小学四年级暑假奥数培训第16讲:逆推法

时间:2019-05-14 11:41:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学四年级暑假奥数培训第16讲:逆推法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学四年级暑假奥数培训第16讲:逆推法》。

第一篇:小学四年级暑假奥数培训第16讲:逆推法

倒推法的应用

知识导航

在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.用倒推法解题时要注意:

①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1: 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?

解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56 [(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98 □-8=98-10=88

□=88+8=96

答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。例2 :小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.解析:{[(□ + 17)÷4]-15}×10 = 100

采用逆推法,易知老爷爷的年龄为(100÷10+15)×4-17=83(岁)

【巩固】某数除以4,乘以5,再除以6,结果是615,求某数.例3:马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?

解析:马小虎错把减数个位上1看成7,使差减少7-1=6,而把十位上的7看成1,使差增加70-10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70-10)+(7-1)=57 答:正确的答案是57.【巩固】在计算一道减法题时,小马虎把被减数个位上的3看做8,把减数十位上的6看做9,结果得出的差是60.正确的结果是多少?

例4:树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟? 解析:倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟 多少只?48÷3=16(只)②第一棵树上原有鸟只数.16+8=24(只)

③第二棵树上原有鸟只数.16+6-8=14(只)

④第三棵树上原有鸟只数.16-6=10(只)

答:第一、二、三棵树上原来各落鸟24只、14只和10只.【巩固】ABC三个小朋友共有玩具48个。A给B8个玩具,而B又将6个玩具给C,这时三人的玩具数相等。三人原来的玩具各有多少个?

例5:篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个? 解析:依题意,画图进行分析.解:列综合算式:

{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.【巩固】一桶油倒去一半后,再倒去剩下的一半,这时连桶还有16千克。已知桶重5.5千克,那么原来这桶油连桶共重多少?

例6:“六一”儿童节,小明和小培从妈妈那儿分得一些糖,妈妈把糖分成相同的两份给他们,多的一个给自己留下了.小明在路上遇着自己的两个朋友,他把自己的糖分成三份,每人一份,多的两颗分别送给了两个朋友.过了一会儿,又遇上两个小朋友,他同样分给他们糖,多的两颗分给了他们,后来,他又遇上了两个朋友,分完糖之后,小明发现自己只剩下一颗糖了,请问妈妈原来有多少糖?

解析:最后一次分糖前小明有糖3+2=5颗;倒数第二次分糖前小明有糖5×3+2=17颗;倒数第三次分糖前小明有糖17×3+2=53颗;妈妈原来有糖53×2+1=107颗.【巩固】A、B、C三个小朋友共有玩具48个。A给B8个玩具,④从甲桶卖出油多少千克?15-11=4(千克)而B又将6个玩具给C,这时三人的玩具数相等。三人原来的玩具各有多少个?

例7:甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?

解析:解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16÷(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:

⑤从乙桶卖出油多少千克?15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.【巩固】甲乙丙三人共有图书120本,乙向甲借3本书后,又送给丙5本,结果三个人的数量相等。甲乙丙原来各有多少本书?

课后练习

1、一个数除以18,乘4,加上6039,等于6139,这个数是多少?

2、小明在做加法题时,把一个加数个位上的6写成9,十位上的6写成0,结果得到错误的得数584,正确得数应该是多少?

3、几个数相加时,把一个加数个位上的0写成9,把十位上的9写成6;另一个加数百位上少写3,这时得到的和是1395.那么原来几个数的和是多少?

4、从第一堆糖中拿一半放入第二堆,拿35粒放入第三堆,再拿出剩下中的一半放入第四堆,最后又吃掉第一堆中的2粒,这时第一堆中还有48粒,第一堆原有糖多少粒?

5、三筐苹果共有90千克,如果从甲筐取出15千克放入乙筐,从乙筐取出20千克放入丙筐,从丙筐取出17千克放入甲筐,这时三筐苹果就同样重了。甲乙丙原来各有苹果多少千克?

10、袋子里有若干个球,小明每次拿出其中的一半,再放回一个,一共做了5次,袋中还有3个球,原来袋中有几个球?

6、三年级三个班共有学生156人,若从三(1)班调5人到三(2)班,从三(2)班调8人到三(3)班,再从三(3)班调4人到三(1)班,这时每个班的人数正好相同。三个班原来各有学生多少人?

7、有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就抢过一半;弟弟不肯,又从哥哥那儿抢走一半;哥哥不服,弟弟只好给哥哥5块。这时,哥哥挑14块,弟弟挑12块。最初弟弟准备挑多少块?

8、三人共有糖72粒,若甲给乙,丙各一些,使他们增加1倍。接着乙又给甲,丙各一些,使他们翻倍。最后丙也给甲,乙各一些,使他们翻倍。这时三人糖数相等,三人原来各有几粒糖?

9、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩下7米,这捆电线原来总长多少米?

第二篇:奥数精讲与测试 三年级 奥数 逆推问题

EET国际教育内部资料

三年级数学

EET国际教育三年级数学 第十讲 逆推问题

知识点,重点,难点

逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,有后向前逆推计算。逆推问题还被称为逆推法,主要包含一下两层意思。

1.要根据题意的叙述顺序,从最后一组数量关系逆推至第一组的数量关系,这就是逆推法中运算顺序的逆推含义。

2.原题相加,逆推用减;原题用减,逆推用加;原题相乘,逆推用除;原题用除,逆推用乘,这就是逆推法中计算方法的逆运算含义。

例1:某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?

分析:我们用代替原数,则□经过一系列运算后是10,这一系列过程,我们可以用下图来表示:

图1

观察图1可以发现,从最后结果10往回推,第第个横线上的数是12×3=36,第个横线上的数应该是10+2=12,个横线上的数应该是36÷2=18,则 就是18-3=15.例2:小明从家到学校去,先走了全场的一半后,又走了剩下路程的一半。这时离学校还有1千米,问小明家到学校共多少千米?

分析:如图2,采用倒退的方法,可以发现1千米是第一次剩下路程的一半,所以第一次剩下的路程就是1×2=2(千米),而第一次剩下路程2千米又是全程长的一半,所以全程长为2×2=4(千米)。

图2

例3:做一道整数加法题时,一个同学把个位上的数6看是9,把十位上的数8看作3,结果得出和为123,问正确的和是多少? 分析:学生把个位上的数6看是9,使和增加了9-6=3,把十位上的数8看作3,使和减少了80-30=50,将多增加的部分去掉,加上少加的部分,就能得出原来的和。

另外,根据题意可知原来的加数应为86,而这个学生误认为是39,所以只要将错误的和123减去错误的加数,得出原来的另一个加数,再重新加上正确的加数 EET国际教育内部资料

三年级数学

86,也能得出正确之和。

例4:小朋友做一批纸花,第一天做个总数的一半多10朵,第二天又做了余下的一半多10个,还有25朵没有做,问这批纸花一共有多少朵?

图3 分析:按照题目中的条件与图3,可推出如下算式 25+10=35(朵),35×2=70(朵),70+10=80(朵),80×2=160(朵).例5:某水果店运进一批苹果,运进的苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好和现在的苹果一样多。已知原有苹果800千克,问原有西瓜多少千克?

分析:如图4可一步步推算出运进苹果是800÷2=400(千克),现有苹果800+400=1200(千克),原有西瓜1200×2=2400(千克)。

图4

例6:小丽用4元钱买了一本《好儿童》,有用剩下的钱的一半买了一本《儿童画报》,买钢笔有用了剩下钱的一半多1元,最后还剩下4元钱,问小丽原来有多少钱?

图5 分析:如图5,用倒推法,第二次剩下的一半时4+1=5(元),第二次剩下5×2=10(元),第一次剩下10×2=20(元),原来有20+4=24(元)。

A 卷 EET国际教育内部资料

三年级数学

1.某数加上3,乘以5,再加上7,除以8,减去9,再用4乘,恰好等于100,这个数是?

2.1997是香港回归祖国的一年,张老师说:“把我的年龄乘以4减去17,再乘以10后加上7,正好等于1997.请同学们算一算,我今年几岁?

3.仓库里有一批大米,第一天运出150袋,第二天又运出了180袋,第三天又运进了220袋后仓库里还剩下310袋大米,仓库里原有大米多少袋?

4.百货商店出售彩色电视机,上午售出总数的一半又3台,下午售出余下又7台,还剩4台。商店里原来有电视机多少台?

5.有一袋苹果,甲取出其中的一半少1个,乙取出余下的一半多1个,丙又取出了余下的一半,这时还剩下1个。如果这袋苹果共5元,那么每个苹果多少钱?

6.一辆公共汽车出发时,车上有一些乘客。到了第一站,下去了2个乘客,上来了6个乘客;到了第二站,下去了3个乘客,上来了4个乘客。这时车上共有28个乘客,这辆公共汽车出发时车上有车上有几个乘客?

7.小亮在做一道两部计算题时,把乘以3误以为除以3,接着又把加上4错计算为减去4,这样得到的结果是1,正确的结果应是多少?

8.一袋糖用去一半多50克,还剩下200克,问原来这袋糖中多少克?

9.三个金鱼缸共有15条金鱼,如果从第一只缸里取出3只放到第二只缸,在从第二只缸中取出3条金鱼放入第三只缸中,那么三只金鱼缸里的金鱼条数一样多,原来第一只缸有金鱼几条?第二只缸有金鱼几条?第三只缸有金鱼几条? EET国际教育内部资料

三年级数学

10.商店里原来有煤若干吨,第一天上午运出总数的一半,下午运出5吨;第二天上运出余下煤的一半,下午也运出5吨;第三天又运出剩下煤的一半,下午运出5吨。这时仓库里的煤正好运完,这个仓库原有煤多少吨?

11.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这时第一堆中还有48个,问原来第一堆中有梨多少个?

12.亮亮,宁宁,晶晶三人共带了30元钱,宁宁给亮亮2元,亮亮用去3元,晶晶给宁宁2元后三人的钱数正好相等,问原来亮亮有多少钱?宁宁有多少钱?晶晶有多少钱?

B 卷

1.某数加上8,除以8,除以8,结果还是8,这个数是几?

2.徒弟问师傅的年龄,师傅说:”把我的年龄加上5,除以3,再减去7就是你今年岁数的一半。“已知徒弟今年20岁,师傅今年多少岁?

3.芳芳在做一道加法题时,把一个加数个位上的5错写成6,又把另一个加数十位上的8错写成1,最后得到的和是472,这时正确的答案应是多少?

4.一桶油,第一次用去全部的一半,第二次用去余下的一半,还剩下12千克,这桶油原来重多少千克?

5.某人去银行取款,第一次取了存款数的一半还多30元,第二次取了余下数的一半还少10元。这时还剩115元,他原来存了多少钱?EET国际教育内部资料

三年级数学

6.有一捆绳子,第一次用去全部的一半少3米,第二次用去余下的一半多5米后绳子正好用完,原来这捆绳子长多少米?

7.妈妈买来一些橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多一个,第三天吃掉第二天剩下的一半多1个,还剩一个橘子,妈妈买得橘子一共有多少个?

8.甲,乙两个仓库共存粮95吨,从甲仓库调8吨粮食到乙仓库,又从乙仓库调35吨粮食支援灾区,这时甲仓存粮多少吨?义仓库存粮多少吨?

9.甲,乙两篮水果,个数不等,从甲篮里拿出一些苹果放到乙蓝里,使乙篮的苹果个数增加一倍;再从乙蓝拿出一些苹果放回甲蓝,使甲篮里的苹果个数都是20只,原来甲蓝里有苹果多少只,乙蓝里有苹果多少只?

10.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这是第一堆中还有48个,原来第一堆中有梨多少个?

11.小朋友分一堆苹果,先分它的一半多3个给年龄较小的,然后把其余的一半多2个给年龄较大的。这时还剩4个苹果,问原来有苹果多少个?

12.甲,乙,丙三个同学共有铅笔30支,甲给乙6支,乙给丙5支,丙给甲2只。这时三人的苹果数相等,问他们各有铅笔多少只?

C 卷

1.老爷爷说:“把我的年龄加上12,再用4除,然后减去15,再乘以10,恰好是100岁。”这位老爷爷现在又多少岁?EET国际教育内部资料

三年级数学

2.甲,乙,丙三个共有图书120本,乙向甲借3本后,又送给丙5本,结果三个人图书数相等,甲,乙,丙三人各有图书多少本?

3.植树节学校要栽102棵树苗,小强和小明两人挣着去栽。小强先拿了若干树苗,小明见小强拿的太多,就抢了10棵,小强不肯,用从小明那里抢回来6棵,这是小强拿的棵树是小明的2倍,最初小强拿了多少棵树苗?

4.百货商店出售彩色电视机,上午售出总数的一半多20台,下午售出余下的一半多15台,还剩75台。店里原有彩色电视机多少台?

5.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?

6.今有苹果不知其数,如果把苹果数减去50,加上3,得数123,有多少个苹果?

7.有一个数除以4,再乘以5,减去35,加上10等于100,这个数是?

8.小文在计算两个数相加时,把一个加数个位上的1错误的当做7,把另一个加数十位上8错误的当做3,所得的和是1995.原来两数相加的正确答案是多少?

9.有砖26块,甲乙两人争着搬,甲看乙搬得太多,就抢过来一半,乙不服,又从甲哪儿抢走一半,甲不肯,乙只好再给甲5块,这时甲比乙多搬2块,问最初乙准备搬多少块?

10.有甲,乙两堆小球各若干个,按下面的规律挪动小球:第一次从甲堆拿出与乙堆同样多的小球放到乙堆,第二次从乙堆拿出与甲堆剩下的同样多的小球放到甲堆。。如此挪动4次后,甲,乙两堆的小球恰好都是16个,问甲,乙两堆小球最初各是多少个? EET国际教育内部资料

三年级数学

11.有三堆棋子共48颗,第一次从第一堆中拿出与第二堆颗数相同的棋子放入第二堆,第二次又从第二堆中拿出和第三堆相同的颗数放入第三队,第三次从第三堆中拿出和这时第一堆颗数相同的棋子放入第一堆。这时三堆棋子颗数相同,问原来每堆棋子各有多少颗?

12.有一堆糖果,慢慢将它三等分后还多一块糖,妈妈留下其中的一份和多出的那块糖,其余的分给了哥哥;哥哥把所得的糖三等分,也多出一块。哥哥留下其中的一份和多出的那块糖,其余的分给了我;我也学他们将糖三等分,还是多出一块。你知道妈妈开始至少有几颗糖吗?

第三篇:小学奥数三年级第5讲平均数

第7讲

平均数

一组数的和除以这组数的个数,称为这组数的平均数。

例1、5个连续自然数的中间一个数是45,这5个数的和是多少?

分析5个连续自然数的第3个数是45,第2个(44)与第4个(46)相加是两个45,第1个(43)与第5个(47)相加是两个45。

和是

45×5=225

随堂练习1 计算56+57+58+59+60+61+62+63+64 一般地,奇数个连续自然数的和等于中间一项乘以项数。换句话说,奇数个连续自然数的平均数就是中间的那个数。高斯求和方法的实质就是

和=平均数×项数

偶数个连续自然数的平均数不是整数,我们现在尚未学到。所以先将第一项加最后一项,第二项加倒数第二项……直至中间两项相加,这些和都相等。而个数是项数的一半,所以偶数个连续自然数的和等于中间两项的和(也即首末两项的和)乘以项数除以2.例2、8个连续自然数的和是108,写出这8个数。

分析

因为中间两个数相加再乘以4(=8÷2)等于108,所以中间两项的和可以求出来。

解 中间两项的和是108÷(8÷2)=27 又

27=13+14 所以中间两项是13、14.这8个数是10、11、12、13、14、15、16、17.(由13往前数4个数到10,由14往后数4个数到17)答:这8个连续的自然数是10、11、12、13、14、15、16、17.随堂练习2 6个连续自然数的和是273,这6个数中的第一个数是多少?

3、求出以下28个数的平均数: 12、13、13、14、15、16、16、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、35.分析与解

这28个数的和是(12+13+14+……+35)+13+16+16+35 求出和再除以28就得到平均数,但比较麻烦。如果注意到25个连续自然数11、12、13,……,35的平均数是23(中间一项),那么就比较容易。

因为 13+16+16+35 =(11+2)+(23+12)+(23-7)+(23-7)=11+23+23+23 所以原来的和就是11+12+13+……+35+23+23+23,原来28个数的平均数正好是23.随堂练习3 求28个数:12、13、14、14、14、15、16、17、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、35的平均数。

4、求数列 1、2、4、5、7、8,……,46、47、49、50、52、53(1)的规律,并求这组数的和与平均数。

分析 数列的奇数项数的项组成等差数列(公差是3)1、4、7,……,49、52.(2)数列的偶数项数的项组成等差数列(公差也是3)2、5、8,……,50、53.(3)

分别求出数列(2)(3)的和,再相加,可以得出所求的和,再得出平均数。但更为简单的办法是直接运用高斯的思想。注意: 1+53=2+52=4+50=……=25+29=26+28(4)解 1与53的平均数是27,也就是1+53可以换成2个27相加。同样,2+52,4+50,……,26+28都可以换成27+27.因此(1)的和是27×36=972.从例4可以看出,如果一组数可以分成许多小组,各小组的平均数都相等,那么这个相等的数就是这组数的平均数(例4中,每个小组2个数的和是54,每个小组的平均数是27)。

随堂练习4 寻找数列4,2,5,8,6,14,7,20,……,12,50,13,56的规律,并求这数列的和。

练习题:

(1)求1至100内能被4整除余1的所有数的和。

(2)求1至100内既是3的倍数又是5的倍数的所有数的和。

(3)有10只盒子,44只乒乓球。把这44只乒乓球放到盒子中,每个盒子中至少要放一个球,能不能使每个盒中的球数都不相同?

(4)影剧院共有25排座位,第一排有20个座位,以后每排比前一排多2个座位,问:影剧院共有多少个座位?

(5)时钟在每个整点时敲这钟点数,每半点钟时敲1下,问:一昼夜该时钟总共敲多少下?(6)求所有三位数的和。

(7)求1至100(包括100在内)的所有5的倍数的和。

(8)50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,试多少次就足够了?

(9)已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,……。这个数列的第30项是哪个数?到第25项止,这些数的和是多少?

(10)24个连续自然数12―35,再添上一个35,一个13,两个16.这28个数的平均值是多少?

第四篇:四年级奥数 第29讲 抽屉原理

第29讲 抽屉原理

(一)如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。

同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。

以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。

从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。

例1某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?

分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。

例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。

将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。

例3在任意的五个自然数中,是否其中必有三个数的和是3的倍数?

分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。

第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。

第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。

综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。

例4在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米? 分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图)。

将每段线段看成是一个“抽屉”,一共有10个抽屉。现在将这11个点放到这10个抽屉中去。根据抽屉原理,至少有一个抽屉里有两个或两个以上的点(包括这些线段的端点)。由于这两个点在同一个抽屉里,它们之间的距离当然不会大于1厘米。

所以,在长度是10厘米的线段上任意取11个点,至少存在两个点,它们之间的距离不大于1厘米。

例5有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数? 分析与解:由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计。

对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:

(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性。

将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形。由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数。

例6用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?

分析与解:用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:

将上面的四种情形看成四个“抽屉”。根据抽屉原理,将五列放入四个抽屉,至少有一个抽屉中有不少于两列,这两列的小方格中涂的颜色完全相同。

在上面的几个例子中,例1用一年的366天作为366个抽屉;例2与例3用整数被3除的余数的三种情形0,1,2作为3个抽屉;例4将一条线段的10等份作为10个抽屉;例5把每堆水果中,苹果数与桔子数的奇偶搭配情形作为4个抽屉;例6将每列中两个小方格涂色的4种情形作为4个抽屉。由此可见,利用抽屉原理解题的关键,在于恰当地构造抽屉。

第五篇:四年级奥数基础教程第25讲 智取火柴

第25讲 智取火柴

在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?

分析与解:本题采用逆推法分析。获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样? 分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。因为60÷7=8……4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。

由例2看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?

分析与解:最后留给对方1根火柴者必胜。按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜。甲先取,只要第一次取3根,剩下57根(57除以4余1),以后每次都将除以4余1的根数留给乙,甲必胜。

由例3看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜。

有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游戏完全相同。

例4两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。你选择先报数还是后报数?怎样才能获胜?

分析与解:对照例

1、例2可以看出,本例是取火柴游戏的变形。因为50÷(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜。

例51111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。规定将棋子移到最后一格者输。甲为了获胜,第一步必须向右移多少格? 分析与解:本例是例3的变形,但应注意,一开始棋子已占一格,棋子的右面只有1111-1=1110(个)空格。由例3知,只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜。

(111-1)÷(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1。以后无论乙移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜。因为甲移完后,给乙留下的空格数永远是8的倍数加1。例6今有两堆火柴,一堆35根,另一堆24根。两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。规定取得最后一根者为赢。问:先取者有何策略能获胜?

分析与解:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同。

先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同。以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴。只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到。这样先取者总可获胜。

请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?

例7有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。如果采用最佳方法,那么谁将获胜?

分析与解:根据例6的解法,谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜。

甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根。无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜。练习25

1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。问:先取者如何拿才能保证获胜?

2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。如果甲先取,那么谁将获胜?

3.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。谁将获胜?怎样获胜?

4.有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。如果甲后取,那么他一定能获胜吗?

5.黑板上写着一排相连的自然数1,2,3,…,51。甲、乙两人轮流划掉连续的3个数。规定在谁划过之后另一人再也划不成了,谁就算取胜。问:甲有必胜的策略吗?

6.有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。问:要想获胜是先取还是后取?

下载小学四年级暑假奥数培训第16讲:逆推法word格式文档
下载小学四年级暑假奥数培训第16讲:逆推法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学四年级奥数智力题

    小熊开店 小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。 它们来到小熊的水果店。 “桃子怎么卖呀?”......

    小学四年级奥数习题

    1、两个自然数相除的商是47.余数是3.被除数.除数.商及余数的和等于629,你知道除数是多少吗? 2、一个化肥厂计划12天生产一批化肥,由于每天多生产3吨,结果9天就完成了这批化肥的......

    四年级奥数第九章教案 枚举法

    九 枚举法 一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。这......

    六年级奥数培训第20讲 抓“不变量”解题

    第20讲 抓“不变量”解题 一、知识要点 一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。抓住分子或分母,或分子、分母的差,或分子、分母的和......

    小学四年级上册奥数题

    小学四年级奥数题 姓名: 1、按规律填数。 1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( ) 3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 2、在数列3,12,21......

    小学四年级奥数题及答案

    小学四年级奥数题及答案 1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。两人同时出发同向而行,乙几小时能追上甲? 2、书架上放有3本不同的数学书,5本......

    小学四年级奥数-逻辑问题

    逻辑问题 例1 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?例2 刘刚、马辉......

    小学四年级奥数下册教案

    小学四年级奥数下册教案:行程问题 在本讲中,我们研究两个运动物体作方向相同的运动时,路程、速度、时间这三个基本量之间有什么样的关系. 例1 下午放学时,弟弟以每分钟40米的......