很多科学工作者致力于淀粉基生物降解塑料的研究,证明采用淀粉与非极性树脂进行共混,必须对淀粉进行预处理,改变其表面性质和结构特征,才能使两相界面结合很好,从而制备出具有优良性能的产品。

改性处理淀粉的方法主要分为物理改性和化学改性两种: 1)物理改性

物理改性[12]是指将淀粉进行机械化处理(气流粉碎等),并通过采用偶联剂,表面活性剂和增塑剂等助剂进行改性处理,降低淀粉的极性,在一定程度上提高了两相间的相容性。同时改性剂本身与淀粉的羟基发生作用,破坏淀粉本身的结晶性,使其刚性减弱,塑性增加,从而改善了淀粉的加工性能。该方法研究最成功的是加拿大的St.Lawarnce公司制备的Ecostar母料。

2)化学改性

化学改性是指通过在淀粉中加入一定单体,在引发剂和催化剂的作用下,单体与淀粉发生接枝反应,在淀粉分子链引入疏水化基团,在淀粉与合成树脂间起

淀粉基生物降解材料

到增容剂的作用,而且接枝淀粉也可进行填充。化学改性的方法主要有酯化,醚化,接枝共聚或交联改性等方法[13]

此外还有其他对淀粉进行改性的方法,例如等离子体法,微波辐射等方法。Ismael E.Rivero[14]等采用微波辐射的方法将淀粉与辛烯丁二酸酐以不同比例进行反应,然后将其作为淀粉和LLDPE共混体系的相容剂,通过结构和力学性能测试表明加入10%的相容剂能够明显减少淀粉相的大小,同时改进共混体系的力学性能。

淀粉/聚烯烃共混制备工艺简单,对生产条件的要求低,加工设备不需要作太大的改进,在工业化生产方面有很大的优势[15],而且对于及时缓解目前严重的废旧塑料污染问题有很重要的意义。但是由于复合材料中淀粉填充量较小,复合材料中不可降解部分仍占很大比例,难以实现完全降解,因此该方向对塑料降解的作用会受到一定的限制。

3.2完全生物降解塑料 1)淀粉/可降解聚酯共混塑料

淀粉/可降解聚酯共混塑料是将淀粉与可降解聚酯如PCL, PVA, PHB或天然高分子纤维素等共混制备,由于聚酯类化合物本身具有生物降解性,因此产品可以完全降解,更有利于环保。作为降解材料,聚酯类化合物如聚乳酸等己经广泛应用于医学等领域。然而其力学性能差,成本高的缺点限制了其进一步发展。如果在聚酯中添加一定量的淀粉,不仅可以使共混塑料的成本降低,而且淀粉的加入在一定程度上改善了聚酯的机械性能[16]。但是淀粉和聚酯类化合物都是极性化合物,具有很强的亲水性,长时间暴露会导致其性能的下降。另

外淀粉与聚酯之间也同样存在相容性的问题,因此在共混之前添加一定改性剂进行处理也十分必要的。

2)全淀粉塑料

全淀粉塑料是指以淀粉作为材料的基体,在淀粉中添加少量的助剂制备而成。淀粉本身是一种高分子聚合物,分子以顺式排列,结晶温度高,难以直接加工成型。因此必须在淀粉中加入一些增塑剂等助剂,破坏淀粉与原有的分子结构,使其物理性质和化学性质产生一定改变,从而能够应用生产生活[17]。例如淀粉在塑化状态下表现出很高的强度和韧性,但是在重新冷却结晶后,则表现为脆性

淀粉基生物降解材料

很高,难以进行实际应用。因此制备全淀粉塑料中,需要对淀粉进行一定变性处理,破坏其高度结晶的结构。另外全淀粉塑料吸水性很强,在空气中吸收大量水分后,材料难以保持很好的性能。

全淀粉塑料是淀粉基生物降解塑料发展的最新方向,实现全淀粉塑料的应用,对于缓解目前石油能源医乏,解决塑料污染具有很重要的意义。

4、淀粉基生物降解材料降解性能的自身影响因素

1)聚合物改性

为了使淀粉基生物降解材料在降解前具有一定的力学性能,需要将复合材料组分中的聚合物进行化学改性。Demirgoz等[18]研究了3种淀粉基降解复合材料:玉米淀粉/乙烯-乙烯醇共聚物(SEVA-C)、玉米淀粉/醋酸纤维素(SCA)和玉米淀粉/聚己内酯(SPCL),通过链交联对这3种复合材料中的聚合物组分进行化学改性,研究了复合材料在盐溶液中的降解行为。结果表明,复合材料经过交联改性后,共混物的失重率比未改性的聚合物共混物要小,说明交联改性延缓了共混物的降解。对于淀粉和PLA共混复合材料,将PLA进行改性比如共聚作用,产生酸性物质,使得微生物侵蚀材料,从而可加快复合材料的生物降解[19]。

2)淀粉改性

原淀粉由于亲水性太强而不能用于食品包装材料,通过淀粉改性可使淀粉的疏水性增强,这些改性必将影响到淀粉的降解性能。通过比较原淀粉和淀粉醋酸酯挤出共混物的酶降解性能[20],可知当共混物中淀粉醋酸酯的含量增加时,共混物的降解性能下降,因为淀粉醋酸酯是共混物中疏水的部分,比较难与酶解近,故降解速率在初始阶段有所下降。Kim [21]通过比较原淀粉(NS)/PE和羟丙基淀粉(HPS)/PE共混物的降解性能,发现HPS/PE共混物更易被热氧化降解,而NS/PE共混物较难被氧化,因为在加热过程中其羟基指数没有增加。并且HPS/PE较NS /PE共混物更易被微生物降解,因为HPS/PE的拨基能够进一步参与氧化降解,氧化降解协同微生物降解一起加快了HPS/PE共混物的降解。

3)增溶剂

土埋法淀粉/LDPE共混物降解性能显示[22],与未加增容剂相比,加入增容剂MA g PLDPE和AAe g PLDPE后共混物的失重随着增容剂含量的增加而呈现

淀粉基生物降解材料

无规律性的变化,表明增容剂对淀粉/LDPE的降解性能有一定的影响,随着MA g PLDPE含量的增加,共混物的降解能力下降。Bikiaris等[23]研究了增容剂PE g MA对LDPE/热塑性淀粉(PLST)共混物降解性能的影响,失重曲线表明含有增容剂共混物的失重比未含增容剂共混物的失重要略小,说明增容剂对共混物的降解起到一定的限制作用。微生物降解后力学性能显示,含有增容剂共混物的拉伸强度和断裂伸长率均比未含增容剂共混物的要大,从而也说明加入增容剂后共混物的生物降解性能略有降低。

5、应用现状与展望

淀粉基生物降解塑料已有30年的研发历史,是研发历史最久、技术最成熟、产业化规模最大、市场占有率最高的一种生物降解塑料。在工业上可以代替一般通用塑料等,可以用作包装材料,防震材料,地膜,食品容器,玩具等。淀粉与PE, PP, PVA, PCL, PLA等聚合物共混粒料已批量生产。

国外淀粉基塑料产品生产商主要有意大利的Novamont公司、美国的Warner-Lambert公司和德国的Biotec公司。我国积极研发并产业化的单位主要有中国科学院理化技术研究所、中国科学院长春应用化学研究所、江西科学院、北京理工大学、华南理工大学、天津大学比澳格(南京)环保材料有限公司、广东上九生物降解塑料有限公司、广州优宝生物科技有限公司、浙江天示生态科技有限公司、中京科林新材料(深圳)有限公司、武汉华丽科技有限公司、哈尔滨绿环降解塑料有限公司、黑龙江绥化绿环降解塑料有限公司、烟台万利达环保材料有限公司等。

国内最大的生产厂家是武汉华丽和比澳格(南京)。武汉华丽预计产销规模10万吨,比澳格(南京)现已形成数万吨淀粉基塑料规模。其他几个大型企业均达到年产万吨级生产规模,总产量占到我国生物降解塑料产量的60%以上,并出口日本、韩国、马来西亚、澳大利亚、美国欧盟等国家[24]。

淀粉基生物降解塑料具有广阔的开发圣应用前景。2008年1月11日国家发改委表示将超薄塑料购物袋列为淘汰类产品,又禁止在全国生产、销售和使用。对于一次塑料袋对环境的危害给人们敲响了警钟。在这种情况卜,开发淀粉基生物降解塑料将会具有巨大的市场效益。然而淀粉基生物降解材料在应用中仍然存

淀粉基生物降解材料

在一定的缺点和问题,例如共混型淀粉生物降解塑料比全淀粉塑料更易应用于实际生产生活当中。然而淀粉/聚烯烃降解塑料只能部分降解,对环境污染的问题未能根除,在国外已经濒临被淘汰的边缘;淀粉/可降解聚酯共混塑料由于生产技术仍存在一定问题,生产成本比普通塑料高,因此未能大范围地进行工业化生产;全淀粉塑料目前尚处于研究开发阶段。因此开发生物降解塑料任重而道远,如何开发成本更低,对环境污染更小的淀粉基生物降解塑料是一个十分重要的课题。

参考文献

[1] 俞文灿.可降解材料的应用研究现状及其发展方向[J].中山大学研究生学刊,2007, 28

(1):22-23.[2] 洪一前,盛奎川,蓝天,等.生物叮降解高分子材料的研究及进展[J].粮油加工,2008, 39(5):127-128.[3] 工佩璋,工澜,李田华.淀粉的热塑性研究, 中国塑料,2002, 16(4): 39-43.[4] 刘娅,赵国华,陈宗道.改性淀粉在降解塑料中的应用.包装与食品机械,2003, 21(2)[5] 郑治.大豆分离蛋自质构化与其可降解材料特性研究[D].郑州:河南上业大学,2006:4-5.[6] 周鹏,谭英杰,梁玉蓉,等.可降解材料的研究进展[J].山西化工,2005, 25(1):24-25.[7] 胡晓兰,梁国正.生物降解高分子材料研究进展[J].化工新型材料,2002, 30(3):7-9.[8] 孟凡磊,陈复生,姚永志.大豆蛋白可生物降解塑料的研究[J].食品工业科技,2006,27(11):196-198.[9] 任崇荣,任风梅,周正发,徐卫兵.淀粉基生物降解塑料的研究现状综述及展望[J].合肥工业大学,2008,86-89 [10] 李慧,佘万能,刘良炎等.淀粉基生物降解塑料的开发与应用现状[J].北学与生物工程,2006,23(5):3-5 [11] 丁生龙.光/生物降解塑料薄膜制备工艺及性能[D].兰州大学硕士论文,2003,5.[12] 刘娅,赵国华,陈宗道等.改性淀粉在降解塑料中的应用[J].包装与食品机械,2003,21(2):20-22 [13] 卢峰,胡小芳,邓桂兰等.淀粉基生物降解塑料的研究进展[J].广州化工,2004,32(3):1-4 [14 Ismael

E.Rivero,Vittoria

Balsamo,Alejandro

Jumbler.Microwave一assisted

modification

of

starch

for

compatibilizing

LLDPE/starch

blends[J].Carbohydrate Polymers,2009,75(2):343一350.[15] 黄强,熊键,何小维等.淀粉类生物降解材料研究进展[J].粮食与饲料工业,2000(9):51-53 [16] 邙志国,薛冬桦,迟惠等.变性淀粉用于生物降解材料的研究进展[J].长春理工大学报,2007,30(1):105-107 [17] 张可喜,付新.淀粉复合材料的研究进展[J].北学工程师,2006(5):22-24 [18] DemirgoZ D, et al.Chemical modification of starch based biodegradable polymeric blends: effects on water uptake,degradation behaviour and mechanical properties[J].Polym Degradation and Stability, 2000, 70: 161

淀粉基生物降解材料

[19] Shogren R L, Doane W M, Garlotta D, et al.Biodegradation of starch/polylactic

acid/poly(hydroxyester esther)composite bars in soil[j].Polym Degradation and Stability,2003, 79: 405 [20] Copinet A, et al.Enzymatic degradation and deacetylation of native and acetylated starch based extruded blends[J].Polym Degradation and Stability, 2001, 71:203 [21] Kim M.Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films[J].Carbohydrate Polym, 2003, 54: 173 [22] Huang C Y, Roan M L, Kuo M C, et al.Effect of compatibiliser on the biodegradatin and mechanical properties of high content starch/low density polyethylene blends[J].Polym Degradation and Stability, 2005, 90: 95 [23] Bikiaris D, et al.LDPE /plasticized starch blends containing PE g MA copolymer as compatibilizer[J].Polym Degradetion and Stability, 1998, 59: 287 [24] 方巍 姜艳艳.生物降解材料大规模应用前景乐观[J].中国化工信息中心,中国证券报,2014-4-12.10

第二篇:生物降解淀粉餐饮具系列产品开发项目建议书

生物降解淀粉餐饮具系列产品开发项目建议书

一、项目简介

随二十一世纪九十年代中期全球实施国际环境ISO14000管理标准体系以来,中国政府先后制定了170多项法律法规,在全国范围内逐步形成以保护生态环境为核心为“绿色环保”工程,由此赋予环保产业极大的市场生命力。二十一世纪世界各国对环保产业加快了扶持力度,充分利用这一契机是环保产业界人士的共识。

加入WTO的中国,综合国力不断提高,面临经济的迅猛发展,在绿色环保大潮的冲击下,政府部门加大力度保护生态环境,因此,生态降解淀粉餐饮具项目已成为本世纪投资的热点,因为人们所使用的EPS发泡塑料餐盒已被列入治理“白色污染”的重点项目。自1997年5月份以来,中国有28个省、市相继出台政府令、地方法规,禁止制造销售和使用一次性泡沫塑料餐具。国家每年为销毁发泡塑料垃圾费用投入近百亿元人民币,同时周边的环境受到严重污染,由此影响了公民的身心健康。而一次性生物降解淀粉餐具正是最低的替代品。

二、项目概况

富源长浩绿色包装制品有限公司是富源长青经贸有限公司的一个子公司,建立在富源县中安镇胜境大道,总投资1300万元,占地面积为3000m2,是由富源长青经贸有限公司和美国浩正国际贸易有限公司共同投资兴办的合资经营企业。在富源,该项目生物降解淀粉餐饮具的原材料(芭蕉芋)充足,并且取材于当地,对生产的产品供应有障;在美国,浩正公司用五年的时间对该项目科研改关(现已形成产业化),并获得美国FDA国际卫生检验标准和美国ASDM—92号标准的认可,得以实用性推广,得到各国权威部门的充分肯定。

三、项目开发的总体目标

生物降解淀粉餐饮具的原材料芭蕉芋在我县已有多年历史,在当地政府的积极倡导和支持下,在我县的富村、老厂、黄泥河、雨汪等乡镇已有近万亩的种植,可提取降解淀粉2700吨,合资公司现在的生产规模为年产量1.2亿只,所需原材料(芭蕉芋淀粉)1920吨,随着生产经营的扩大,生产规模可增加到年产10亿只,而富源现有的资源已为生物降解淀粉餐饮具项目的实施打下了坚定的基础。

四、项目开发的主要内容

本项目的开发从二OO五年一月至二OO七年十二月止。该项目所生产的产品生物降解淀粉餐饮具有着很大的市场潜力,能出口创汇。五年内,由浩正国际贸易有限公司在中国境内、外市场销售产品,外销部分占95%以上,内销部分占5%以内。

项目技术主要是采用淀粉为主要原材料,加入一年生长期植物纤维粉和特殊的添加剂,经过化学和物理方法处理制成生物全降解餐饮具。由于淀粉是一种可生物降解天然高分子,在微生物作用下会分解为葡萄糖,最后分解为水和二氧化碳对环境没有任何污染。另外,与其共混的材料也是全降解材料,因而用这种材料制成的餐饮具降解性能极好。通过国家有关部门检测发现,样品在堆肥状态下5天开始发霉,10天时所测样品与堆肥融为一体,样品失去测试前的形状和颜色,40天即全部变成水和二氧化碳,对消防“白色污染”保护生态环境起到了极大的作用。项目的生产工艺流程如下:

原材料(降解淀粉)→片剂挤出(改性溶融)→自动输送→压光成型→片材输送→修改定型→自动恒温成型→紫外线消毒→包装→入库。

五、项目的技术经济指标 按一条全自动生产线,年加工原材料1920吨,需厂房(包括生产车间、原料库、成品库、办公室)约3000m2,电力220KW,145万度/年;水源可用自来水或工业用水,3000吨/年;职员40名等辅助设施。

项目加工产品销售价格及销售收入。项目加工产品原材料芭蕉芋淀粉3000元/吨,其每只产成品(规格450ml,重量16g),直接消耗材料费为0.1163元,如年产量为1.2亿只,其销售成本为1395.6万元,销售每只以0.2元人民币进行计算,年产值可达2400万元,企业缴纳有关税金261万元,税后利润为743.4万元,公司和国家财政税收将长期受益,是不言而喻的。

项目的实施不但给企业带来巨大的收入,同时也可增加农村经济收入和就业机会,带动一批贫困人口脱贫致富。现每亩芭蕉芋能产淀粉270吨,以3元/公斤价格计算,每亩芭蕉芋就能给农户带来810元的收入,是当发贫困人口,特别是妇女能够参与并能摆脱贫困的为途径,这对富源县实施扶贫计划有着极共重要的现实意义。

六、市场分析

生物降解淀粉餐饮具是一项新兴的环保产业,对餐饮业与食品包装发泡塑料制品行业带来巨大的市场冲击。据统计,中国大、中、小城市640座,其中大城市32座,用于餐饮业的一次性餐具消耗是从97年用量200亿只上升到2001年的500亿只,用于超市冷餐托盘、冷饮杯每年用量达150亿只。交通部门已发出通知,要求火车、轮船及沿线的车站、码头禁止使用发塑料饮具。据统计:2002年交通行业使用餐饮具达150亿只,地方市场使用数量300亿只,保鲜食品、方便面碗每年用量不少于400万只,超市冷菜托盘日用量达80万只,冷饮杯日用量20万只,总计超过500万只,全年用量可达18亿只以上。再者肯德基、麦当劳走向中国大陆,并设立了1千多家店,目前使用的纸板压极塑料包装由于不符合国家环保要求,已在考虑使用生物降解淀粉包装,最终必将成为替代产品。

七、项目经费预算

项目总投资1300万元,其中生产生物降解淀粉餐饮具所需的厂房(包括生产车间、原料库、成品库、办公室),机械设备需投资1100万元,其余项目开发、流动资金等无形资产投资为200万元。厂房建设费 200万元 机械设备费 900万元 项目开发费 50万元 流动资金 150万元

八、项目意义

随着社会的发展和人们生活水平的提高,中国对绿色环保的意识越来越强,非分解的一次性塑料餐饮具及塑料制品袋造成的“白色污染”,给人类的生态环境带来严重的危害,破坏了生态环境。据不完全统计中国市场目前年销售各类快餐盒约130亿只,碗约240亿只,杯约150亿只,各类地膜、包装袋及其包装制品非降解约占95%以上。为此,国家经贸委、技术监督局、环保总局等部门相继发文全面禁止生产销售使用一次性非降解包装物。一次性生物降解淀粉餐饮具具有原材料易进、销售市场潜力大、产品易于分解,因此,开发该绿色产品为人类消除“白色污染”开辟了一条崭新的途径,为人们创造一个洁净、清新、回归自然的生活空间是当代人自我生存的需要和历史责任,同时是为我们后人建造更加美好的生存环境及绿色家园打好基础。该产品是现代科技环保新产品,它的诞生给社会带来了福音,是新世纪的好栋梁。

综上所述,从各项技术经济指标的结果看,拟建项目的经济效益是非常可观的,由于该项目的产品代替了发泡塑料包装,而且在生产过程和使用过程中都可以实现完全回收,对保护森林资源、保护环境卫生、保证消费者的身体健康,都将产生极大的社会效益。从高新生产技术开发,从环保产品对人类贡献等各方面说,建设此项目是完全可行的。特建议省、市科技厅(局)给予列项扶持

第三篇:淀粉基泡沫材料的研究进展

淀粉基泡沫材料的研究进展

随着聚合物工业发展,其所导致的环境污染引起 了人们对聚合物废弃物处理问题的关注。泡沫塑料密度小、体积大、不便于集中和运输,而且本身化学性质稳定,具有耐老化、抗腐蚀等特点,日益增长的泡沫塑料垃圾对生态系统的威胁越来越大,引起 了严 重的 “白色污染 ”,世 界上许 多 国家均已立法禁止生产难降解的泡沫塑料产品”。近年来我国泡沫塑料产量每年以约 10%的速度增加。据估算,我国仅电视机用泡沫包装材料每年废弃量就达1.5万t。此外,随着关税壁垒的逐渐弱化,国产商品的出口开始受到“绿色贸易壁 垒”的 困扰。在 这些 “绿 色贸易 壁 垒”中,由于我国的包装材料不合格而被拒之在他 国门外的占相当大的一部分。因此开发并应用具有良好环境相容性的“绿色环保缓冲材料”已成为 21世纪的必然趋势。

淀粉是绿色植物光合作用的最终产物,是生物合成的最丰富的可再生资源,具有品种多、价格便宜等特点。此外,淀粉还具有挤出膨胀性 能和抗静 电作 用,可 以用于包 装运输等领域。淀粉易受微生物侵蚀,具有优 良的生物降解性能。因此,开发淀粉基可降解泡沫塑料不仅为更好地利用丰富的天然资源开辟了一条新的途径,而且还可以解决“白色污染”,给我们现有的生活环境和可持续发展提供良好的“沃土”,另外还能缓解生化能源紧缺的危机。笔者现就国内外淀粉基可降解泡沫塑料的成型方法作一综述,以期为进一步开展绿色缓冲材料的研究提供指导。

1天然淀粉泡沫塑料

天然淀粉包括玉米淀粉,土豆淀粉,小麦淀粉,蜡质玉米淀粉,高度支化土豆淀粉,木薯淀粉以及西米淀粉等[1,2]。一般呈粒状,含有不同比例的直链和支链结构。普通淀粉泡沫塑料大都是开孔结构,泡孔均匀性差,较脆; 而高直链淀粉泡沫塑料则形成闭孔结构,泡孔小而且比较均匀,压缩强度较普通淀粉泡沫塑料小,脆性明显降低。

2变性淀粉泡沫塑料

淀粉是一种强极性的结晶性物质,热塑性差,同时淀粉是亲水生物质,由纯淀粉制备的泡沫塑料不适宜在有水或湿度较大的环境中使用,因而 要对淀粉进行改性,以适应生产和应用的要求。改性淀粉包括酯化淀粉,醚化淀粉,接枝共聚改性淀粉,酸水解淀粉,交联淀粉和酶转化淀粉等[3],其中酯化淀粉,醚化淀粉和接枝共聚改性淀粉较为常见。

3淀粉/合成树膳复合泡沫塑料.1与合成树脂共混

B.Ca rla[4] 等 均 各淀粉与聚合物共混挤出,其中包括聚合物A 可以与淀粉兼容; B 可以与淀粉反应,制得密度为5-1 3 k g/mol的泡沫塑料。A.Y o s h i m i等[5],用淀粉与合成树脂PVA 和E V O H 共混,在非离子表面活性剂,增稠剂及填充材料的存在下,由水发泡制备的淀粉泡沫塑料,具有密度小和表面性能优良等特点。3.2 与PVA 共混

R.L.Shogzen 等[6] 研究 了由淀粉/P V A共混烘焙制备泡沫塑料 的工艺,结果表明,在较低湿度时,8 8 % 醇解的 P V A强 度的提高较大,而在湿度较高时,9 8 % 醇解的P V A 较大弯曲强度[P V A 的 分子量的提高而增大; 交联剂的加入可以进一步提高耐水性I 微观结构分析发现,膨胀的淀粉颗粒镶嵌在P V A 中,淀粉在烘焙过程中发生凝胶化,P V A 向更高程度的结晶转变。.3与EVOH 共混

J.Y.Chat1等[7]研究了挤出温度及原料湿含量对淀粉基泡沫塑料物理 性能的影响,组分为4 9 % 的小麦或玉米淀粉,3 3% E VOH,1 0.5% 水,7 %发泡剂及0.5%的成核剂,由单螺杆挤出,螺杆转速为1 0 0 r mp。结果表明,体积密度随挤出温度的升高而降低,最大膨胀出现140℃,密度是聚苯乙烯的4 — 8 倍。

3.4 与商业化生物降材料共混

Q i F a ngI等[8]用普通(含直链2 5 %)玉米淀粉和蜡质玉米淀粉与E a s tarBioCopolyeste 14766(E B C)以各种 比例相混合,双螺杆挤出。研究表明,普通玉米淀粉的水溶性指数低于蜡质玉米淀粉,但两种淀粉制得的泡沫塑料具有相似的机械性能; 含EBC10% 的泡沫塑料的 压缩强度大于含EBC 25% 的 压 缩强度; 含水19% 和22%的泡沫制品膨胀率大于含水25%的泡沫制品,含水22%的泡沫制品具有较低的水溶性指数。

4、淀粉基泡沫塑料的成型 挤出发泡

20世纪 80年代末,人们开始利用挤出发泡成型工艺制备淀粉基泡沫塑料,以代替聚苯乙烯(Ps)作松散填充物。其中加工条件、淀粉组成、发泡剂、含水量等对淀粉在挤出机中的发泡行为有很大影响。R.Chinnaswamy等[9] 指出几乎所有的最大膨胀都出现在直链淀粉质量分数为 50%的淀粉中。J.Y.Cha等 发现淀粉基泡沫塑料的性能与发泡时淀粉的含水量及挤出条件有很大关系。V.D.Miladinov等[10]用乙酞化淀粉为原料制备泡沫塑料时发现,成型温度为 120~C时比 160℃ 时所得制 品的弹性 和吸水性 指数低,而压缩 强度 和密度则较大。V.D.Miladinov等[11] 还发现以乙醇为塑化剂和发泡剂挤出发泡乙酞化淀粉时,所得制品的密度较低,弹性指数较高。B.Sandeep等[12] 以淀粉与 Ps及聚甲基丙烯酸 甲酯共混挤 出制得松 散填充 物。结 果发 现,除 密度外,填充物的性能与商业化的同类产品相似。G.M.Ganjyal等[13] 将玉米茎纤 维素填充 到经 乙酰化而具有热塑性质的玉米淀粉中挤 出发泡,发现纤 维素在低含量时能显著提高泡沫塑料的物理性能,但当纤维素质量分数超过 10%时,泡沫塑料的发泡倍率开始降低,密度增加。GuanJunjie等[14] 用双螺杆挤出机挤出淀粉和乙酸淀粉共混物制得了具有高发泡倍率、高可压缩性和低吸水性等特性的发泡材 料。QiFang等[15] 发现聚乳酸(PLA)的加入明显提高了规整淀粉(含 25%直链淀粉)和蜡质淀粉挤出发泡产品的物理力学性能。增加 PLA的含量,泡沫的发泡倍率和弹性指数增加,其密度和可压缩性降低,但对水溶性没有影响。QiFang等 还利用取代度为 1.78的 乙酸淀 粉和 聚 四亚 甲基 一己二酸 一对苯二酸酯(EBC)挤出得到可生物降解的泡沫塑料,利用红外光谱分析、差示扫描量热分析和扫描电子显微镜表征泡沫的化学结构、热性能及微孔结构。结果表明,EBC含量较低时两种组分具有较强的可混合性,并且具有较高的发泡倍率、弹性指数,较低的密度及可压缩性。EBC含量的增加能降低泡沫塑料的生物降解性。超临界流体挤出发泡

超临界流体挤出发泡是一种新近发展起来的新方法,可以应用于生产淀粉基泡沫塑料。该方法通过向熔体中注入超临界 CO 以形 成微孔结构。G.M.Glenn等[16] 采用 以下两种方式来改善发泡状态:①提高成核率从而提高泡孔的密度;②降低熔体温度。其中方法①通过降低挤出口模直径以提高淀粉/CO:流经挤出口模时的压力 ;而方法②主要是通过引入冷却装置而达到要求。研究表明,当挤出口模直径从 3mm降低到 1.5mm时,泡孔密度增加了4倍。泡孔密度的增加能在较大程度上阻止 CO:逃逸到环境中去,并使发泡倍率提高了 160%。当熔体温度从 60~C降低到40℃时,泡沫的发泡倍率增加了34%。N.Soykeabkaew[17]等” 运用超临界流体挤 出法获得 了泡孔直径为 50—200nm的泡沫,泡孔密 度为 1×10个/cm3利用超临界流体挤出所得淀粉基泡沫塑料的泡孔大小和发泡倍率主要受原料和成型]_艺参数等的影响。超临界CO,作为发泡剂具有表面张力小、类似液体的溶解度和类似气体的扩散系数、易在淀粉熔体中迅速溶解等一系列优点。在气体与淀粉熔体问扩散、混合形成均相体系的过程中,由于螺杆挤出的作用从大的气泡逐渐破裂成小的气泡,气体与淀粉熔体经不断的混合、对流和扩散最终形成均相体系。从加工工艺看,压力、温度和发泡剂浓度也是影响淀粉熔体发泡成型的重要因素。

在发泡过程中,饱和压力高和环境 压力 低造 成了活化 能垒 低,从而 成核率高,易于形成 高密度泡孔。另外,温度对泡孑L密度的影响与气体浓度变化有关,随着温度升高,气体的溶解度降低,使得泡孑L密度降低。但淀粉熔体在高温下粘度降低,对泡孑L长大的阻力减小,因此在较 高的温度 下泡孑L更大,泡孑L密度更低。3 烘培发泡

淀粉的烘焙发泡成型工艺是指将淀粉与发泡剂及其它助剂的混合物在烘焙模型中加热发泡的成型方法。此过程一 般需加入硬脂酸、瓜尔胶等脱模剂,使制品易于脱模。同样,淀粉的组成及加工条件对淀粉烘培发泡成型也有很大影响。J.W.Lawton等 认 为高直链 淀粉具 有最短 的烘焙 时间并能制得密度相对 较低的泡沫塑料。P.Dujdao等[18]将淀粉与聚己内酯(PCL)共混物通过烘焙发泡制得共混物泡沫。PCL的加入增加了泡沫的拉伸强度、断裂伸长率、抗吸水性及生物降解性。P.Dujdao等[19]还研究了淀粉/PLA混合 物与 相关 添IIII的烘 培发 泡 条件,认为相对湿度、保存时间、PLA含量及增塑剂的种类和含量对所制得的泡沫的吸水性、力学性能和酶降解性都有很大的影响。用纯淀 粉生产 的泡 沫塑料 具有 易脆 和低力学 性能 的特点。J.Shey等[20]利用烘焙 发泡 工艺生产 出纤维增 强的谷物和块茎淀粉低密度泡沫塑料,具有和商 业用食 品容器一 样 的弯曲性能。N.Soykeabkaew等[21]认为 5% ~10%的黄麻或亚麻纤维素的加入均能显著提高淀粉基烘培发泡泡沫塑料的弯曲强度和弯曲弹性模量。研究表明,淀粉基泡沫塑料力学性能的大幅度提高主要归功于纤维和淀粉的强相互作用。R.L.Shogren等[22]的研究表明,添加 5% ~10%的纤维就能制备较高强度的泡沫塑料,尤其在湿度较高及温度较低时。另外,随着纤维用量增大,烘焙时间增加使得泄沫塑料 的粘度及耐膨胀率增大。4 模压发泡

G.M.Glenn等[23] 研究 了一种加 压/放气 模压发 泡成 型工艺,具体流程为:将淀粉原料在一定条件下置于铝制模具中加热到 230~C,并在 3.5MPa压力下压缩 10s,然后释放压力,气体溢出使淀粉膨胀并填满模具。结果表明,小麦、玉米和土豆淀粉在含水量分别为 17%、17%和 14%时所得制品的某些物理力学性能与商业化食品包装产 品相似,外貌与PS相似。G.M,Glenn等[24]研究了一次性在制品表面形成包覆膜的模压发泡成型方法。此工艺是将原料放于两层聚氯乙烯薄膜之间,然后在 160~C模压成型。结果表明,该制品与未包覆膜的制品相比,具有较高的密度、拉伸强度、断裂伸长率和弯曲强度。同时,制品的耐水性也有很大提高。上述方法中,挤出发泡研究最早,工艺已经成熟;超临界流体挤 出发泡是 目前研究的热点和前沿,可以提高发泡倍率 ;烘焙发泡与挤出发泡只能生产条状和片状的淀粉基泡沫塑料;而模压发泡得到的材料的表面层具有较高密度,内部则具有较高空隙率,可以用来制备形状较为复杂的缓冲发泡材料。

5、结语

近年来,淀粉作为一种比较理想的原材料,在发泡材料领域已经开始被人们重视。采用纯天然材料淀粉及农作物秸秆制备绿色泡沫塑料,是制备 Ps等泡沫塑料的理想的代替品。相信在不久的将来,随着发泡技术的成熟,完全降解的淀粉基泡沫塑料制品将在塑料应用中占有一席之地,为缓减环境污染和发展农村经济做出应有的贡献。今后淀粉基泡沫塑料 的研究工作主要是解决如下几个方 面的问题 :

(1)设计新的成型工艺,生产预期板状和块状淀粉基泡沫塑料,替代电器和仪表包装中大量使用的 Ps泡沫塑料。

(2)开发完全生物降解的淀粉基泡沫塑料。目前淀粉基泡沫塑料依然含有大量的难以降解的 Ps等原料,有的甚至含量达 70%以上。我国秸秆资源丰富,且大部分都作为燃料烧掉了。可以在淀粉里适当添加秸秆、木粉等原料来制备完全降解泡沫塑料。

(3)进一步研究淀粉的发泡和流变机理,改善淀粉的流变性能,制 备性 能更优的泡沫塑料。

参考文献

[1] BastioliC,eta1.BiodegradableFoamedPlasticMaterials:US,5736586[P].1998-04-07.

[2] 中国石油和化学工业协会中国石油和化工经济数据快报2006(18):73. [3] 张绍华.中国包装,2001,4(1):51—55.

[4] 刘德桃,等.包装工程,2007,28(4):15—18.

[5] BibyG,et1a.Water—resistantdergadablefoamandmethodofmak— ingthesame:US,6184261[P].2001—10—17.

[6] BastioliC,eta1.CerealChem,1998,65:138—143. [7] ChinnaswamyR,et1a.jFoodSci,1998,53:834—836. [8] ChaJY,eta1.IndCropsProds,2001,14:23—3O.

[9] MiladinovVD,et1a.IndCorpsPords,2001,13:21—28. [10] MiladinovVD,eta1.IndCropsProds,2000,11:51—57. [11] SandeepB,eta1.IndCropsProds,1995.4:71—77.

[12] GanjyalGM,eta1.Jounrla fo AppliedPolymerScience,2004,93:2627—2633.

[13] GuanJunjie,et1a.Biomacormolecules,2004,5(6):2329—2339. [14] QiFang,eta1.BioresourceTechnology,2001,78(2):115一l22. [15] QiFang,eta1.1ndCorpsProds,2001,13:219—227. [16] GlennGM,eta1.CereaChem,1994,71(6):587—593.

[17] SoykeabkaewN,eta1.CarbohydratePolym,2004,58(1):53一63. [18] LawtonJW,eta1.CerealChem,1999,76:682—687.

[19] DujdaoP,et1a.PolymerTesting,2004,23(6):651—657.

[20] DujdaoP,eta1.CarbohydratePolymers,2005,59(3):329一337. [21] SheyJ,et1a.IndCropsProds,2006,24:34—40.

[22] SoykeabkaewN,eta1.CarbohydratePolymers,2004,58(1):53一63. [23] ShogrenRL,eta1.Polymer,1998,39(25):6649—6655. [24] GlennGM,et1a.IndCorpsProds,2001,13:135—143.

第四篇:淀粉基可生物降解塑料综述

河南城建学院

淀粉基可生物降解塑料综述

院 系:化学与材料工程学院

学 号:1024101 姓 名:

指导教师:雷佑安 张艳花

日 期:2014年01月02日

摘要

淀粉作为一种天然高分子化合物,其来源广泛、品种多、成本低廉,在自然环境下完全降解为二氧化碳和水,对环境不造成任何污染,因而淀粉基降解塑料成为国内外研究开发最多的一类生物降解塑料。本文详细介绍了淀粉基生物降解材料的性能,重点介绍了生物淀粉基降解塑料的国内外研究进展。

【关键词】淀粉基,塑料,生物降解

Abstract The starch is a natural polymer,and its wide variety of sources,varieties,low cost completely degraded in the natural environment as carbon dioxide and water,will not cause any pollution in the environment.Starch-based biodegradable plastics become the largest domestic and international research anddevelop a class of biodegradable plastics.This article introduces in detail the structure and biological properties of starch,starch-based focus on bio-degradable plastic research developments were briefly described.【Key Words】starch,plastics,biodegradation

目录

1.引言...........................................................................................................................1 2 淀粉基生物降解材料简介........................................................................................2 2.1 淀粉基生物降解材料的定义.........................................................................2 2.2 降解机理.........................................................................................................2 2.3淀粉基生物降解材料的优良性能..................................................................3 2.4 淀粉基生物降解塑料分类.............................................................................3 3.国内外研究进展.......................................................................................................4 3.1 国内淀粉基生物降解塑料研究进展.............................................................4 3.2 国外淀粉基生物降解塑料研究进展.............................................................5 4.存在的问题及展望...................................................................................................6 5.参考文献...................................................................................................................7

1.引言

随着塑料产量的迅速增长,废弃塑料的后处理及造成的环境污染越来越受到各国的关注。美国、欧共体和日本年产塑料垃圾分别为1300 万吨、450 万吨和6.5 万砘。塑料垃圾造成的环境污染已成为全球性的问题。

意大利、丹麦、瑞士、瑞典及美国的一些州已立法禁止使用那些“短期使用”的非降解塑料或课以附加税。我国的一些城市也已作出规定,禁止使用非降解的一次性使用快餐盒。

开发降解塑料是解决塑料污染的一个有效途径。

自1973 年Griffin首次获得有关表面改性淀粉填充塑料的专利以来,淀粉基生物降解塑料迅速发展,是目前应用最广泛的一种生物降解塑料。

淀粉基生物降解材料简介

2.1 淀粉基生物降解材料的定义

淀粉含量在51%以上的制品即称为淀粉基制品。所谓“淀粉基生物降解材料”是采用植物淀粉为主要原料,经过化学和物理工艺方法将其改性并塑化,经挤压、成型后制成的制品。淀粉基生物降解材料产品主要成分是可生物降解天然高分子淀粉,在微生物的作用下分解为葡萄糖,再分解为水和二氧化碳,对环境没有任何污染。[1]

淀粉基生物降解塑料已有 30 年的研发历史,是研发历史最久、技术最成熟、产业化规模最大、市场占有率最高的一种生物降解塑料。淀粉与 PE、PP、PVA、PCL、PLA 等聚合物共混粒料已批量生产。[2]

2.2 降解机理

生物降解材料的降解机理就是材料被真菌、霉菌和细菌等作用消化吸收的过程。[3]一般认为生物降解并非单一机理,是复杂的生物物理、生物化学作用,同时伴有其他物理化学作用,如水解、氧化等,这些作用相互促进,具有协同效应。

生物降解过程主要分为三个阶段:(1)高分子材料表面被微生物黏附,黏附表面的方式会受到高分子材料表面张力、表面结构、多孔性、温度和湿度等因素的影响;(2)微生物在高分子表面分泌的酶的作用下,通过水解和氧化等反应将高分子断裂成相对分子量较低的小分子化合物;(3)微生物吸收或消耗小分子化合物,经过代谢最终形成CO2、H2O。

降解过程除以上生物化学作用外,还有生物物理作用,即微生物侵蚀高分子后,细胞增大致使高分子材料发生机械性破坏。[3]

2.3淀粉基生物降解材料的优良性能

淀粉基生物降解材料产品具有机械强度好、柔韧性强、抗冲击强度高、耐温性强、耐水、耐油、不软化、不变形和可塑性强等特点。它具有实用性、安全性、经济性及可降解等优势,在工业上可以代替一般通用塑料等,可以用作包装材料,防震材料,地膜,食品容器,玩具等,而且淀粉基降解材料制品可降解、可回收利用,处理成本远远低于塑料制品、纸制品。

由于淀粉具有优良的生物降解性能,淀粉环境降解型塑料在特定的环境下,引起某些结构组成损失,其化学结构能够在较短的时间内发生明显的变化的一类塑料,在21世纪淀粉基塑料将会是一类应用极其广泛的“功能聚合材料”。[4]

2.4 淀粉基生物降解塑料分类

淀粉基生物降解塑料可分为填充型淀粉基塑料和完全生物降解淀粉塑料。填充型淀粉基塑料〔w(淀粉)=7%~30%〕,即属于生物破坏性塑料,它只有淀粉降解,其中的 PE、PVC 等很少降解,一直残留于土壤中,日积月累仍然会对环境造成污染,此类产品已属于淘汰型。真正有发展前途的是全淀粉塑料〔w(淀粉)≥90 %〕,其中添加的少量增塑剂也是可以生物降解的。这类塑料在使用后能完全生物降解,最后生成二氧化碳和水,不污染环境,是近年来国内外淀粉降解塑料研究的主要方向。[5]

3.国内外研究进展

3.1 国内淀粉基生物降解塑料研究进展

我国在20世纪90年代初就开展了全淀粉基热塑性塑料(TPS)的研究。但仍然存在着耐水性和可塑性较差,生产成本较高等问题。为此,近年来淀粉基生物降解塑料仍然是研究的热点。

李仁焕等以以甘油为增塑剂,木薯淀粉为原料然后加入 PLA 或 PCL 中熔融共混制备出热塑性淀粉/聚乳酸-聚己内酯生物可降解高分子共混材料,对淀粉进行塑化处理得到易于加工的热塑性淀粉(TPS),将 TPS加入聚乳酸-聚己内酯共混来制备生物降解材料,不仅可降低材料的成本提高其降解性能,还可以解决日益严重的环境污染问题缓解石油资源的压力。甲基丙烯酸甲酯接枝乙烯辛烯共聚物(GPOE)用作增韧剂来进一步改善PLA/TPS。

纪敏等通过对淀粉预处理、PVA 预处理以及共混塑料的加工过程三个方向来进行淀粉 /PVA 可生物降解塑料的研究,来缩短制品的生物降解周期以及如何更好地满足环境和使用要求。

[7]

[6]武战翠等通过高碘酸钠对玉米淀粉进行氧化改性,用流延法制备了双醛淀粉(DAS)基可完全生物降解塑料薄膜。研究了各组分的含量对DAS基复合薄膜的力学性能和耐水性影响。采用傅立叶红外光谱任TIR)、扫描电镜(SEM)、x射线衍射(XRD)、热重分析(TG)对复合材料的结构及性能进行了表征。结果表明,经添加黄麻纤维后,由于其表面具有较多的轻基,能够促进DAS与PVA的共混相容性,在提高力学性能的同时,也改善了复合材料的耐水性。

黄明福等用氨基乙醇活化蒙脱土(EMMT),然后再与甲酰胺/氨基乙醇塑化的热塑性淀粉(FETPS)经熔融插层聚合,成功制备了FETPS /EM2MT生物降解纳米复合材料。通过广角X射线衍射、扫描电镜和透射电镜研究表明,FETPS可以成功地插入EMMT片层结构间。当EMMT含量为5%时,纳米复合材料的力学性能均优于纯热塑性淀粉塑料,拉伸强度达到7.5 MPa,弹性模量增至145.1 MPa,其热稳定性和耐水性也有较大地提高。

以聚丁二酸丁二醇酯(PBS)为基体树脂,以淀粉为填料对PBS进行填充改性,淀粉颗粒作为填充物加入到PBS中,起到了类似于无机填料增强的作用。[8]

唐玉邦等采用改性淀粉,MAH-g-PE、弹性粒子及增塑剂与PE-LLD,改善淀粉与PE-LLD的相容性,成功开发淀粉含量达到70%的生物降解材料。[9]

张鑫等研究了聚乙二醇(PEG)用量对淀粉-PLA 原位熔融接枝反应的影响以及淀粉/PLA 可降解材料的力学性能和耐水性

能,结果表明:PEG 能有效地提高淀粉接枝率,改善淀粉与 PLA 的界面相容性和黏结效果,同时提高了淀粉/PLA 材料的拉伸强度和耐水性能。[10]

3.2 国外淀粉基生物降解塑料研究进展

Xue将淀粉和聚乳酸混合之后,再将甘油加入到混合物中,得到了机械性能较好的生物降解材料。[11] Ying Wu等利用琼脂和马铃薯淀粉制备了甘油基薄膜,并对其性能进行了测试。红外光谱分析表明:在二者之间存在着分子间氢键作用。淀粉和琼脂是相容的。薄膜为非结晶结构。琼脂的加入有效改善了淀粉薄膜的微观结构,进而提高了材料的机械力学性能和潮湿环境下的水蒸气渗透性。有望拓宽马铃薯淀粉薄膜在食品包装领域的应用前景。[12]

Pengwu Zheng等利用乳酸和乙二胺合成了2-羟基-N-[2-(2-羟基-丙酰)-乙基]丙酰胺(HPEP),与甲酰胺混合制成复合增塑剂,制备了热塑性淀粉。红外光谱结果表明:复合增塑剂能够与淀粉的C-O形成化学键作用。扫描电镜观察显示甲酰胺和水分的存在更有助于甲酰胺/HPEP /水形成均相体系。XRD分析显示甲酰胺和HPEP可以有效抑制淀粉重结晶。TPS在相对湿度为50%条件下保存50天后,结果表明:初始水分对淀粉重结晶行为没有影响。TPS的力学性能和耐水性均得到改善。[13]

4.存在的问题及展望

淀粉降解塑料有优异的降解性能,在1个月到1年的较短时期内完全降解而不留任何痕迹,无污染。但也有许多不足,如价格太高,防水性太差,该技术一直是难题,而耐水性恰恰是传统塑料在使用过程中的优点,且其力学性能、强度及柔韧性都不如通用塑料等,所以制备复杂形状和厚度大的制件是困难的。再次,国内外均无统一认可的定义、评价方法和标准。主要由于降解塑料的降解性能制约因素很多,各国的地理环境、气候、土壤成分、垃圾处理方式等又有许多差异,要建立起统一、完整的评价方法还需时间。

淀粉降解塑料主要开发趋势为,研究高效价廉的生物诱发剂、降解促进剂、光敏剂,开发准时可控性环境降解塑料。对全淀粉生物降解塑料进一步开发。随着全生物降解塑料生产工艺的进步、产品性能的改善和生产规模化成本的下降,我们相信全淀粉生物降解塑料产品将在塑料应用中占有一席之地,为清除塑料造成的污染和发展农村经济作出应有的贡献,造福人类。

5.参考文献

[1].郭振宇.淀粉基降解塑料的研究进展[J],塑料剂,2011,(6):16-20 [2]雷克鸿.生物降解塑料市场需求惊人[J],中国食品,2011(6):1-2 [3] 刘伯业,陈复生,何乐.王红娟可生物降解材料及其应用研究进展[J],塑料科技2010.38(11).[4] 张欣涛.可降解塑料的研究进展及其评价标准现状分析[J].质量技术监督研究,2009(2):9-12.[5]王洪涛,冯建阔.淀粉基生物降解塑料的研究进展[J],河北化工,2009,32(6):32-34 [6].李仁焕.聚乳酸_聚已内酯/热塑性淀粉全降解共混材料的制备及性能研究[J],广西师范学院,2012.[7].纪敏.淀粉/PVA可生物降解塑料的研究进展[J],2012,40(7):5-8.[8]何秀芝.可生物降解PBS/淀粉复合材料的制备和性能研究[J].郑州大学,2011.[9].唐玉邦,徐磊.淀粉基生物可降解薄膜的制备及性能研究[J].2013,27(6):70-74 [10].张鑫,曾武,黄兰清,等.原位熔融接枝淀粉/PLA 生物 可降解材料性能研究[J].塑料工业,2009,37(11):45-47 [11].Xue S W[J].J Polytn Environ,2011,19:912-917 [12].WU Ying,GENG Fengying,CHANG P R,et al.Effectof Agar on the Microstructure and Performance of Pota-to Starch Film[J].Carbohydrate Polymers,2009,76(2):299-304.[13].ZHENG Peng-wu,CHANG P R,YU Jiu-gao,et al.For-mamide and 2-hydroxy-N-[2-(2-hydroxy-propionylami-no)-ethyl] Propionamide(HPEP)as a Mixed Plasticizerfor Thermoplastic Starch[J].Carbohydrate Polymers,2009,78(2):296-301.

第五篇:淀粉及用途

淀粉及其用途

淀粉是葡萄糖的高聚体,在餐饮业又称芡粉。淀粉按分子结构可分为直链淀粉和支链淀粉,按来源可分为禾谷类淀粉,豆类淀粉,玉米淀粉,小麦淀粉,薯类淀粉等。淀粉是植物体中贮存的养分,贮存在种子和根茎中,各类植物中的淀粉含量都较高。大米中含淀粉62%-86%,麦子中含淀粉57%-75%,玉蜀黍中含淀粉65%-72%,马铃薯中则含淀粉12%-14%。支链淀粉部分水解可产生糊精的混合物。糊精的主要用作食品添加剂、胶水、浆糊,并用于纸张和纺织品的制造(精整)等。淀粉可用来生产味精、淀粉糖、医药、变性淀粉、啤酒、化工、食品(火腿、粉丝、米线等)、造纸等。

红薯淀粉:

简介:红薯淀粉可分为由鲜红薯和红薯干加工两种。但由于鲜红薯淀粉的质量优于红薯干的淀粉,所以鲜薯加工淀粉较为多,由于红薯切制比较麻烦,现在很少有人用红薯干加工淀粉。

前景用途:

(一)红薯食用加工的利用:水果红薯、紫色红薯、烤红薯、红薯尖、红薯叶柄、粉条、粉皮、薯干、薯条、薯饼、薯脯、紫薯。

(二)红薯淀粉加工生物柴油的利用。2007年世界联合会禁止用水稻、小麦、玉米主要粮食作生物柴油原料之后,生物柴油的研发全部转向红薯淀粉。这一板块的市场潜力巨大。

(三)红薯淀粉工业加工的利用:食品包装纸(袋)、服装布料、天然无铅布料等

(四)红薯淀粉医药加工的利用。西药药片剂85%是淀粉、味精、人用氨基酸、兽用氨基酸、变性淀粉(提取胡萝卜素、带血糖浆)、食用色素等。

(五)绿色食品、有机食品加工及其原材料的利用。

马铃薯淀粉:

简介:马铃薯淀粉是由土豆,包括土豆皮,煮熟后,干燥并精细磨碎。它可用来作增稠剂,尽管用于勾芡不及太白粉,但是在一些烘焙食品,它能保持水分。

前景用途:

(一)肉制品的首选。添加马铃薯变性淀粉的肉制品,组织均匀细腻,结构紧密,长期保存和低温冷藏时保水性极强。

(二)酱料的优良增稠剂。在酱料产品中,马铃薯变性淀粉不仅可作为增稠剂使用,同时也提供给产品特定的组织结构和口感。特殊的马铃薯变性淀粉还可用于改善酱油的流变性,以增强酱油的附着性和挂壁感。(三)用在食品工业中,马铃薯变性淀粉主要用做增稠剂、粘结剂、乳化剂、充填剂、赋型剂等。用于焙烤特殊食品;制成颗粒作为“布丁”;香肠的扎线和填充料;适于口味极温和的清水罐头水果等;添加在糕点面包中,可增加营养成分,还可防止面包变硬,从而延长保质期;添加在方便面中,增强柔软度、改善口感。糖果工业:作为制作造型糖果的成形剂。作为稠化剂以增加焦糖和果汁软糖的光滑性和稳定性。作为馅饼、人造果冻的增稠剂,浇模糖果如雪花软糖的凝胶料,乳脂糖或果汁软糖的粘合剂,胶姆糖、口香糖等糖果的撒粉剂。胶粘剂生产:作为胶粘剂主要是糊精化马铃薯淀粉。

豆类淀粉:

简介:豆类作物属杂粮类作物,可分为绿豆、豌豆、蚕豆等,不同品种的豆类作物物理特性和化学成份虽然不同,但制取淀粉的工艺大约相同。众所周知,美味的粉皮、粉丝以其晶莹透明、质地细腻、营养丰富。

前景用途:以绿豆、蚕豆、豌豆、豇豆、混合豆等豆类为原料加工成的淀粉,可制作粉丝、粉条等。

大米淀粉:

简介:大米淀粉是一种重要的谷物淀粉,它是大米中最主要的成分,含量高达80%左右,并且大米淀粉以其独特的物理化学性质广泛应用于食品、纺织等行业。

前景用途:

(一)食品工业中:大米淀粉胶可作为增稠剂用于羹汤、沙司和方便米饭中,并能很好地改善食品的口味。由于大米淀粉颗粒和均质后的脂肪球具有几乎相同的尺寸,因此,大米淀粉与脂肪具有相似的质感,可以在某些食品中替代部分脂肪。此外,蜡质大米淀粉还可作为抗老化剂用于焙烤食品中和作为膨化剂用于挤压型的小吃食品中。最近研究显示,不加其它碳水化合物和树胶的情况下,使用蜡质大米淀粉可以生产出低脂的凝固型酸奶。蜡质大米淀粉也可用于替代奶制品和其它奶油制品中的部分脂肪,如生产低脂的人造奶油。

(二)医药工业中:大米淀粉抗过敏性反应低,香味柔和,广泛用于药片的赋形剂。另外大米淀粉颗粒细小,作为药片的糖衣受到广大消费者的青睐。

(三)纺织工业中:纺织工业很久以来就采用淀粉作为经纱上浆剂、印染黏合剂以及精整加工的辅料等。

(四)造纸工业中:造纸施胶方面大米淀粉也有同样特殊的用途,尤其作为照相纸粉末用,这是利用大米淀粉能良好地吸着碱性色素、且能很好地固定在纸表面的凹处等特性。利用这些性质可以获得印字和印像鲜明、不易擦掉的照片和拷贝。(五)化工工业中:大米淀粉由于它的颗粒呈角形颗粒微小,能很好的附着在人的皮肤表面。而且化妆的润饰程度良好。因此大米淀粉能很好的固定在凹点,不易脱落,常用在食品和橡胶工业等方面作为手粉、撒粉等润滑剂用。大米淀粉较小的颗粒, 有很好的分散度,可以大米淀粉为主要原料生产海轮、军舰的防腐材料和高档的涂料。

小麦淀粉:

简介:小麦淀粉是一种对面粉进行精加工的一种物质,应用的领域非常广泛,主要是包括食品行业及工业制造。

前景用途:

(一)造纸业:在造纸过程中,小麦淀粉的加入,可以提高纸张的表面强度,改善纸张的粘合性,提高纸张的重量,节约电力消耗及减少制造过程中对环境的污染。(二)纺织业:主要是使用淀粉,用于棉纺织物的上浆过程,可以保持织物在编织时的光洁度及耐磨性能,让织物有良好手感及平滑的表面。

(三)石油业:因为经过预糊化的小麦淀粉具有抗高温和耐高压的特性,因此可放入石油钻井中作为稠度稳定剂,让其凝结成胶控制泥浆水分的滤失。

(四)医药业:因为小麦淀粉,有着稳定的化学性质,而且比较有粘性,无毒无味,可以用做胶囊、润滑剂、药片的原料。

(五)食品业:因其粘度较强,常用做食品中的增稠剂、粘结剂、乳化剂等,也可以在汤料中大量使用,增强食品的松软性,改善食物的口感。

莲藕淀粉:

简介及用途:藕淀粉是久负盛誉的传统滋养食品,莲藕粉营养价值高,药疗作用也好,而且制成方便食品后食用简易一冲就可食用,且味道鲜美,老少皆宜。是一种不带麸质的粉末,用干燥的莲藕磨成,在中菜及日本料理中作为稠化剂使用。

木薯淀粉:

食品:木薯原淀粉广泛应用于食品配方中,例如焙烤制品,也应用于制作挤压成形的小食品和木薯粒珠。变性淀粉或淀粉衍生物已用作增稠剂、粘结剂、膨化剂和稳定剂,也是最佳的增量剂、甜味剂、调味剂载体和脂肪替代品。使用泰国木薯淀粉的食品包括罐头食品、冷冻食品、干混食品、焙烤食品、小食品、佐料、汤料、香肠、奶制品、肉及鱼制品和婴儿食品。

饮料:变性淀粉在含固体成份的饮料中用作胶体稳定剂。在饮料中,木薯淀粉甜味剂优于蔗糖,因为前者改善了加工过程并强化了产品特性,与其它甜味剂结合,能充分满足消费者需求。木薯淀粉水解形成的高水解度糖浆是啤酒酿造中易发酵糖的理想来源。

糖果:木薯原淀粉和各种变性淀粉在糖果生产中有很多用途,如胶凝、增稠、稳定体系、增强发泡、控制结晶、粘结、成膜、增添光泽等。低粘度木薯淀粉广泛应用于胶质化糖果,例如果冻和口香糖。最常用的是酸解淀粉,因为它具有优良的逆转性及胶凝能力,遇糖时这些特性更加显著。干淀粉用作糖果制作中的脱模剂。淀粉基聚糖实现了无糖口香糖的生产。

化工:木薯淀粉基糖浆可通过酸解或酶解过程实现低成本生产,从而作为原料用于生产各种化学品,例如谷氨酸钠、氨基酸、有机酸、乙醇、酮、维生素和抗生素等。

胶粘剂和胶水:木薯淀粉糊精是优良的胶粘剂,用途广泛,包括瓦楞纸板、纸袋、胶合板、胶纸、胶粘带、标签、邮票和信封等。

造纸:变性淀粉应用于造纸工业可改善纸张质量、提高生产率和纸浆利用率。阳离子淀粉用于絮凝纸浆、提高湿部脱水效率,其结果是可以采用更高的纸机速度并得到更高的纸浆利用率。保留在成品纸张上的淀粉作为内部施胶剂可增加纸张强度。低粘度淀粉,例如氧化淀粉,可用作表面施胶剂以提高纸张强度并改善印刷和书写时的吸墨性。变性淀粉也在颜料涂布中用作粘合剂以生产光滑、洁白的高档纸张。

纺织:在纺织工业中为了提高纺织效率,木薯淀粉常被用作上浆剂以硬化和保护纱线;用作整理剂以生产手感滑爽的布料;用作增色剂以获得清晰、耐磨的印花布料。对纺织应用而言,使用轻度蒸煮的淀粉效果更理想。

药品及化妆品:木薯原淀粉和变性淀粉可用作药片生产的粘结剂、增量剂和崩解剂。特殊改性的淀粉可同作润肤剂载体,通常这类润肤剂是矿物油基物质。其它变性淀粉可用作乳化剂、封囊剂(维生素)、定型剂(发用摩丝)和增稠剂(洗发香波)等。

可生物降解材料:木薯原淀粉和变性淀粉可与石油基或人工合成的高分子材料混和以改善材料的可生物降解性,从而使这类环保材料的生产成本降至最低。

变性淀粉:

简介:在天然淀粉所具有的固有特性的基础上,为改善淀粉的性能、扩大其应用范围,利用物理、化学或酶法处理,在淀粉分子上引入新的官能团或改变淀粉分子大小和淀粉颗粒性质,从而改变淀粉的天然特性(如:糊化温度、热粘度及其稳定性、冻融稳定性、凝胶力、成膜性、透明性等),使其更适合于一定应用的要求。这种经过二次加工,改变性质的淀粉统称为变性淀粉。按原淀粉来源:玉米变性淀粉、马铃薯变性淀粉、木薯变性淀粉、大米变性淀粉、小麦变性淀粉。前景用途:

食品:食品用变性淀粉要从功能性、多样性、方便性出发。粮食加工要开发新品种,重点开发玉米系列产品,发展薯类淀粉、变性淀粉及衍生物产品;发展方便食品、营养保健食品以及乳化增稠品质改良剂等。因此食品用变性淀粉可以开发功能性变性淀粉、方便食品用变性淀粉及国内供应紧张的烯基琥珀酸酯淀粉等。米面制品 乳制品 肉及鱼类制品 烘烤食品 饮料 糖果 粉末食品 冷冻食品 休闲食品

工业:百分之百替代化学浆料PVA的变性淀粉的开发速度也需要加快。纺织浆纱用的变性淀粉,目前主要是酸解淀粉、氧化淀粉、尿素淀粉、磷酸酯淀粉等,还有少量的醋酸酯淀粉和复合变性淀粉。

发展造纸工业中的新型表面涂布剂及施胶。

淀粉基吸水剂用途广泛。吸水剂可被应用在农林园艺、医药卫生、纺织、造纸、石油钻井、建筑、废水处理、食品加工中。

天然石油量的逐渐减少,用可再生资源生产的变性淀粉又是很多石油化工产品的替代品,为变性淀粉带来了发展空间。

下载淀粉基生物降解材料(五篇模版)word格式文档
下载淀粉基生物降解材料(五篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    淀粉车间岗位职责

    淀粉车间岗位职责 1. 目的 明确车间各岗位人员生产职责,确保生产顺利进行,保障车间安全、质量、环境等各项工作顺利实施。 2. 适用范围 适用于淀粉车间各岗位人员的管理与工作......

    变性淀粉知识

    淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中。资源充沛,价格低廉.但天然淀粉在高浓度时(如5%以上时)粘度高、流性差、成胶凝状,用水稀释后,会发生沉淀。为......

    淀粉普及知识

    淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中。资源充沛,价格低廉.但天然淀粉在高浓度时(如5%以上时)粘度高、流性差、成胶凝状,用水稀释后,会发生沉淀。为......

    淀粉项目2010年终总结(范文)

    2010年工作总结 2010年全年的工作已经成为过去,2011年正在向我们招手,回首全年工作,晨鸣集团项目建设史上的又一个里程碑,集团领导高瞻远瞩,以企业家的战略思想,以“大气魄”逆势......

    实验数据淀粉

    一.相关分析1.温室种植表.生物产量、经济产量与淀粉含量的关系生物产量经济产量淀粉含量生物产量10.941**0.121.0.0000.541经济产量0.941**10.1390.000.0.754淀粉含量0.1210......

    淀粉塑料研究进展(全文5篇)

    得分:_______ 南 京 林 业 大 学 研究生课程论文 2013 ~2014 学年 第二学期 课 程 号: 课程名称: 论文题目: 学科专业: 学号: 姓名: 任课教师: 73414 生态环境科学 热塑性淀粉材料的......

    大班教案 淀粉躲猫猫

    文档仅供参考 大班科学优质课教案:淀粉躲猫猫 作者:浙江省杭州市胜利幼儿园 吕莉辉 活动领域:科学活动前评析 中央电视台少儿频道“智慧树”里有一档非常受小朋友欢迎的节目......

    淀粉塑料研究现状

    毕业设计(论文) 淀粉塑料研究现状 Starch plastics Research 班级 高聚物111 学生姓名 杨 振 学号 1132403127 指导教师 杨 昭 职称 讲师 导师单位 材料工程系 论文提交日期......