高三数学《等差数列及其前n项和》知识点总结(共5则范文)

时间:2019-05-14 11:05:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高三数学《等差数列及其前n项和》知识点总结(共)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高三数学《等差数列及其前n项和》知识点总结(共)》。

第一篇:高三数学《等差数列及其前n项和》知识点总结(共)

高三数学《等差数列及其前n项和》知

识点总结

www.5y

kj.co

m

一、等差数列的有关概念

.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d.

2.等差中项:数列a,A,b成等差数列的充要条件是A=/2,其中A叫做a,b的等差中项.

二、等差数列的有关公式

.通项公式:an=a1+d.2.前n项和公式:Sn=na1+n/2d+d=n/2.三、等差数列的性质

.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq.2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd.3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d.4.等差数列的增减性:d>0时为递增数列,且当a1<0时前n项和Sn有最小值.d<0时为递减数列,且当a1>0时前n项和Sn有最大值.

5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件.

四、解题方法

.与前n项和有关的三类问题

知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想.

Sn=d/2*n2+n=An2+Bn⇒d=2A.利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.

2.设元与解题的技巧

已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;

若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

www.5y

kj.co

m

第二篇:高三等差数列及前n项和导学案

《等差数列及其前n项和》导学案

班级_______课时时间________

学习目标

1.理解等差数列的概念,会用定义证明一个数列是等差数列; 2.能利用等差中项、通项公式与前 n 项和公式列方程求值; 3.善于识别数列中的等差关系或能将其转化为等差关系。

重点:等差数列基本功式、概念及性质的应用。

难点:等差数列的证明及性质的应用。考点梳理

1.等差数列

(1)定义:________________________.(2)通项公式:________________________________________________________________.(3)前n项和公式:____________________________________________________________.(4)a、b的等差中项A=_______________ 2.等差数列的常用性质

(1)若{an}为等差数列,m、n、p、q、k是正整数,且m+n=p+q=2k,则am+an=______=____.(2)若{an}是等差数列,公差为d,则{a2n}_________,公差为________.(3)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.

(4)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为______的___数列.(5)若{an}是等差数列,前n项和为Sn,则数列Sm,S2m-Sm,S3m-S2m,…,是____数列,公差为____.(6)若数列{an}是等差数列,前n项和为Sn,则S2n-1=___________.(7)若数列{an}是等差数列,前n项和为Sn,则数列{

Sn

n

}为__________.典例探究

题型一 等差数列有关基本量的计算

例1:在等差数列{an}中,已知a6=10,s5=5,求a8和s8.题型二 等差数列的判定与证明

例2:已知数列{an}中,a3

5=2-1a(n≥2,n∈N*),数列{b111=,ann}满足bn=(n∈N*).

n1an1an1

(1)求证:数列{bn}是等差数列;(2)求数列{an}的通项公式.题型三 等差数列的性质及应用

例3:(1)(2011·辽宁高考)Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=________.(2)等差数列{an}的前n项和为Sn,已知aa2m1m1am0,s2m138,则m=____.(3)等差数列{an}的前m项和为30,,2m项和为100,则它的前3m项和为______.达标检测

1.(2012年高考北京文)已知{an}为等差数列,Sn为其前n项和.若a1

1,S2a3,则a2________;Sn=________.2数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*),则an=________.3.(2011年重庆)在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=_____.

第三篇:等差数列前n项和教案

等差数列前n项和教案

一、教材分析

1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。

2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过

的等差数列的定义、性质等内容有着密切的联系,又能为后面等比数列前n

项和以及数列求和做铺垫。

3、教学目标

(1)知识与技能:掌握等差数列前n项和公式,理解公式的推导方法。同时能

熟练、灵活地应用等差数列前n项和公式解决问题。

(2)过程与方法:经历公式的推导过程,体验倒序相加进行求和的过程,学会

观察、归纳、反思。体验从特殊到一般的研究方法。

(3)情感、态度、价值观:通过具体、生动的现实问题的引入,激发学生探

究求和方法的兴趣,树立学生求知意识,产生热爱数学的情感,逐步养

成科学、严谨的学习态度,提高一般公式推理的能力。

4、重点与难点

重点:等差数列前n项和公式的掌握与应用。

难点:等差数列前n项和公式的推导以及其中蕴含的数学思想的掌握。

二、学情分析

学生前几节已经学过一些数列的概念及简单表示法,还学了等差数列的定

义以及性质,对等差数列已经有了一定程度的认识。这些知识也为这节的等差数列前n项和公式做准备,让学生能更容易理解等差数列前n项和公式的推导过程。同时也为后面的等比数列前n项和公式做铺垫。但由于数列形式多样,因此仅仅掌握等差数列前n项和公式还是不够的,更应该学会灵活应用。

三、教学方法:启发引导,探索发现

四、教学过程

1.教学环节:创设情境

教学过程:200多年前,高斯的算术老师提出了下面的问题: 123100?。据说,当其他同学忙于把100个数逐项相加时,10岁的高斯迅速得出5050这个答案。让同学思考并讨论高斯是怎么算的。

设计意图:由著名的德国数学家高斯的例子引发同学们的思考,为下面引入倒序相加法求和做准备。2.教学环节:介绍倒序相加法

教学过程:请同学将自己的计算方法在课上发表,老师接着介绍倒序相加

法。记S123100981S10099,从而发现每一列相加都得101。

则2S(1100)(299)(398)(1001)101*100

S101*10025050

类似地,用同样的方法计算1,2,3,,n,的前n项和,可以得到 123n(n1)n。2 设计意图:介绍倒序相加法,并用这个方法计算1,2,3,,n,的前n 项和,从而为下面推导等差数列前n项和公式做铺垫。

3.教学环节:推导公式

教学过程:首先介绍数列an的前n项和,用Sn来表示,即

Sna1a2a3an。对于公差为d的等差数列,我们用两种方法表示Sn。Sna1(a1d)(a12d)[a1(n1)d]Snan(and)(an2d)[an(n1)d]

则两式相加得:

2Sn(a1an)(a1an)(a1an)(a1an)n(a1an)

n个n(a1an),将等差数列的通项公2n(n1)d。式ana1(n1)d代入,得到公式Snna12 推导出等差数列前n项和的公式为Sn 设计意图:用倒序相加法推导得到等差数列前n项和公式,由于有前面的铺垫让学生更容易理解等差数列前n项和公式的推导过程,对后面的应用也有帮助。

4、教学环节:例题讲解

教学过程:例1:用等差数列前n项和的公式计算1+3+5++99的值。

例2:a11,a86,求这个等差数列的前8项和S8以及公

差d。例3:已知数列an的前n项和Snn2n,求这个数列 的通项公式。这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

设计意图:巩固等差数列前n项和公式,加深学生对该公式的印象。6.教学环节:回顾总结

教学过程:

1、倒序相加法进行求和的思想

2、复习等差数列前n项和公式Sn Snna1n(a1an)和 2n(n1)强调要根据条件选用适当的公式进 d,行求解。以及公式的适用范围。7.教学环节:布置作业

七、板书设计

1、问题的提出

2、倒序相加法

3、等差数列前n项和公式

4、例题

5、回顾总结

6、布置作业

第四篇:等差数列前n项和教案

等差数列前n项和(第一课时)教案

【课题】

等差数列前n项和第一课时

【教学内容】

等差数列前n项和的公式推导和练习

【教学目的】

(1)探索等差数列的前项和公式的推导方法;

(2)掌握等差数列的前项和公式;

(3)能运用公式解决一些简单问题

【教学方法】 启发引导法,结合所学知识,引导学生在解决实际问题的过程中发现新知识,从而理解并掌握.【重点】

等差数列前项和公式及其应用。

【难点】

等差数列前项和公式的推导思路的获得 【教具】

实物投影仪,多媒体软件,电脑 【教学过程】

1.复习回顾 a1 + a2 + a3 +......+ an=sn

a1 + an=a2 + an-1 =a3 + an-2 2.情景自学

问题一: 一个堆放铅笔的V形架的最下面一层放1 支铅笔,往上每一层都比它下面一层 多放一支,最上面一层放 100支,这个V 形架上共放着多少支铅笔?

思考:(1)问题转化求什么 能用最短时间算出来吗?

(2)阅读课本后回答,高斯是如何快速求和的?

他抓住了问题的什么特征?

(3)如果换成1+2+3+…+200=?我们能否快速求和?,(4)根据高斯的启示,如何计算 18+21+24+27+…+624=?

3..合作互学(小组讨论,总结方法)

问题二: Sn = 1 + 2 + 3 + … + n = ?

倒序相加法

探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?

问题三: 已知等差数列{an }中,首项a1,公差为d,第n项为an , 如何求前n项和Sn ?

等差数列前项和公式: n(a1 + an)=2Sn

问题四: 比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?

n(a1 + a n)=2Sn

公式记忆 —— 类比梯形面积公式记忆

n(a1 + a n)=2S 问题五: 两个求和公式有何异同点?能够解决什么问题?

展示激学

应用公式

例1.等差数列-10,-6,-2,2的前多少项的和为-16 例2.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?

【思考问题】如果一个数列{an }的前n项和Sn = pn2 + qn + r,(其中p,q,r为常数,且p ≠ 0),那么这个数列 一定是等差数列吗?若是,说明理由,若不是,说明Sn必须满足的条件。

【教学后记】新数学课程标准中明确提出“数学是人类的一种文化,它的内容、思想、方法和语言 是现代文明的重要组成部分” “要体现数学的文化价值”等,将数学史有机地融入到课堂教学中,不仅不会影响学生的学习,相反却会激发学生热爱数学的热情,起到正面推动作用,提升数学教育成效.这也是贯彻德育、提倡人文精神的重要组成部分.由具体的问题情境激发学生的学习兴趣.等差数列前 n 项和公式的推导由教师引导学生自主探索, 由于数学的严谨性和学生认知的不完备性是一个矛盾,因此公式的发现过程是一个不断修改、不断完善、逐步发现的过程.引导学生积极参与结论的探索、发现、推导的过程, 并弄清楚每个结论的因果关系,要适当延迟判断,多让学生想一想、议一议、说一说,重视思路分析的训练.须知教师讲课的最精彩之处,不是自己分析的头头是道,而是引导学生探求解题思路最后再引导学生归纳引出结论.通过例题的讲解和练习的训帮助学生掌握 和记忆公式,例题的变式训练加大课堂教学的研究性、开放性和自主性,在开展探究活 动中培养学生的基本技能.

第五篇:等差数列前n项和教案

等差数列的前n项和教案

一、教学目标:

知识与技能目标:

掌握等差数列前n项和公式,能熟练应用等差数列前n项和公式。过程与方法目标:

经历公式的推导过程,体验从特殊到一般的研究方法,了解倒序相加求和法的原理。

情感、态度与价值观目标:

获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

二、教学重难点:

教学重点: 探索并掌握等差数列前n项和公式,学会运用公式。教学难点:等差数列前n项和公式推导思路的获得。

三、教学过程:

(一)、创设情景,提出问题

印度著名景点--泰姬陵,传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层。你知道这个图案一共花了多少颗宝石吗?从而提出问题怎样快速地计算1+2+3+…+100=?(学生思考),著名的数学家高斯十岁时就用简便的方法计算出1+2+3+…+100=5050,介绍高斯的算法。

(二)、教授新课:

数学的方法并不是单一的,还有其他的方法计算1+2+3+…+100吗?(学生思考)

①老师介绍倒序相加求和法,记S=1+2+3+…+100 S=100+99+98+…+1 可发现上、下这两个等式对应项的和均是101,所以 2S=(1+100)+(2+99)+(3+98)+ … +(100+1)2S=101100=10100 S=10100=5050 2②如果要计算1,2,3,…,(n-1),n这n个数的和呢?(学生独立思考),老师引导,类似上面的算法,可得S=

1nn2

③1,2,3,…,(n-1),n这是一个以1为公差的等差数列,它的和等于S=1nn2,对于公差为d的等差数列,它们的和也是如此吗?

首先,一般地,我们称a1a2a3an 为数列an的前n 项和,用Sn表示,即Sna1a2a3an

类似地:

Sna1a2a3an①

··a1② Snanan1an2· ①+②: 2Sna1ana2an1a3an2ana1

∵a1ana2an1a3an2ana1

∴2Snn(a1an)由此得:Snn(a1an)公式1 2由等差数列的通项公式ana1n1d有,Snna1

(三)、例题讲解:

nn12d 公式2(1)、利用上述公式求1+2+3+…+100=?(学生独立完成)

(2)、例:等差数列an中,已知: a14,a818,n8,求前n项和Sn及公差d.(教师引导,师生共同完成)

选用公式:根据已知条件选用适当的公式 Sn变用公式:要求公差d,需将公式2Snna1n(a1an)求出 Sn 2nn12d变形运用,求d 知三求二 等差数列的五个基本量知三可求另外两个

(四)、课堂小结:

1、公式的推导方法:倒序求和

2、等差数列的前n项和公式

Snn(a1an)2Snna1nn12d

3、公式的应用。

(五)、作业

课本45页 练习第1题 46页A组第2题

下载高三数学《等差数列及其前n项和》知识点总结(共5则范文)word格式文档
下载高三数学《等差数列及其前n项和》知识点总结(共5则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    课时30 等差数列及其前n项和

    提升训练30等差数列及其前n项和 一、选择题 1.等差数列{an}的前n项和为Sn,且S7=7,则a2+a6=. 7911A.2B.C.D. 224 2.等差数列{an}的前n项和为Sn(n=1,2,3,„),若当首项a1和公差d变化时,a5+a......

    等比数列等差数列前n项和习题。(精选)

    一. 选择题 1. 若等比数列an的前n项和Sn3na则a等于 A. 3B. 1C. 0D. 1 2. 等比数列an的首项为1,公比为q,前n项和为S,则数列 A. 1S 1 的前n项之和为na B. SC. Sq n1 D. 1q n1 S3.......

    等差数列的前n项和(推荐五篇)

    1 努力奋斗 等差数列前n项和 一.选择题: 1.已知等差数列{an}中,a1=1,d=1,则该数列前9项和S9等于 A.55B.45C.35D.25 2.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为 A.180B.-18......

    2等差数列及其前n项和(推荐阅读)

    二、 等差数列及其前n项和答案:第23项与第24项:1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通......

    等差数列前n项和教学设计(本站推荐)

    本节内容选自人教版《普通高中课程标准实验教科书·数学·必修5》的〈第二章§2.3 等差数列的前n项和 〉的第一课时:等差数列的前n项和公式的推导及简单应用。它是在学生已经......

    等差数列的前n项和教案(范文大全)

    等差数列的前n项和 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问......

    《等差数列前n项和》教学反思

    《等差数列前n项和》教学反思身为一名刚到岗的人民教师,教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的《等差数......

    等差数列前n项和教学设计说明

    《等差数列前n项和》的教学设计说明 本课的教学设计反映了等差数列求和公式推导过程中数学思想方法——倒序相加法的生成过程,这是本节课教学设计的重中之重;设计中结合本班学......