第一篇:青岛版五年级下册分数的意义和性质测试题(一)
青岛版五年级下册分数的意义和性质测试题
(一)(时间:60分钟
总分:100分)
一、填空题:
(____)3111、4个是,里有()个。
(____)45162、孙叔叔每天工作时间大约是8小时,占一天的(____)。(____)
3、把一袋重3千克的糖果平均分给5个小朋友,每个小朋友分得这袋糖果的(____)(____),每个小朋友分得千克糖果。(____)(____)
4、在()里填最简分数:
4时=()日
600千克=()吨
24分=()时
15时=()日
150克=()千克
40分=()时
721(___)3(___)155、10(___)50515(____)
6、比较大小:
8871456()()()913102077(___)(___)
7、一个三角形,底是10cm,高是6cm,底是高的,高是底的(___)(___)
8、写出分母是5的所有的真分数(),分母是5的最小假分数是(),分母是5的最小带分数是()
9、有16支铅笔,平均分给4个小朋友,每支铅笔是铅笔总数的(),每人分得的铅笔的数量是铅笔总数的()。
310、2的分数单位是(),它含有()个这样的分数单位,再加8上()个这样的分数单位就是最小的合数,减去()个这样的分数单位就是1.二、判断题:
1、分数的分子和分母都不能够是0.()
2、分数的分子和分母同时乘或除以相同的数,分数的大小不变。()
3、假分数一定比1大。
()
4、一堆煤运走了3吨,还剩下4吨,运走的占原来这堆煤的5、大于()4798而小于的分数只有.()17171736、的分子、分母同时加上6,分数的大小不变。
()
87、两个分数相等,那么这两个分数的分数单位也相同。
()
8、把7米长的电线平均分成10段,每段是全长的7.()109、分数的分母越大,它的分数单位越小。
()
1510、5千克的和1千克的一样多。
()
三、选择题:
1、分子相同的分数()
A、分数单位相同
B、分数的大小相同
C分数单位的个数相同
52、把的分子加上10,要使分数的大小不变,分母应该()A、加上10
B、乘2
C、扩大到原来的3倍
xx3、如果是假分数,是真分数,那么()
A、x>7
B、x<7
C、x=7 aa4、在中,当a()时,是真分数。
A、小于9
B、等于9
C、大于9
5、把一张长方形的纸连续对折3次,展开后每份是这张长方形纸的()
A、111
1B、C、D、236836、妈妈买回一篮苹果,小东和小花都吃光了,小东吃了其中的,小花吃了
58个,()吃的多。
A、小东
B、小花
C、一样多
D、无法比较
7、一个分数的分子不变,分母除以5,所得的分数()A、扩大到原来的5倍
B、缩小到原来的 C、大小不变
5118、两袋奶糖的质量都是2千克,第一袋吃了,第二袋吃了千克,两袋奶糖
55中剩下的奶糖()
A、第一袋多
B、第二袋多
C、这两袋一样多
D、无法比较
四、解决问题:
1、一个花坛有18平方米,种了24种花,平均每种花占地多少平方米呢?
2、四年级二班有男生24人,比女生多3人,男、女生各占全班的几分之几?
3、一块花布长5米,正好可以做成6条同样大小的童裤。(1)每条童裤用了这块布的几分之几?(2)每条童裤用布几分之几米呢?
4、有一种黄豆,每1kg中大约含有400克蛋白质、280克淀粉和200克脂肪,这三种物质各占总质量的几分之几?
5、小雨的暑假作业有60道计算题,计划20天做完,她平均每天做的计算题的数量占总数的几分之几?
6、小红的书柜里一共有260本书,其中故事书有65本,科技书35本,这个书柜里的故事书和科技书分别占总数的几分之几?
第二篇:五年级下册分数的意义和性质教案
第四单元
分数的意义和性质
单元备课 教学目标:
1、了解分数的产生,理解分数的意义,明确分数与除法之间的关系。
2、认识真分数和假分数,知道带分数是假分数的另外一种书写形式,能把假分数化成带分数或整数。
3、理解并掌握分数的基本性质,会运用分数的基本性质把不同分母的分数化成相同而大小不变的分数。
4、理解公因数与最大公因数、公倍数与最小公倍数的意义,能够找出两个数的最大公因数和最小公倍数,能比较熟练地进行通分和约分,能比较分数的大小。
教学重难点:
1、掌握分数的基本性质,会运用分数的基本性质把不同分母的分数化成相同而大小不变的分数。
2、理解公因数与最大公因数、公倍数与最小公倍数的意义,能够找出两个数的最大公因数和最小公倍数,能比较熟练地进行通分和约分,能比较分数的大小。
教法与学法:
1、教学时,充分利用教学资源,引导学生观察发现、归纳概括,以发挥形象思维和生活体验对于抽象思维的支持作用。
2、教学中,在加强直观教学的同时,还要重视在学生获得足够的感性认识的基础上,引导学生进行小组讨论交流,有实例、图示加以概括,建构知识的内涵。
3、教学中,应注重学生对学习过程的体验,让学生在比较、迁移、推理的过程中牢固掌握知识。
课时安排:17课时
第一课时
教学内容:分数的意义(教材第45-46页)
教学目标:
1、了解分数的产生,理解分数的意义。
2、理解单位“1”和分数单位的意义。教学重点:理解并掌握分数的意义。
教学难点: 理解单位“1“和分数单位的意义。教学准备:多媒体课件,正方形纸
教学过程:
一、复习导入
1、提问:
(1)把6个苹果平均分给2个小朋友,每人分的几个?(3个)
(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的 2 1)
2、以21 为例,说说分数各部分的名称。
3、揭示课题:在实际生活中,人们在测量、分物或计算时,往往不能得整数的结果,这时常用分数来表示。这节课我们就来学习“分数的产生及意义”(板书课题)
二、探究新知
1、引导学生预习新知。
让学生自学教材第45-46页的相关内容,学完后完成“自主学习”相关习题,并记录疑问。习题如下:
(1)71、92、53 各表示什么意思?
(2)填空
①小陈的妈妈买了5个苹果,每个苹果是苹果总数的()
②小青的妈妈买了一盒饼干,里面有12块,每块是这盒饼干的()
③127 的分数单位是(),它有()个这样的分数单位。
2、自我检测。
组织学生互相检查,并交流问题。
3、引导学生寻疑质疑。
教师巡视,参与学生讨论,并适当进行点拨,收集学生比较集中的问题,然后解答。
三、组织学生合作探究并展示探究结果。
1、教师出示知识点对应的练习,强调独立完成。习题如下:
(1)填空。
①把15个草莓平均分成4份,每份是这些草莓的(),其中3份是这些草莓的()。
②72里面有()个71、154里面有()个151。
(2)小佳计划7天看完《米老鼠学数学》这本书,平均每天要看全书的几分之几?5天能看全书的几分之几?
2、组内交流自己的结论。
3、教师抽查2-3个小组发言并评价。
4、教师归纳总结:把单位“1”平均分成若干份,表示这样的一份或几分的数叫分数,表示其中的一份的数叫分数单位。
四、课堂基础过关训练。
独立完成教材第47页练习十一的第3、4、5、6、7题。集体订正。
五、课堂小结。
通过本节课的学习,你有哪些收获?
板书设计:
分数的产生及意义
一个物体
一个计量单位
一个整体
→
单位“1”
一些物体
把单位“1”平均分成若干份,表示这样的一份或几分的数叫分数,表示其中的一份的数叫分数单位。
第二课时
教学内容:分数与除法(教材第49例
1、例2)
教学目标:
1、使学生理解和掌握分数与除法的关系。
2、会用分数表示两个数相除的商。教学重点:理解和掌握分数与除法的关系。教学难点:理解用分数可以表示两个数相除的商。
课前准备:多媒体课件 教学过程:
一、复习导入
同学们,7/8是什么数 它表示什么 ?(板书:7/8)
7÷8是什么运算 它又表示什么 ?(板书:7÷8)你发现7/8和7÷8之间有联系吗 ?
它们之间究竟有怎样的关系呢这节课我们就来研究“分数与除法的关系”。
板书课题:分数与除法的关系
二、探究新知
1、教学例1: 把1个蛋糕平均分给3人,每人分得多少个?(1)试一试,你有办法解决这个问题吗 ?(2)指名学生回答,师板书。
2、教学例2:
(1)把3个月饼平均分给4个人,每人分得多少个?怎么表示?
(2)指名学生回答,师板书。
3、师出示自学提示:
①例题1中,每人分得多少个蛋糕?
(根据分数的意义,把1个平均分成3份,每份是1个的1/3,就 是1/3个.)
②例2中,每人分得多少块月饼?
③讨论这两个例题中的两种解法有什么联系?
④分数与除法有什么联系?有什么相同点和不同点?
4、汇报分享:
1、小组汇报。
2、其它组帮助释疑。
3、讨论验证。
三、巩固练习
1、独立完成P51练习十二第3题,再集体订正。
2、填空。(指名口答)
7/10表示把单位“1”平均分成()份,表示这样的()份的数.1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数。
3、独立完成P51练习十二第4题,指名回答,并说一说自己的想法。
五、全课小结 同学们,今天我们学习了除法与分数的关系,当两个数相除除不尽时也可以用分数表示。由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.在整数除法中零不能作除数,那么,分数的分母也不能是零。被除数 ÷ 除数 = 除数 / 被除数
板书设计:
分数与除法的关系
例1:1÷3=0.333„„(个)=1/3(米)例2:3÷4= 3/4 被除数 ÷ 除数 = 被除数 / 除数
(分子)(分母)
a÷b=b/a(b≠0)
分数是一个数,除法是一种运算
第三课时
教学内容:分数与除法的关系的应用(教材第50页例3)
教学目标:
1、进一步理解分数与除法的关系,并能运用这一关系解决相关的实际问题。
2、渗透“事件在一定条件下可以相互转化”的辩证唯物主义思想。
教学重点: 运用分数与除法的关系解决实际问题
教学难点: 运用分数与除法的关系解决实际问题
课前准备:多媒体课件
教学过程:
一、谈话引入
同学们,我们学习了分数与除法的关系,大家知道除法与分数之间有什么关系吗?(分数的分母相当于除法中的除数,分数的分子相当于除法中的被除数,用字母表示为a÷b=a/b(b不等于0),今天我们继续学习分数的有关知识,也就是求一个数是另一个数的几分之几的问题。
二、探究新知
1、自学例3,试着去解决问题。
2、求鹅的只数是鸭的几分之几,就是求什么?把谁看成一个整体?
3、怎样表示一个数是另一个数的几分之几?
三、汇报质疑
1、说说通过自学学会了什么?
2、说说还有什么不明白的地方?
3、小组讨论:
(1)小新家养鹅7只,养鸭10只.养的鹅是鸭的几分之几?用谁作标准数,该怎样计算
(2)你能用几种方法解答?说说你的理由。
四、交流汇报
1、小组汇报。
2、其它组帮助释疑。
3、讨论验证。
4、师引导归纳:
求一个数是另一个数的几倍与求一个数是另一个数的几分之几, 都可以用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。
六、巩固练习
完成教材练习十二第6、7、10题。
七、全课小结:通过本节课的学习,你有什么收获?
八、课堂检测。(完成练习册相关练习)
板书设计:
分数与除法关系的应用
7÷10= 7/10 20÷10= 2
第四课时
教学内容:真分数和假分数(教材第 53页例
1、例2)
教学目标:
1、使学生理解真分数、假分数和带分数的意义,并能正确区分的读写真分数、假分数及带分数;
2、培养学生观察比较、抽象概括的能力。
教学重点:理解真分数、假分数的概念和特征以及带分数的概念。教学难点:对假分数实际意义的理解。
教学准备:多媒体课件
教学过程:
一、谈话导入
同学们知道了什么是分数,但是就像一个大家庭一样,总会有分家的时候,那么今天我们就来帮分数分分这个家吧?
二、探究新知
1、出示自学要求:
(1)自学例1,什么叫真分数?
(2)自学例2,什么叫假分数?什么叫带分数?
(3)分数可以怎样进行分类?分成那几类?
2、汇报质疑
(1)说说通过自学学会了什么?
(2)说说还有什么不明白的地方?
(3)小组讨论:
①什么叫真分数?它有什么特征?真分数有什么意义?
②什么叫假分数?它有什么特征?假分数有什么意义?
③真分数与假分数各有什么特征?1是真分数还是假分数呢?
④什么叫带分数?怎样读写带分数?
3、交流分享
(1)小组汇报。
(2)其它组帮助释疑。
(3)讨论验证。
4、精讲点拔
在数学上把分子比分母小的分数叫做真分数,真分数小于1。分子比分母大的或分子等于分母的分数叫做假分数,假分数大于或等于1。也就是说有一些假分数的分子恰好是分母的倍数,它们实际上是整数;而有一些假分数的分子不是分母的倍数,这样的假分数可以写成带分数。
(板书:真分数和假分数)
三、巩固练习
1、完成教材P54“做一做”的第1。
2、完成教材练习十三第10题。
四、全课小结(通过本节课的学习你有哪些收获?)
板书设计:
真分数和假分数
真分数: 分子比分母小的:
„(小于1)
假分数: 分子等于分母的:
„(等于1)
分子大于分母的:
„(大于1)
有整数和真分数合成的数叫带分数。
第五课时
教学内容:把假分数化成整数或带分数(教材第53页例3)
教学目标:
1、会把分子是分母倍数的假分数化成整数。
2、会把分子不是分母倍数的假分数化成带分数。
3培养学生观察比较、抽象概括的能力。
教学重点
假分数化成带分数、整数的方法。
教学难点: 理解分子不是分母倍数的假分数转化成带分数的算理。
课前准备: 教学过程:
一、复习引入
出示以下:
11/
4、11/
12、5/
5、7/
4、13/8说一说哪些是假分数?
上节课我们已经学了有一些假分数的分子恰好是分母的倍数,它们实际上是整数;而有一些假分数的分子不是分母的倍数,这样的假分数可以写成带分数。那么大家知道怎么把假分数转化成整数或带分数吗?(板书课题:把假分数化成带分数或整数)
二、新知探究
1、引导学生预习新知。
让学生自学教材第54页相关内容,学完后小组讨论以下问题:
(1)假分数怎样转化成整数?
(2)假分数怎样转化成带分数?
2、汇报质疑
1、引导学生总结把假分数化成整数或带分数的方法:把假分数化成整数或带分数,可以用分子除以分母,能整除的,所得的商就是整数;不能整除的,商就是带分数的整数部分,余数就是分数部分的分子,分母不变。
2、想一想:6/5=()独立练习,指名上台板演,集体订正。
1、小组汇报
2、全班交流质疑修正
3、根据学生的交流质疑情况教师归纳
(假分数的分子不是分母的倍数的,可以写成整数和真分数合成的数,通常叫做带分数.它是一部分假分数的另一种书写形式.要将假分数化成带分数,只要用分子除以分母,商是带分数的整数部分,余数就是分数部分的分子,分母不变。)
三、巩固练习
1、完成教材P54做一做第2题。
2、完成教材练习十三第1题。
四、全课小结(通过本节课的学习你有哪些收获?)板书设计:
把假分数化成带分数或整数
3/3=3÷3=1
8/4=8÷4=2
7/3 是 6/3(就是2)和 1/3合成的数,等于二又三分之一
第六课时
教学内容:
练习课(教材第55-56页练习十三第2-9题)
教学目标:
1、进一步理解分数的意义,明确分数与除法的关系。
2、进一步认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能熟练地把假分数化成带分数或整数。
教学重难点:利用分数的相关知识解决问题。
课前准备:多媒体课件
教学过程:
一、复习导入
1、把下面的假分数化成带分数或整数。(课件出示)3/5 13/8 21/2 70/35 74/7
2、明确本节课内容。
二、基础练习
1、教材第55页练习十三第2题。
指名学生回答,要求学生根据分数的意义并联系实际,做出判断,说明理由。
2、教材第55页练习十三第3题。
由学生独立完成后,指名说一说你是怎样想的?
3、教材第55页练习十三第4题。
组织学生根据题意列出除法算式,再根据分数与除法的关系写出带分数。
二、巩固练习
1、教材第55页练习十三第5题。
指导学生从左往右看,从左往右填。让学生感悟所填假分数、带分数的大小。
2、教材第56页练习十三第6题。
要求学生用假分数、带分数表示途图中的涂色部分,让学生巩固带分数是假分数另一种书写形式的认识。
3、教材第56页练习十三第7题。
引导学生回顾解决“求一个数是另一个数的几分之几”这类问题的方法,学生可以根据分数的意义直接写出答案,也可以根据题意列出除法算式,再根据分数与除法的关系写出答案。
4、教材第56页练习十三第8题。
组织学生独立写一写,再指名回答。
5、教材第56页练习十三第9题。
先让学生独立完成练习,比较大小,师巡视,观察学生们比较大小的方法。
再引导学生先把题目中的假分数化成带分数或整数,比较大小。
组织学生讨论:带分数和假分数哪个更容易看出数的大小?
三、课后小结(请同学们谈谈今天的学习体会)
四、课堂检测。(完成练习册相应练习)
第七课时
教学内容:分数的基本性质(教材第57页例1)教学目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变的规律之间的联系。
2、根据分数基本性质,学会把一个分数化成分母不同而大小相同的分数,为学习约分和通分打下基础。
教学重点: 理解分数的基本性质。
教学难点
:归纳分数的基本性质,会运用性质转化分数。
课前准备:多媒体课件
教学过程:
一、复习导入
出示:7/
6、23/
9、3/
15、6/
8、9/12 谁来说说以前上分数的分数意义、分数单位及它包含有几个这样的分数单位?同学们初分认识了分数,那么分数有什么样的基本性质呢?今天我们一起来探讨一下分数的基本性质。
二、自学设疑
1、自学57页例1并尝试完成它。
2、观察并找出它的变化规律。
3、它们的分子分母各是按照什么规律变化的?
4、什么叫做分数的基本性质?
三、探究释疑
1、通过例1的学习你知道了什么?
2、说说你看不懂的地方?
3、小组讨论:
(1)说一说例1三幅图表示的分数的意义?(2)讨论总结分数的分子分母的变化规律?
(3)小组内说说你对分数的基本性质的理解?
(4)小组讨论并举出像例1的分数等式。
4、自学57页例2并尝试完成。
(1)思考如何将2/3和10/24化成不同分母的分数而大小不变呢?
(2)思考怎样将一个分数化成分母不同而大小相同的分数呢?试着总结转化的方法?
(3)说说通过学习例2懂得了什么?
(4)你还有什么疑问?
(5)小组讨论:
(1)把2/3和10/24化成分母是12而大小不变的分数.要使分数2/3的大小不变,分子应怎样变化,要使分数10/24的大小不变,分子应怎样变化?
(2)小组归纳总结转化方法。
四、交流分享
1、小组汇报
2、全班交流质疑修正
3、引导归纳:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
五、巩固练习练习十四第1、3题
板书设计:
分数的基本性质
1/2=2/4=4/8
分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变.第八课时
教学内容:最大公因数(教材第60页例
1、例2)
教学目标:
1、理解两个数的公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法,能用不同的方法求两个数的最大公因数。教学重点:理解公因数、最大公因数的概念。
教学难点:掌握求两个数的最大公因数的方法。
课前准备:多媒体课件
教学过程:
一、复习导入
1、教师提问:什么是因数?
2、写出12和16的所有因数。
二、新知探究
1、教学公因数和最大公因数。(课件出示例1)
(1)同学们找一找8和12的因数有哪些?
学生交流指出8的因数,同时师板书(8的因数有:1、2、4、8。12的因数有:1、2、3、4、6、12)
提问:还可以用什么方法表示?(学生讨论,师结合学生回答出示集合图)
指出:1、2、4是8和2公有的因数,叫它们的公因数。其中,4是最大的公因数,叫它们的最大公因数。适时引出课题:最大公因数(板书)
(2)练一练(独立完成后,集体订正)
①教材第61页“做一做”第1题。
②教材第61页“做一做”第2题
3、教学求两个数的最大公因数的方法。
(1)怎样求18和27的最大公因数?
(2)学生独立思考,用自己的方法试着找出18和27的最大公因数。
(3)小组讨论,互相启发。
(4)指名汇报。
4、引导学生看教材第61页的“你知道吗”,指导学生自学分解质因数的短除法的方法,求两个数的最大公因数。
(1)分解质因数的方法。
(2)短除法
指出:求两个所有的公有质因数的积,就是这两个数的最大公因数。
4、练一练(教材第61页的“做一做”第3题)
学生独立完成,独立观察,每组数有什么特点,再进行交流。
小结:求两个数的最大公因数有哪些特殊情况?
(1)当两个数成倍数关系时,较小的就是它们的最大公因数。
(2)当两个数只有公因数1时,它们的最大公因数就是1。
三、巩固练习(教材练习十五第2、3题)
四、课堂小结。(通过本节课学习你有什么收获?)
五、课堂检测(完成课堂练习册相关练习)
板书设计:
最大公因数
两个数公有的因数叫它们的公因数;其中最大的公因数,叫它们的最大公因数。
第九课时
教学内容:公因数和最大公因数的应用(教材第62页例3)
教学目标:
通过解决实际问题,初步感受两个数的公因数和最大公因数在现实生活中的应用。
教学重难点: 掌握公因数和最大公因数在现实生活的应用。
课前准备:投影仪
教学过程:
一、情景引入
小文家的贮藏室是长方形,这几天正忙着装修,他把李师傅请到家里,帮助他装修,他会整么装修呢?小文的爸爸要求选用正方形的地砖,选用几分米的才能不用锯分又能整齐地铺满呢?自学60页后再告诉老师吧?
二、自学设疑
1、装修的要求是什么?
2、可以用纸片摆一摆,用笔在纸片上画一画。
3、可以选择边长是几分米的地砖?边长最大是几分米?
三、探究释疑
1、说说通过学习例3懂得了什么?
2、你还有什么疑问?
3、小组讨论:
(1)选用边长几分米的刚好铺好?如果用1分米的地砖,沿着贮藏室的长边要铺几块?宽边要铺几块?2分米和4分米呢?
(2)正方形的边长1、2、4和长方形的长和宽有什么关系?
(3)什么是公因数?什么是最大公因数?
(4)怎么找16和12的公因数?怎么找最大公因数?
(5)归纳总结找公因数的方法。
四、交流分享
1、小组汇报
2、全班交流质疑修正
3、学生总结归纳
五、巩固练习(教材练习十五第5、6题)
六、全课小结(你有什么收获?)
七、课堂检测(课堂练习上的相关练习)板书设计:
最大公因数
16和12的公因数:1、2、4 16和12 的最大公因数:4
第十课时
教学内容:约分(教材第60页例4)教学目标:使学生理解最简分数和约分的意义,掌握约分的方法。
教学重点:归纳、概括出最简分数的概念及约分的方法。
教学难点:能正确地对分数进行约分,课前准备:多媒体课件
教学过程:
一、复习引入
求下面每组数的最大公因数。
(1)24和32(2)40和85(3)70和90
二、自学设疑
1、自学例4相关内容。
2、什么是最简分数?
3、思考怎样化简分数?
4、什么叫约分?怎样进行约分?
三、探究释疑
1、说说通过学习例4懂得了什么?
2、你还有什么疑问?
3、小组讨论:
(1)4/5的分子和分母有什么关系?你还能举出最简分数的例子吗?
(2)怎样把24/30化成最简分数?
(3)什么叫约分?(像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。)
(4)约分还可以怎样写呢?
(5)总结约分的方法。
四、交流分享
1、小组汇报
2、交流论证
3、归纳总结出约分的方法。
五、精讲点拨
1、分子分母只有公因数1的分数叫最简分数。
2、把一个分数化成和它相等,但分子和分母都比较小的分数叫做约分。
六、巩固练习
1、完成教材第65页的“做一做”第1题。
2、完成教材第65页的“做一做”第2题。
可以把不是最简分数的通分约分化成最简分数,然后比较找出相等的分数连起来。
七、全课小结(你有什么收获?)
八、课堂检测(课堂练习上的相关练习)
板书设计:
约分
把一个分数化成和它相等,但分子和分母都比较小的分数,叫约分。
分子与分母只有公因数1,这样的分数叫最简分数。
第十一课时
教学内容:约分练习课(教材第66-67页练习十六)
教学目标:
1、通过教学,巩固学生对最简分数和约分的概念的理解,能熟练应用约分的方法正确地约分。
2、培养学生灵活运用约分和最大公因数的知识解决问题的能力和计算能力。
教学重点: 正确、熟练地进行约分。
教学难点: 运用约分和最大公因数解决实际问题
课前准备: 多媒体课件
教学过程:
一、问题导入
教师提问:什么叫最简分数?什么叫约分?怎样约分? 组织学生在小组内交流,互相说一说,然后在班上汇报。
二、练习指导
1、教材第66页练习十六第1题
学生口头回答,回答蓝色部分和红色部分哪个多些?为什么? 体温:这两个图的分数还可以化简为几分之几?
2、教材第66页练习十六第2题
学生独立思考后,同桌互相交流,教师指名订正。
3、教材第66页练习十六第3题
学生直接填在教材上,集体订正 师提问:你是根据什么来填写的?
4、教材第66页练习十六第4题
让学生根据最简分数的概念,判断哪些已经约成了最简分数,哪些没有约成了最简分数。然后把不是最简分数的继续约成最简分数。
5、教材第66页练习十六第6题
让学生先约分,写在教材上,在连线。
6、教材第66页练习十六第7题
学生独立思考,再班上进行交流,得出结论:先把这几个分数约成最简分数,再比较哪些分数相等,可以用同一个点表示,然后直线上表示出来。
三、巩固练习
1、教材第66页练习十六第5、8题
组织学生读题,审题,理解题意,然后指名两位学生上台表演,其他学生独立完成,最后集体订正。
2、教材第67页练习十六第66页第9题
引导学生根据插图中的两个时钟,求出睡眠时间,再和全天24小时比较,写成分数并约分。
四、全课小结(你有什么收获?)
五、课堂检测(课堂练习上的相关练习)
六、课外作业(教材第66页练习十六第10、11、12、13、14题)
板书设计:
约分及巩固练习
约分时通常要配合数的整除特征进行,一般要约到最简分数为止.第十二课时
教学内容:最小公倍数(教材第68-69页例
1、例2)
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、掌握求两个数的公倍数和最小公倍数的方法,教学重点: 理解两个数的公倍数和最小公倍数的意义,掌握求两个数的公倍数和最小公倍数的方法,教学难点:
掌握求最小公倍数的方法,课前准备: 教学过程:
一、复习导入
1、提问:什么叫倍数?
2、从0、2、5、9这四个数中,选出三个组成三位数。
(1)组成的数是2的倍数有:()
(2)组成的数是5的倍数的有:()
二、探究新知
1、教学例1
(1)课件出示例1:4和6公有的倍数是哪几个?公有的最小倍数是多少?
(2)学生独立完成,再互相交流。
(3)指名学生回答自己的方法。师根据学生的回答板书方法。(4)自学课本第68页内容并完成以下问题:
①什么叫公倍数?什么又叫最小公倍数?
②两个数有没有最大的公倍数?(5)学生汇报得出结论:12、24、36„是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。
2、教学例2
(1)课件出示例2:怎样求6和8的公倍数及最小公倍数?
(2)学生独立思考,用自己的方法试着找出6和8的公倍数及最小公倍数。
(3)小组讨论互相启发,再全班交流。
(4)观察一下,两个数的公倍数和它们的最小公倍数之间有什么关系?
(5)明确:两个数的公倍数都是最小公倍数的倍数。(板书)
三、巩固练习
1、教材第68页的“做一做”
独立完成,再进行交流订正。
2、教材第69页的“做一做”
独立完成,观察每组数有什么特点,再进行交流。
引导学生总结出求两个数的最小公倍数的两种特殊情况:
(1)当两数成倍数关系时,较大的数就是它们的最小公倍数。
(2)当两数只有公因数1时,这两个数的积就是它们的最小公倍数。
四、课堂小结(通过这节课的学习,你有什么收获?)
板书设计:
最小公倍数
两个数公有的倍数叫公倍数。
两个数公有的倍数中最小的那个数叫最小公倍数。
两个数的公倍数都是最小公倍数的倍数。
第十三课时
教学内容:公倍数和最小公倍数的应用(教材第70页例3)
教学目标:
初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
教学重点:会运用公倍数和最小公倍数的知识解决实际问题。
教学难点: 会运用公倍数和最小公倍数的知识解决实际问题。
课前准备:多媒体课件
教学过程:
一、情境导入
同学们还记得前面我们学习的给贮藏室铺地砖的例子吗?已知贮藏室的长和宽,要求用边长为整数的长方形地砖把贮藏室的地面铺满,求选用地砖的边长,也就是求什么?(学生回答)
对,也就是求长和宽的公因数。现在我们反过来,如果已知一种墙砖长3分米,宽2分米,要用这种墙砖铺一个正方形(用的墙砖必须都是整块),那么正方形的边长可以是多少分米?最小是多少分米?同学们想一想:这两个问题的区别在哪?(学生讨论交流)
二、探究新知
1、教学例3 教师出示例3情境图
(1)师:如果用这种墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?
学生小组内讨论解决方法,分小组汇报。
(2)根据学生的汇报,用课件呈现边长为6分米、12分米„的正方形。
师:正方形的边长还有可能是几?你是怎么知道的?
2、组织学生再小组内说一说。
铺成的正方形的边长必须既是3的倍数,又是2的倍数。只要找出2和3的公倍数和最小公倍数,就知道所铺正方体的边长了。
3、找出既是3的倍数又是2的倍数的数呢?
组织学生在小组中合作完成,然后汇报。
师根据学生回答板书:2和3的公倍数:3、6、9、12、15、18„得出正方形的边长最小可以是6厘米。
4、回顾与反思
5、在边长6厘米的正方形上画一画,看答案对不对。
归纳总结:解决这个问题的关键是吧铺砖问题转化成求公倍数的问题。
三、巩固练习
1、教材第71页练习十七第6题。
使学生明确这是最小公倍数的应用题,让学生独立思考,做出解答。然后让学生说一说问什么是求两个数的最小公倍数。
2、教材第71页练习十七第7题。
学生独立完成后集体订正。
四、全课小结(通过这节课的学习,你有什么收获?)
板书设计:
公倍数和最小公倍数的应用
2和3的公倍数:3、6、9、12、15、18„
正方形的边长最小可以是6厘米。
第十四课时
教学内容:通分(教材第73-74页例
4、例5)
教学目标:
1、在复习同分母分数大小比较的基础上,进一步解决同分子分数的大小比较问题。
2、通过教学,使学生理解通分的意义,掌握通分的方法,并能比较分子和分母都不相同的分数的大小。
教学重点: 掌握通分的方法,掌握比较两个分数大小的方法。
教学难点:会运用分数大小比较的知识解决实际问题。课前准备:多媒体课件
教学过程:
一、激趣导入
同学们,你们知道地球上是陆地多还是海洋多吗?陆地占地球的多少呢?海洋又占多少呢?请把书翻到73页去学习一下吧!
二、自学设疑
1、自学例3,试完成:以地球为单位1,陆地面积占地球总面积的(),海洋面积约占地球面积的()。
2、归纳两组分数中的两个分数有什么共同的地方?
3、比较这两个分数的大小,分母相同的两个分数怎样比较大小?分子相同的两个分数怎
么比较?
三、探究释疑
1、说说通过学习例2懂得了什么?
2、你还有什么疑问?
3、小组讨论:
(1)同分母分数大小比较方法。
(2)同分子分数大小比较方法。
四、交流分享
1、小组汇报
2、交流论证
3、归纳总结出同分母异分母分数大小比较的方法。
五、二次探究通分的方法。
自学并讨论:
1、自学例5,并试解决并找出比较出黄豆和蚕豆哪个蛋白质含量比较高?
2、分子分母都不相同怎么比较?
3、什么叫通分?怎么通分?
4、归纳总结:
像例5一样将异分母分数分别化成和原来分数相等的同分母分数叫做通分,比较异分母分数大小时可以利用通分的方法将异分母分数转化成和原来相等的同分母分数比较分数的大小。
六、巩固练习
1、教材第73页“做一做”。
学生独立完成,指名汇报,集体订正。
2、教材第74页“做一做”。
学生独立完成,交流方法。
七、全课小结(通过这节课的学习,你有什么收获?)
板书设计:
通分
分母相同的分数,分子大的分数比较大。
分子相同的分数,分母小的分数比较大。
把异分母分数转化成和原来分数相等的同分母分数,叫通分。
第十五课时
教学内容:分数和小数的互化(教材第77页例
1、例2)
教学目标:
1、理解和掌握分数和小数互化的方法,能熟练、正确地进行分数和小数的互化。
2、培养综合应用所学数学知识解决问题的能力。
教学重点: 理解和掌握分数和小数互化的方法
教学难点: 理解和掌握分数和小数互化的方法 课前准备:多媒体课件
教学过程:
一、创设情境、引入新课:
两位同学进行登山比赛,从山脚到山顶甲用了5 6 时,乙用了0.8时,那位同学爬得更快。
在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。这节课我们就来学习分数和小数的互化。
二、探究新知
1.出示例题1。
(1)想一想:用分数和小数分别该怎样表示?
(小数表示为3÷10=0.3(m)、3÷5=0.6(m);用分数表示为3÷10=310(m)、3÷5=35(m))
(2)表示的结果是不是一样的,为什么?
明确:分数和小数之间是可以互化的。
2.怎样能较快地把小数化成分数呢?
(1)思考:0.1、0.01、0.001„„分别表示什么意义?
(2)把0.3和0.6化成分数可以怎样写?
(3)尝试转化0.07、0.24、0.123。
(4)把小数化为分数时需要注意什么?(明确:能约分的要约分,化成最简分数。)
3.怎样将分数化为小数?(出示例2)
(1)思考:该如何进行排列?
(a可以把所有的小数化成分数,通分后再进行比较; b把所有的分数化成小数来比较。)
(2)观察化简前的分数,分母和小数有什么关系,有规律吗?
(原来有几位小数,就在1后面写几个0作分母。)
(3)请再观察分子和小数有什么关系?(原来的小数去掉小数点作分子。)
(4)学生独立转化 910、43 100 为小数分别是多少?(预设:学生会发现分母是10、100、1000„„的分数可以直接写成小数。)
(5)学生尝试转化725、11 45 为小数,说说分别运用了什么知识?
三、巩固练习
1、教材第77页“做一做”。
学生独立完成,指名汇报,集体订正。
2、教材第78页“做一做”。学生独立完成,交流方法。
四、全课小结(通过这节课的学习,你有什么收获?)
五、课堂检测(完成练习册相关练习)板书设计:
小数和分数的互化
小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分.分数化小数用分子除分母,除不尽时按要求保留几位小数。
第十六课时
教学内容:分数和小数的互化练习课(教材第78-79页练习十九)
教学目标:
1、使学生巩固对分数和小数互化方法的理解和掌握,并学会判断某个分数能不能化成有限小数。
2、培养学生的计算能力和观察能力。
教学重点:能够熟练地进行分数与小数的互化。
教学难点:会运用分数与小数的互化解决实际问题。
课前准备:投影仪
教学过程:
一、问题导入
上节课,我们学习了分数和小数的互化,请你回忆一下,小数怎样化成分数?分数怎样化成小数?
学生回忆并回答互化方法。
二、练习指导
1、完成教材第78页练习十九的第1题。
学生观察图,结合分数和小数的意义思考并独立完成。完成后,分别请学生说一说每个图中分数和小数的意义。
2、完成教材第78页练习十九的第2题。
学生独立完成,集体订正。
3、完成教材第78页练习十九的第4题。
学生独立完成,提醒学生注意审题,使学生明白求一个数是另一个数的几倍、求一个数是另一个数的几分之几都是用除法计算,然后用分数表示所得结果,能约分的要约成最简分数。
4、完成教材第78页练习十九的第5题。
学生独立完成,提醒学生注意审题,除不尽的要保留两位小数。
提问:你知道如何判断一个分数能不能化成有限小数吗?请你自学教材第79 页的“你知道吗”。(学生自学,看教材质疑。)
小结:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
请你应用这个规律,判断一下教材第99页练习十九的第5题中的各数,看看与我们刚才计算的情况相同吗?
5、完成教材第78页练习十九的第6题。
让学生在直线上面的框里填上适当的小数,在直线下面的框里填上适当的分数。投影仪展示结果,集体订正。
6、完成教材第79页练习十九的第7题
引导学生审题,弄清题意,完成第1 行的两个空,说一说思考方法。然后放手让学生独立完成表中其它各空。
7、完成教材第79页练习十九的第8题。引导学生先审题,再独立完成,交流方法。
三、巩固练习
1、完成教材第79页练习十九的第9题.引导学生审题,再独立完成,交流方法。
(1)统一成小数比较:6/5 ≈0.83 因为0.83 <0.9,所以 5/6<0.9
(2)统一成分数比较:0.9 =
9/10,9/10 = 27/30,27/30 ﹥25/30,所以 0.9﹥5/6
2、完成教材第79 页练习十九的第10题.学生先独立完成,再集体交流方法。
(1)统一成以小时为单位的数,再比较。
(2)统一成以分为单位的数,再比较。
提醒学生注意:速度相同,谁用的时间长,谁家离学校的路程就远成小数有什么规律?
四、课堂小结
本节课我们复习了分数和小数的互化。通过复习,我们能够更加熟练、正确地进行分数和小数的互化,并能应用分数和小数互化的知识解决一些问题。同时,我们还研究了判断一个最简分数能否化成有限小数的方法。
五、课堂检测(完成练习册相关练习)
第十七课时
教学内容:整理与复习(教材第80页,教材第81-82页练习二十)
教学目标:
1、通过整理与复习,帮助学生梳理本单元的知识要点及知识间的联系。
2、培养学生归纳、整理知识的能力,掌握整理和复习知识的方法。
教学重点:归纳、整理本单元的知识点。
教学难点:能够运用知识解决实际问题。
教学准备:课件
教学过程:
一、谈话导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
二、归纳提高
1、引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。老师随着学生的汇报,进行板书。
2、应用知识练习。
(1)完成教材第80页的第1 题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
(2)完成教材第80页的第2 题。
学生独立完成,然后说一说用到了本单元学习的哪些知识?
三、巩固练习
1、完成教材第81页练习二十的第1-4题。
学生独立完成填空,再集体订正。
2、完成教材第81页练习二十的第5、8题。
组织学生读题,弄清题意,理解问题的实质是求什么,这两个题有什么区别。
3、完成教材第81页练习二十的第6题。
学生独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
4、完成教材第81页练习二十的第7、9题。
学生独立完成,师巡视个别指导,然后指名汇报。
5、完成教材第81页练习二十的第10、11题。
四、课堂小结
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
五、课堂检测(完成练习册相关练习)
第三篇:青岛版五年级下册数学分数的意义和基本性质练习题
分数的意义和基本性质练习题2015.4 班级_________姓名__________等级_________
一、填空: ⒈ 表示把()平均分成()份,表示这样的()份。8它的分数单位是(),有()个这样的分数单位,减去()个这样的分数单位它是最小的自然数。加上()这样的分数单位它是最小的质数。
⒉ 把4米长的电线平均分成4份,表示这样的一份就是这根电线的()。表示这样的3份就是这根电线的()。其中2份长()米。
5⒊ 一个苹果重千克。它表示的意思是()
81818()()()36==45=⒋=
303020()20()541072⒌ 在,,中,与相等的分数是()。
69151236.写出分子是2的假分数。()
⒎ 以最小的合数为分母的最小分数是()。⒏ 以13做分子的最大真分数是(),最小假分数是()。⒐ 用分数表示涂色部分。
()()
()()
()()
()()⒑ 在○里填上“>”、“<”或“=”。5877656○
○
2○
○ 1111893653()米表示1米的,又表示把3米平均分成()份,取其中4()的()。
2()⒓ 1千克的和2千克的相等。
5()()⒔ 把2吨平均分成8份,每份是总数的,是()吨。
()114.一个数由6个一,9个组成,这个数写成分数是()。
二、选择(将正确答案的序号填在括号里)。
aa⒈ 要使是假分数,是真分数,a应是()。
① 10
②
③3⒉ 的分子加上6,要使分数的大小不变,分母应()。① 加上6
② 乘以6
③
乘以3 ⒊ 把3米长的绳子对折3次,每段绳子是全长的()。
311①
②
③
8864.小红6分钟写了54个毛笔字,平均每分钟写毛笔字总数的(),5分钟写毛笔总数的()。
1156
①
②
③
④
65654183和这两个分数比较()5.。24
4① 意义相同
② 分数单位相同
③ 大小相同
16.下列分数比小的是()。
25811①
②
③
131521⒒
三、判断,(正确的在括号里画“√”,错误的画“×”)
14⒈ 4米的和1米的一样长。
()
55⒉ 分母是7的假分数有无数个,分子是7的假分数也有无数()
55⒊ 3的分数单位是。
()
88⒋ 真分数的分子一定比分母小。
()39,所以这两个分数的分数单位也相同。
()515⒍ 一个分数如果分子不变,分母增加1,则这个分数变小。()
1441⒎ 变成,因为分子和分母都同时乘以4,所以是的4倍。()
312123⒏ 分数的分子和分母同时乘以相同的数,分数的大小不变。()
2⒐ 一节课的时间是小时。表示把一节课平均分成3份,占其中的2份。
31⒑ 12分=时
()
5四、画一画,比一比,想一想。
13⒈ 画3厘米的,和1厘米的。
5⒉小红有8块糖,小明的糖是小红的。(小红的糖用“○”表示,小明的糖
4用 “□”。)
○ ○ ○ ○ ○ ○ ○ ○
五、解决问题。
⒈ 小丽有9个苹果,小花有15个苹果,小花的苹果是小丽的几倍?小丽的苹果是小花的几分之几?
⒉ 据德州市气象台统计,2012年2月份,德城区阴天有6天,雪天有3天,阴天和雪天各占这个月天数的几分之几?
⒊ 医院药剂师将11千克盐,放入89千克纯净水中,做成生理盐水。盐的质量是水的几分之几?盐的质量是生理盐水的几分之几?
⒋ 学校食堂买来一袋重50千克的面粉,一星期吃完,平均每天吃多少千克面粉?3天吃了这袋面粉的几分之几?
⒌ 王大夫1月份工作了23天,他这个月工作的天数占这个月总天数的几分之几?休息的天数占这个月总天数的几分之几?
5⒍ 一个分数,分子比分母小16,它与相等。这个分数是多少?
7⒎ 王奶奶家住在5楼,她每次从一楼走到家中大概需要3分钟。王奶奶平均走一层楼用的时间是她从一楼到家中时间的几分之几?王奶奶平均走一层楼用多少分钟? ⒌ 因为
第四篇:分数的意义和性质练习一
班级:五(4)姓名:黄铭昊学号:36自我评价:
分数的意义和性质综合练习
一、认真填一填(审清楚题目)
1、4
7表示把()平均分成()份,表示这样的()份,它
的分数单位是(),添上()个这样的分数单位就是1。
2、2的分数单位是(),它有()个这样的分数单位,减去()个52
这样的分数单位后就是最小的质数。
3、五(7)班有女生25人,男生18人,男生人数是女生人数的(),女生
人数是男生人数的()。
4、把3米长的绳子平均分成6段,每段是全长的(),每段长()米。
5、分数(a0),当()时,它是真分数;当()时,它是假ab
分数;当()它可以化成整数;当()时,它是最简分数。真分数()1,假分数()1,带分数()1,假分数()真分数。(填上“<”,“>”,“≤”,“≥”)
6、分母是8的真分数有(),其中最简真分数有
(),这些最简真分数的和是();分子是8的假分数有()。
7、()÷()=
8、比较大小
71216==()(填小数) ○ 211215 ○71522○ 21216 ○ 9129、填上适当的分数(注意能约分要约分)
10、230克=()千克5角=()元3厘米=()米
42cm²=()dm²37ml=()L200dm³=()m³ 18分=()时80米=()千米125cm³=()dm³
11、把小数化成分数,分数化成小数
0.8 =0.875 =1.75 =0.28 =0.05 =
9=150 =750 =11
25=64 =
0.12 =1.4 =0.35 =0.24 =0.2 =
班级:五(4)姓名:黄铭昊学号:36自我评价:
二、判断题
1、小于67而大于47的分数只有一个分数。()7
632、把单位“1”分成6份,表示这样的5份可以用表示。()
3、分数的分母越大,它的分数单位就越小。()
4、最简分数的分子和分母的最大公因数一定是1.()
5、最简分数一定是真分数。()
三、选择题
1、把4米长的绳子平均剪成5段,每段占全长的()。A 1
5B 45C 54D15 米
2、约分和通分的依据是()
A 分数和除法的关系B 分数的基本性质C 分数的意义和分数单位
3、通分的作用在于使()
A 统一分母,规格相同,不容易写错
B 统一分母,分数单位相同,便于比较和计算
C 分子和分母有公因数,便于约分
四、约分。(根据是)
12=3651 =2075=56100 =
五、通分。(根据是,第一步先找几个分母的,再将异分母化成分母相同但大小不变的分数。)
六、小红把一块蛋糕平均切成3块,吃了其中一块,小亮把一块同样的蛋糕平均
切成12块,吃了其中的3块,他们两人谁剩下的蛋糕大? 715 和 320316 和112215 和320
第五篇:五年级数学下册 分数的意义和性质(第三课时)教案 青岛版
分数的意义和性质(第三课时)
一、创设情境,提出问题。
谈话:在寒假中,小红和小明自己动手制作了些日常用品,请看大屏幕。出示课本14页的情境图,根据上面的信息你能提出什么数学问题? 学生提出问题,教师板书: ①平均每个衣架用多少米木条? ②平均每个书签用多少米塑料板?
谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。
[设计意图]从生活情境入手导入新课,激发学生学习数学的兴趣,感受数学来自生活,生活中处处有数学。
二、合作探究,获取新知
1、解决问题一:
谈话:平均每个衣架用多少米木条?怎么求? 学生列出算式:1÷3=
谈话:怎么想的?
引导学生说出要求平均每个衣架用多少米木条,就是把1米平均分成三份,每份是多少?所以列式为1÷3。
谈话:1 ÷3得多少?
学生可能用循环小数表示或保留两位小数。还有可能说得三分之一。
谈话:可以,不过保留两位小数不够准确,算式的结果一般不用循环小数表示。用1/3表示,是怎样想的?谁能说一说。下面我们用手中的纸条表示1米来研究一下。
学生操作后交流。
谈话:两数相除,除不尽时,商可以用分数表示,1÷3就等于1/3。
[设计意图]这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。
2、解决问题二:平均每个书签用多少米塑料板? 列出算式:2÷9= 学生可能得出2/9,谈话:谁能说说你是怎么想的? 生借助手中的纸条来研究。
实验后请几名学生交流各种分法,教师总结几种不同的分法。
谈话:把2米平均分成9份,每份占2米的1/9,每份是2/9米。所以2÷9=2/9。随机练习:1÷4= 2÷5= 8÷6= 学生可能用小数表示,师点拨也可用分数表示。
[设计意图]这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。
3、认识分数与除法的关系。观察刚才所得结果: 1÷3=1/3 2÷9=2/9 谈话:同学们想一想:
① 两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示? ② 用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
教师板书课题:分数与除法的关系。学生分组讨论,讨论完毕后,指几名同学代表自己的小组总结,学生口述的过程中,教师板书: 被除数÷除数= 被除数/除数
谈话:如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b 2
谈话:大家考虑:这里的a和b是否可以是任何自然数?为什么? 左侧b≠0,那么右侧的b是否可以是0?为什么? 讨论完后,教师用红色粉笔标上: b≠0
4、总结提升,归纳关系。
⑴、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
⑵、判断:“分数就是除法,除法就是分数”这句话对不对?
[设计意图]这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。
三、巩固应用
1、课本17页自主练习1:在括号里填上合适的数。学生试做,最后一组教师适当加以点拨。
2、自主练习2,这是一道实践题,可让学生自主完成,同位交流。
四、课堂小结
引导学生回顾全课,说说学会了什么,自我总结,教师作补充。
[设计意图]新课标倡导“让学生去经历”,强调学生活动对学习数学的重要性,认为学生的实践、探索与思考是学生理解数学的重要条件。学生在活动探索中不断发现,在交流中不断碰撞,在思考中相互接纳。这样学生不仅能体验到进步的快乐、成功的喜悦,有时也会受到一定的挫折教育。
1、通过实际操作感悟新知识。
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中 3
我准备了4张纸条,让学生思考把2米平均分成9份可以有几种分法,引导学生动手操作,得出两种不同的分法,引申出的两种含义,通过这一过程,学生充分理解了2÷9=的算理。
2、在问题不断地解决与生成中探索新知识
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分纸条,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。