药用植物内生放线菌的分离和生物学特性

时间:2019-05-14 21:24:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《药用植物内生放线菌的分离和生物学特性》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《药用植物内生放线菌的分离和生物学特性》。

第一篇:药用植物内生放线菌的分离和生物学特性

药用植物内生放线菌的分离和生物学特性

摘要:【目的】探索药用植物内生环境可培养放线菌的分离、培养方法,总结药用植物内生放线菌的生物学特

性,探讨其物种多样性,挖掘新的微生物资源。【方法】采用 10 种分离培养基对 37 个新鲜的药用植物样品

进行内生放线菌的分离;通过比较,选择适合植物内生放线菌生长的培养条件;根据菌落形态和细胞特征观 察结果,选择其中 174 株菌测定 16S rRNA 基因序列,分析药用植物内生放线菌的多样性;应用 Biolog GEN III 微孔培养、API 50CH 以及 API ZYM 试剂条测试 27 株代表菌株的生理生 化特性。【结 果】分 离 得到 940 株植物内生菌,分属于 47 个属,30 个科,其中放线菌 600 余株,分属于 34 个属,共发现潜在的新分类单元有 个;本研究中药用植物内生放线菌的培养条件是:PYG 培养基、pH7.2、28℃ - 32℃;菌株间的生物学特性的

差异与菌株系统进化关系呈正相关关系;不同环境植物的内生菌菌株的生物学特性差异较大,相同环境的不

同植物内生菌的生物学特性差异较小。【结论】药用植物内生放线菌物种丰富多样;药用植物内生放线菌在 唯一碳源利用、发酵碳源产酸及酶学活性等生理生化特性方面没有表现出和宿主植物的直接相关性,而是呈

现出和宿主植物的地理分布有一定的相关性。

关键词:药用植物,内生放线菌,生物学特性,多样性

中图分类号:Q939 文献标识码:A 文章编号:0001-6209(2013)01-0015-09 药用植物有着独特的药理活性,特别是在治疗

一些疑难病症上有着不可替代的作用。如茵陈主治

黄疸型肝炎、肝硬化、肝腹水等肝病;狼毒主治结核、气喘等,还具有抗肿瘤的作用。药用植物的有效成

分的提取和研究一直是国内的热门课题。1993 年,美国蒙大拿州立大学的 Stierle 研究小组首次从短叶

紫杉(Taxus breviforlia)中分离得到一株能合成抗癌

物 质 紫 杉 醇 的 内 生 真 菌 新 种 安 德 氏 紫 杉 霉 菌(Taxomyces andreanae)[1],并证明内生菌具有合成

与宿主植物相同或相似的活性成分的功能。由此掀

起了对药用植物内生菌研究的热潮。《微生物学通

报》编辑部的郝荣乔于 2009 年初对 2008 年的年度 点评中报道“植物内生菌成为我国当前微生物研究

领域的热点” [2]

。的确,药用植物内生菌的研究和 有效开发对药用植物资源、特别是濒危植物资源的

保护具有重要的意义。

本研究选取采集自北京、贵州、云南和西藏等地 的药用植物样品 37 份,经过表面消毒处理后,应用

放线菌分离培养技术从中分离放线菌菌株;根据菌

株的 16S rRNA 基因序列信息以及系统进化关系,探讨药用植物内生放线菌的物种多样性;通过生理

生化实验测定,揭示药用植物内生放线菌的生物学 杜慧竟等: 药用植物内生放线菌的分离和生物学特性. /微生物学报(2013)53(1)ordination analysis,NTSYSpc v. 2.02)进行分析,构

建表型数值分类聚类图,分析实验菌株的生物学特 性。2 结果

2.1 菌种分离结果

从 37 份药用植物中共分离、纯化得到 940 株纯

培养物(表 1)。从云南、贵州和西藏来源的植物样

品中分离得到的放线菌的比例稍高于北京的植物样

品;来源于植物根、茎、叶的菌株数量基本相当,没有

明显差异;和其它 9 种分离培养基相比较,丙酸钠分

离培养基(M7)分离得到的放线菌数量占显著优势。

表 1 药用植物内生菌分离结果统计

Table 1 The strains isolated from the medicinal plants Plant number Number of isolates Plant number Number of isolates Plant number Number of isolates Plant number Number of isolates P1 34 P11 6 P20 10 P29 64 P2 40 P12 18 P21 15 P30 2 P3 46 P13 10 P22 4 P31 8 P4 43 P14 1 P23 3 P32 44 P5 17 P15 8 P24 77 P33 45 P6 44 P16 15 P25 12 P34 31 P7 8 P17 14 P26 73 P35 34 P8 4 P18 1 P27 98 P36 12 P9 6 P19 12 P28 59 P37 3 P10 19

通过菌落形态以及菌株细胞显微形态的初步观

察结果以及菌株来源,选择 174 株代表菌株进行

16S rRNA 基 因 序 列 测 定 和 比 对,结 果 显 示,174 株

分离菌株隶属于 30 个科、47 个属,其中的放线菌 139 株,分属于 34 个属(图 1)。以菌株的16S rRNA

基因序列与 NCBI 数据库中有效描述菌种相似性 <

98.2% 作 为 操 作 分 类 单 元(taxanomic operational

units,OTU)的划分 界 限 [12 - 13],其中有 22 株菌代表

了 7 个新的操作分类单元。

2.2 药用植物内生菌的生物学特性

为了比较研究药用植物内生放线菌的生物学特

性,选择了 27 株分离菌株进行了生长温度、pH 值、唯一碳源利用、利用碳源产酸以及酶学特性测试,其

中包含了 2 株药用植物内生细菌。来源于韩国菌种

保藏中心的 3 个典型培养物 KCTC 19272 T、KCTC 19469 T

和 KCTC 19037 T

(分离自不同土壤环境)同时 做了平行对照实验(表 2)。起初,分离菌株在对应的原始分离培养基和继

代培养基 PYG 上生长良好,但是随着传代次数的增

加,部分内生菌生长变弱,甚至无法继续传代,而 3 株来源于土壤样品的对照菌的生长状态则几乎不受

传代次数的影响。内生菌菌株的温度生长范围是

10℃ - 37℃,在 28℃ - 32℃ 生长 较 好;多 数 菌 株 在

pH 6.0 - 10 范围 内 都 能 生长,在 pH 中 性 至 弱 碱 性 条件下生长最佳。

本实验中 27 株植物内生菌对碳源的利用呈现

以下趋势:菌株对二糖和多糖类的利用率最高,接下

来依次是单糖,脂类,氨基酸及衍生物。27 株植物

内生菌中,50% 以上的菌株都能利用以下底物作为

唯一碳源和能量来源:亚碲酸钾,丁酸钠,甘露醇,纤

维二糖,葡萄糖,麦芽糖,松二糖,甘油,果糖,海藻

糖,蔗糖,水 杨 苷,甘 露 糖 和 醋 酸。在 菌 株 I10A-01402 的分类学研究 时,用 来 源于 土壤 环境 的近源

菌 N. koreensis 19272 T,N. ginsengisegetis KCTC 19469 T,N. alkalitolerans KCTC 19037 T 作为参比进行

了 Biolog Gen Ⅲ 唯 一 碳 源,API 50CH 产 酸 和 API ZYM 酶学特性测定和比较分析。植物内 生 菌 I10A-

01402 以及其 它 26 株 内 生 菌 都 能 够利用 Biolog 微

孔板中葡聚糖和 D-麦芽糖,但是,来源于土壤环境 的 N. koreensis 19272 T,N. ginsengisegetis KCTC 19469 T

和 N. alkalitolerans KCTC 19037 T

等 3 株类诺

卡氏菌属的菌株都不能利用这两种糖;I10A-01402

不能利用 N-乙酰类化合物,其它 26 株内生菌也都

不能或很少利用此类化合物,而这 3 株土壤来源的

菌株则全部能利用 N-乙酰类化合物作为唯一碳源

和能量来源。27 株药用植物内生菌和 3 株土壤来

源的参比菌株同化 API 50 CH 中的碳源并产酸的情

况以及酶学特性上也表现出较大的差异。本实验中 株药用植物内生细菌和 28 株 放线菌 相 比较,细菌

能够更多地利用 Biolog GenⅢ中列举的唯一碳源,并且同化 API 50 CH 中单个碳源并产酸实验的阳性 率也高一些,但在 API ZYM 酶学特性测试结果中没 有明显差异。

16S rRNA 基因 序 列 相 似 性 越 高 的 菌 株 的部 分

生理生化特性也趋于相近。例如,草药菌属菌株

(Herbiconiux sp.)I10A-01569、草 药 菌 属 菌 株

(Herbiconiux sp.)I10A-02268、草 药 菌 属 菌 株(Herbiconiux sp.)I10A-02292、寒 冷 杆 菌 属 菌 株 171 材料和方法 1.1 材料

1.1.1 植物样品:玉竹、黄精、知母、蒙古黄芪、肥皂

草、藿香、薄荷、金银花、仙鹤草、樱桃、大叶玉竹、白

芷、紫苏、喷瓜、金银木(橘色果实)、红色果实金银

木、虎杖、薯蓣和穿龙薯蓣等 19 份植物样品采集自

北京(编号 P1 - P19),大狼毒、狼毒大戟、瑞香狼毒、橙黄瑞香、藏茵陈和云南重楼等 6 份采自云南(P22 - P27),贵 州重 楼 和 三 七 采 自 贵 州(P28,P29),绵

头雪莲(P20)、包叶雪莲(P21)以及其余 8 份(P30 - P37)等共 10 份采自西藏。共计 37 份药用植物样 品。

1.1.2 培养基:(1)内生菌分离培养基: 使用了 10 种分离培养基(M1 - M10),其中 M1 - M8 培养基是

本实验室在红树植物内生放线菌研究中使用的 8 种

内生放线菌分离培养基 [3],M9 和 M10 的组成如下: M9(g / L): 柠檬酸 0.12,柠檬 酸 铁 铵 0.12,硝

酸钠 1.5,磷 酸 氢 二 钾 0.4,硫 酸 镁 0.1g,碳 酸 钙

0.05,碳酸钠 0.2,琼脂 12,pH 7.2。M10(g / L): 甘露聚糖 2.0,酪素水解物 0.3,硝

酸钾 0.1,海洋微量盐 微量,复合维生素 微量,琼

脂 12,pH 7.2。

(2)菌种纯化和继代培养培养基(g/L): 蛋白 胨 3,酵母浸膏粉 5,甘油 10,甜菜碱 1.25,丙酮酸 钠 1.25,复合维生素 微量,琼脂 12,pH 7.2。

1.1.3 抑制剂:抑制真菌和革兰氏阴性细菌的抑制

剂的种类和剂量参见文献[3]。

1.1.4 菌 株: 参 比 菌 株 人 参 地 类 诺 卡 氏 菌

(Nocardioides ginsengisegetis)KCTC 19469 T,韩国类

诺卡氏菌(Nocardioides koreensis)KCTC 19272 T 和 耐

碱类 诺 卡 氏 菌(Nocardioides alkalitolerans)KCTC 19037 T

来源于韩国典型培养物保藏中心(KCTC);其它实验菌均为本研究的分离菌株。

1.1.5 主要试剂:硫 代 硫 酸 钠、次 氯 酸 钠、碳 酸 钠、萘啶酮酸、制霉菌素、重铬酸钾等化学试剂均为国产

分析纯试剂;PCR 扩增相关试剂和引物测序均来源

于生工生物工程(北京),Biolog GEN III 微孔板和基

础培养液购于美国 BIOLOG 中国代理,API 50CH 和

ZYM 试剂条及相关试剂购于生物梅里埃公司。

1.2 菌种分离和保藏 具体方法参见文献[3]。

1.3 菌种初步鉴定和多样性分析 菌种初步鉴定参照徐丽华等主编的《放线菌系 统学》 [4]

相关方法操作。根据菌落和菌丝形态初步 观察排除重复菌株,选择代表 性菌 株测 定 其 16S

rRNA 基 因 序 列,并 将 结 果 提 交 EzTaxon 网 站

(http:/ /www.xiexiebang.comparative studies of nucleotide sequences. Journal of Molecular Evolution,1980,16: 111-120.

[8] Kimura M. The Neutral Theory of Molecular Evolution.

Cambridge: Cambridge University Press,1983. [9] Saitou N,Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4: 406-425. [10] Tamura K,Dudley J,Nei M,Kumar S. MEGA4: Molecular evolutionary genetics analysis(MEGA)software version 4.0. Molecular Biology and Evolution,2007,24: 1596-1599.

[11] Chen HH,Li WJ,Zhang YQ,Wang D,Tang SK. Study on isolation and systematic taxonomy of strains of genus Nesterenkonia. Acta Microbiologica Sinica,2004,44(6): 811-815.(in Chinese)陈华红,李文均,张玉琴,王栋,唐蜀昆. 涅斯捷连科 氏菌属 菌 株 的 分 离 及 系 统 学 研 究. 微 生 物 学 报. 2004,44(6): 811-815.

[12] Keswani J,Whitman WB. Relationship of 16S rRNA

sequence similarity to DNA hybridization in prokaryotes.

International Journal of Systematic and Evolutionary

Microbiology,2001,51(2): 667-678. [13] Stackebrandt E,Ebers J. Taxonomic parameters

revisited: tarnished gold standards. Microbiol Today,2006,33,152-155. [14] Indananda C,Matsumoto A,Inahashi Y,Takahashi Y,Duangmal K,Thamchaipenet A. Actinophytocola oryzae gen. nov.,sp. nov.,isolated from the roots of Thai

glutinous rice plants,a new member of the family

Pseudonocardiaceae. International Journal of Systematic

and Evolutionary Microbiology,2010,60(5): 1141-1146. [15] Behrendt U,Schumann P,Hamada M,Suzuki KI,Sprer C,Ulrich A. Reclassification of Leifsonia ginsengi

(Qiu et al. 2007)as Herbiconiux ginsengi gen. nov.,comb. nov. and description of Herbiconiux solani sp.

nov.,an actinobacterium associated with the

phyllosphere of Solanum tuberosum L. International

Journal of Systematic and Evolutionary Microbiology,2011,61(3):1039-1047.

[16] Tao TS,Yue YY,Chen WX,Chen WF. Proposal of Nakamurella gen. nov. as a substitute for the bacterial genus Microsphaera Yoshimi et al. 1996 and Nakamurellaceae fam. nov. as a substitute for the illegitimate bacterial family Microsphaeraceae Rainey et al. 1997. International Journal of Systematic and Evolutionary Microbiology,2004,54: 999-1000.

[17] Cho KM,Hong SY,Lee SM,Kim YH,Kahng GG,Lim YP,Kim H,Yun HD. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens.

Microbial Ecology,2007,54(2): 341-351. [18] Amann RI,Ludwig W,Scheidler KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews,1995,59(1): 143-169.

[19] Xu HS,Roberts N,Singleton FL,Singleton R,Attwell W,Grimes DJ,Colwell RR. Survival and viability of nonculturable Esherichia coli and Vibro cholerae in the estuarine and marine envoroment. Microbial Ecology,1982,8(4): 313-323.

杜慧竟等: 药用植物内生放线菌的分离和生物学特性. /微生物学报(2013)53(1)Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants Huijing Du,Jing Su,Liyan Yu,Yuqin Zhang * Institute of Medicinal Biotechnology,Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100050,China Abstract:[Objective] To isolate,incubate and characterize cultivable endophytic antinobacteria from medicinal plants,and analyze the diversity of the endophytic antinobacteria,then explore the novel microbial resources. [Methods] Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation

conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells

of the new isolates,we chose174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal

plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog

GEN III MicroPlates,API 50CH and API ZYM kits. [Results] In total 940 endophytics affiliated to 47 genera of 30

families were isolated,among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth

of the endophytic antinobacteria on PYG(peptone-yeast-glycerol)medium with pH 7.2 at 28 - 32℃ was observed.

Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences

were shown among the strains from the same host plants than those from different plants grown in the same area.

[Conclusion]There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the

endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization,fermentation of

carbon sources to produce acid and the enzyme activities was found,while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

Keywords: medicinal plants,endophytic actinobacteria,physiological characteristics,diversity

第二篇:水葫芦论文:水葫芦生防菌Cercosporasp.FJ24的分离、鉴定与生物学特性

水葫芦论文:水葫芦生防菌Cercosporasp.FJ24的分离、鉴定与生物学特性

【中文摘要】水葫芦(Eichhornia crassipes)的蔓延在几十个国家和地区造成了严重的环境问题,如何有效治理水葫芦受到全球范围内的广泛关注。其中,利用水葫芦致病真菌进行治理,是一种备受重视的途径。本文从福建省福州市郊区采集到被致病真菌强烈感染的水葫芦植株,从叶片上分离得到了具有强致病性的真菌菌株FJ24。在对其致病性能进行试验的基础上,对其生物学特性进行了研究。通过形态学鉴定,初步认为FJ24属于尾孢属。进一步地在分子生物学水平上,对其ITS区、EF-1区、β-Tub区、His-H3区序列进行PCR扩增,通过测序,对比Genebank中已经登录的尾孢属相应序列,构建系统发育树,分析其分类地位。结果如下:证实其在7天内能够使试验水葫芦植株达到100%的发病率,3天、7天、14天、21天、28天病情指数分别达到了23.33%、44.17%、78.33%、92.50%、100%。FJ24菌株在PDA培养基上菌落呈灰白色、边缘呈淡红色,簇状分布。菌丝大部分侵入培养基,边缘清晰。分生孢子梗单生或2~12根簇生,不分枝,浅褐色,宽度较规则、直立或略有弯曲,63.4~247.6×2.5~5.5μm。分生孢子单生,无色至浅褐色,有多个横隔,略有弯曲或无弯曲,线形、鞭型或蠕虫型,56.0~312.2×2.0~7.8μm。初步鉴定其为尾孢属。在PDA培养基上,FJ24菌株在全黑暗和光暗交替条件下生长速度较快,该菌在30°C下表现出最快生长速度,而且能长期保持,最适宜的PH条件为

中性偏碱性,在不同培养基上菌落形态存在一定差别,最适宜的培养基为MMA、MSDA、PDAY,该菌最适合利用的碳源和氮源分别为淀粉和乙酸铵。根据ITS区、EF-1区、β-Tub区、His-H3区序列的测序结果,构建系统发育树,结果表明Cercospora sp.FJ24菌株与Cercospora piaropi的多个水葫芦致病菌株存在着极高的同源性,序列相似度均达到了99%以上。生物学特性实验和分子生物学分析均表明,基本可以认为Cercospora sp.FJ24是属于Cercospora piaropi的。综上所述,本文分离得到的Cercospora sp.FJ24具有开发成为水葫芦生防制剂的潜力,同时由于该菌分离自我国本土,具有较高的安全性,因此对于水葫芦的生物防治具有一定的参考价值。

【英文摘要】Spread of Water Hyacinth(Eichhornia crassipes)caused serious environmental problems in lots of countries and regions.The importance of controlling it was recognized throughout the world.Currently, controlling Water Hyacinth with pathogens gained more and more attention.A strain FJ24, with high pathogenicity against Water Hyacinth was isolated from heavily diseased Water Hyacinth collected from Fujian province.On the basis of determining the pathogenicity of FJ24 against Water Hyacinth, biological characteristics of the strain were studied.Using morphological identification , the strain was preliminarily considered as Cercospora.The strain was further analysed at the molecular level.Four

representative sequences of Cercospora sp.FJ24 including the ITS region,EF-1 region,β-Tub region and His-H3 region were sequenced and blasted with other signed Cercospora species on Genbank.Phylogenetic dendrogram were constructed to analyse the taxonomic position of Cercospora sp.FJ24.The results were as follows: The diseaed ratings of Cercospora sp.FJ24 reached 100% in 7 days;the diseased indexes were 23.33%,44.17%,78.33%,92.50% and 100% after 3 days ,7 days, 14 days, 21 days and 28 days respectively.Colony of Cercospora sp.FJ24 on PDA culture was hoar and its edge was light red, growing in cluster.Hypha almost invaded into the culture with clear edge.Conidiophores of Cercospora sp.FJ24 borne singly or in fascicles of 2 to 12, were light brown, septate, width regular, straight or lightly curved and no branched , measuring 63.4 to 247.6μm long and 2.5 to 5.5μm wide.Conidia developed singly , colourless or light brown with many transverse, measured 56.0 to 312.2μm long and 2.0 to 7.8μm wide.Preliminarily identify it as Cercospora.The colony of Cercospora sp.FJ24 grew best on PDA under the dark treatment of alternation illumination and darkness while the colony growed better on PDA under all darkness.The optimum temperature for colony longtime growth was found to be 30℃.The best colony growth was obtained at the condition of neutral pH or alkalescence.The fitting carbon and nitrogen source were amylum and ammonium acetate respectively.Cercospora sp.FJ24 presented varying morphological characteristics on different media tested, and the colonies grew best on MMA, PDAY and MSDA.Four phylogenetic trees were generated from the aligned ITS region,EF-1 region,β-Tub region and His-H3 region sequences.The treeing analyses showed that Cercospora sp.FJ24 presented highly homologous with many kinds of pathogenic strain in Cercospora piaropi.And the sequence similarities were above 99%.Biological characteristics of Cercospora sp.FJ24 and phylogenetic tree analyses indicated that Cercospora sp.FJ24 could be basically identified as Cercospora piaropi.The results listed above indicated that Cercospora sp.FJ24, isolated from this study, possessed the great potential to be developed into the fungal herbicide against Water Hyacinth.This research had positive significances for the biological control of exotic plants.【关键词】水葫芦 生防菌 Cercospora piaropi FJ24 鉴定 【英文关键词】Water Hyacinth Pathogenic strain Cercospora piaropi FJ24 Identification 【目录】水葫芦生防菌Cercosporasp.FJ24的分离、鉴定与生物

学特性12-2312-15摘要5-7ABSTRACT7-9第一章 前言1.1 水葫芦的生态学特性、分布和危害1.1.1 水葫芦的生态学特性12-1

31.1.3 我国水葫芦的危害情况

1.2.1 水葫芦的物理

1.3 1.1.2 水葫芦的分布13-1414-151.2 水葫芦的防治15-21化学防治15-161.2.2 水葫芦的生物防治16-21水葫芦的综合防治2121-23材料23准备2323-2

41.4 本研究的选题依据、目的和意义

2.1 实验第二章 实验仪器、材料与方法23-342.1.1 水葫芦病样采集232.1.3 菌株来源2

32.1.2 供试植株的2.2 主要仪器设备

2.3.1 基

2.3.3 2.3 固体培养基及其制备方法24-27

2.3.2 不同pH 值固体培养基24-25础培养基24不同C、N 源固体培养基2525-27272.4 方法27-342.4.2 接种试验27

2.3.4 其它种类固体培养基2.4.1 病原真菌的分离2.4.3 柯赫氏法则(Koch’s

2.4.5 Rule)验证27-28致病性测定2828-2929

2.4.4 植物病害统计方法282.4.6 影响菌落生长的因素2.4.7 DNA 提取292.4.8 ITS 区序列扩增

2.4.10 系统发育3.1 水葫芦病原

3.1.2 2.4.9 参考基因序列扩增29-30

第三章 结果与分析34-57分析30-34真菌FJ24 的分离34-36致病症状34-35

3.1.1 病原菌的分离34

3.1.3 柯赫氏法则验证353.1.4 致病

性测定35-3636-37征36-3737-47

3.2 水葫芦病原真菌FJ24 的形态学特征

3.2.2 分生孢子形态特3.2.1 菌落形态特征363.3 影响FJ24 菌落生长的因素研究3.3.1 光照对FJ24 菌落生长的影响37

3.3.2 不同光照条件下FJ24 生长曲线的测定37-38FJ24 菌落生长的影响38-39线的测定39-4040-4141-42

3.3.3 温度对

3.3.4 不同温度下FJ24 生长曲

3.3.5 PH 对FJ24 菌落生长的影响3.3.6 不同初始PH 下FJ24 生长曲线的测定3.3.7 碳源对FJ24 菌落生长的影响42

3.3.8 不同碳源下FJ24 生长曲线的测定42-43菌落生长的影响43-44测定4444-4545-4747-5750-52列54-57

3.3.9 氮源对FJ24

3.3.10 不同氮源下FJ24 生长曲线的3.3.11 不同培养基对FJ24 菌落生长的影响3.3.12 不同培养基中FJ24 生长曲线的测定3.4 Cercospora sp.FJ24 的分子生物学鉴定3.4.1 ITS 序列47-503.4.3 β-Tub 序列52-54第四章 讨论57-62

3.4.2 EF-1 序列3.4.4 His-H3 区序4.1 关于Cercospora sp.FJ24 的鉴定574.2 关于Cercospora sp.FJ24 的生物学

4.3 Cercospora

4.4 关于特性及其对实际应用的指导意义57-59sp.FJ24 菌株作为真菌除草剂的开发前景59-60Cercospora sp.FJ24 菌株的安全性60-61草剂的开发前景61-62

4.5 水葫芦真菌除

参考文献

第五章 结论62-63

63-68附录68-70致谢70-71攻读硕士学位期间发表的论文71

第三篇:真菌的生物学特性

木霉菌属于半知菌亚门、丝孢纲、丝孢目,粘孢菌类,是一类普遍存在的真菌。绿色木霉是木霉菌中具有重要经济意义的一种,目前在工业、农业和环境科学等方面有着广泛的用途。绿色木霉在自然界分布广泛,常腐生于木材、种子及植物残体上。绿色木霉能产生多种具有生物活性的酶系,如:纤维素酶、几丁质酶、木聚糖酶等。绿色木霉是所产纤维素酶活性最高的菌株之一,所产生的纤维素酶的降解作用,目前日益受到重视,国内外对这方面的研究也很多。同时,绿色木霉又是一种资源丰富的拮抗微生物,在植物病理生物防治中具有重要的作用。它的作用机制有以下几种:产生抗生素;重寄生作用,这是木霉菌作为拮抗菌最重要的机制;溶菌作用;竞争作用。

纤维单胞菌属拉丁学名[Cellulomonas(Bergey et al.,1923),Clark,1952] 在幼龄培养物中细胞为细长的不规则杆菌,0.5~0.6μm×2.0~5.0μm,直到稍弯,有的呈 V字状排列,偶见分支但无丝状体。老培养物的杆通常变短,有少数球状细胞出现。革兰氏阳性,但易褪色。常以一根或少数鞭毛运动。不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜。

康宁木霉菌丝有隔膜,蔓延生长,广铺于固体培养基上,菌外观为浅绿,黄绿或绿色,反面无色,分生孢子.梗为菌丝的短侧枝,其上对生或互生分枝,分枝上又可继续分枝,形成2级,3级分枝,分枝末端即为瓶状梗.分生孢子由小梗相继生出面,靠黏液把它们聚成球形或近球形的孢子头,分生孢子卵形成椭圆形,壁光滑.单个孢子近无色,形成堆状为绿色,与此相似的还有绿色木霉!此菌有很强的纤维素霉及纤维,二糖淀粉酶等,它能利于农副产品,如麦杆,木材,木屑等纤维素原料,使之转变为糖质原料

佛州侧耳子实体覆瓦状丛生。菌盖直径3~12cm,低温时白色,高温时带青蓝色转黄色至白色,初半球形,边缘完整,后平展成扇形或浅漏斗形,边缘不齐或有深刻。菌肉稍薄,白色。菌褶浅黄白色,干时变淡黄色,稍密集至稍稀疏,延生,常在菌柄上形成脉络状。菌柄侧生(有孢菌株),或偏心生至中央生(无孢菌株),细长,内实,白色,长3~7cm,粗1~2cm,基部有时有白色绒毛。孢子印白色;孢子近柱形,6~9µm×2.5~3µm。

黑曲霉半知菌亚门,丝孢纲,丝孢目,丛梗孢科,曲霉属真菌中的一个常见种。

分生孢子梗自基质中伸出,直径15~20pm,长约1~3mm,壁厚而光滑。顶部形成球形顶囊,其上全面覆盖一层梗基和一层小梗,小梗上长有成串褐黑色的球状分生孢子。孢子直径2.5~4.0μm。分生孢子头球状,直径700~800μm,褐黑色。菌落蔓延迅速,初为白色,后变成鲜黄色直至黑色厚绒状。背面无色或中央略带黄褐色。有时在新分离的菌株中能找到白色、圆形、直径约1mm的菌核。分生孢子头褐黑色放射状,分生孢子梗长短不一。顶囊球形,双层小梗。分生孢子褐色球形。

广泛分布于世界各地的粮食、植物性产品和土壤中。是重要的发酵工业菌种,可生产淀粉酶、酸性蛋白酶、纤维素酶、果胶酶、葡萄糖氧化酶、柠檬酸、葡糖酸和没食子酸等。有的菌株还可将羟基孕甾酮转化为雄烯。生长适温37℃,最低相对湿度为88%,能引致水分较高的粮食霉变和其他工业器材霉变。

侧孢霉是一种嗜热丝状真菌,具有分解纤维素的特性.固体PDA培养条件下进行形态观察表明,所采用的嗜热侧孢霉菌株,菌丝丛枝状、有隔,分生孢子浅褐色,顶生或侧生.利用ITS序列进行分子分类发现嗜热侧孢霉与嗜热革节孢(Scytalidium thermophilium)及特异腐质霉(Humicola insolens)2种嗜热菌相距最近.嗜热侧孢霉的生长pH值范围较宽,在初始pH值4.0-12.0的PDA平板上均可生长,以4.0-8.0时生长较好.以还原糖含量变化和蔗渣减少量为指标,以蔗渣为唯一碳源进行液体发酵

芽孢杆菌(Bacillaceae)

细菌的一科,能形成芽孢(内生孢子)的杆菌或球菌。包括芽孢杆菌属、芽孢乳杆菌属、梭菌属、脱硫肠状菌属和芽孢八叠球菌属等。它们对外界有害因子抵抗力强,分布广,存在于土壤、水、空气以及动物肠道等处。芽孢杆菌bacillus 杆菌科的一属细菌。为好氧或兼性厌氧的杆菌,一般为革兰氏染色阳性。在某种环境下,菌体内的结构发生变化,经过前孢子阶段,形成一个完整的芽孢。芽孢对热、放射线和化学物质等有很强的抵抗力。在化学组成方面,在芽孢内含有大量营养细胞中不存在的二吡啶羧酸的钙盐;在结构方面,芽孢的原生质外围有三层膜,从内到外是厚的皮层(cortex)、孢子壳和孢子外膜。在芽孢杆菌属中,对种的划分是以菌体的大小、孢子的形状及其在菌体内的位置、糖的利用及其产物、能否还原硝酸,以及在高浓度的食盐条件下能否生长等为依据。广泛分布在水、空气和土壤中。代表种是枯草芽孢杆菌(Bacillus subtilis)。英语bacillus一词,也可作杆菌或整个芽孢细菌的通称。

球菌在微生物的检验中常用的是金黄色葡萄球菌 真菌(fungus;eumycetes)是具有真核和细胞壁的异养生物。种属很多,已报道的属达1万以上,种超过10万个。其营养体除少数低等类型为单细胞外,大多是由纤细管状菌丝构成的菌丝体。低等真菌的菌丝无隔膜,高等真菌的菌丝都有隔膜,前者称为无隔菌丝,后者称有隔菌丝。在多数真菌的细胞壁中最具特征性的是含有甲壳质,其次是纤维素。常见的真菌细胞器有:线粒体,微体,核糖体,液泡,溶酶体,泡囊,内质网,微管,鞭毛等;常见的内含物有肝糖,晶体,脂体等。

真菌通常又分为三类,即酵母菌、霉菌和蕈菌(大型真菌),它们归属于不同的亚门。

大型真菌是指能形成肉质或胶质的子实体或菌核,大多数属于担子菌亚门,少数属于子囊菌亚门。常见的大型真菌有香菇、草菇、金针菇、双孢蘑菇、平菇、木耳、银耳、竹荪、羊肚菌等。它们既是一类重要的菌类蔬菜,又是食品和制药工业的重要资源。[编辑本段]真菌的营养体

真菌营养生长阶段的结构称为营养体。绝大多数真菌的营养体都是可分枝的丝状体,单根丝状体称为菌丝(hypha)。许多菌丝在一起统称菌丝体(mycelium)。菌丝体在基质上生长的形态称为菌落(colnny)。菌丝在显微镜下观察时呈管状,具有细胞壁和细胞质,无色或有色。菌丝可无限生长,但直径是有限的,一般为2—30微米,最大的可达100微米。低等真菌的菌丝没有隔膜(septum)称为无隔菌丝,而高等真菌的菌丝有许多隔膜,称为有隔菌丝。此外,少数真菌的营养体不是丝状体。而是无细胞壁且形状可变的原质团(plasmodium)或具细胞壁的、卵圆形的单细胞。寄生在植物上的真菌往往以菌丝体在寄主的细胞间或穿过细胞扩展蔓延。

当菌丝体与寄主细胞壁或原生质接触后,营养物质因渗透压的关系进入菌丝体内。有些真菌如活体营养生物侵入寄主后,菌丝体在寄主细胞内形成吸收养分的特殊机构称为吸器(hauStorium)。吸器的形状不一,因种类不同而异,如白粉菌吸器为掌状,霜霉菌为丝状,锈菌为指状,白锈菌为小球状。有些真菌的菌丝体生长到一定阶段,可形成疏松或紧密的组织体。苗丝组织体主要有菌核(sclerotium)、子座(stroma)和菌索(rhizomorph)等。菌核是由菌丝紧密交织而成的休眠体,内层是疏丝组织,外层是拟薄壁组织,表皮细胞壁厚、色深、较坚硬。菌核的功能主要是抵抗不良环境。但当条件适宜时,菌核能萌发产生新的营养菌丝或从上面形成新的繁殖体。菌核的形状和大小差异较大,通常似绿豆、鼠粪或不规则状。子座是由菌丝在寄主表面或表皮下交织形成的一种垫状结构,有时与寄主组织结合而成。子座的主要功能是形成产生抱子的机构,但也有度过不良环境的作用。菌索是由菌丝体平行组成的长条形绳索状结构,外形与植物的根有些相似,所以也称根状菌索。菌索可抵抗不良环境,也有助于菌体在基质上蔓延。

有些真菌菌丝或孢子中的某些细胞膨大变圆、原生质浓缩、细胞壁加厚而形成厚垣孢子(chlamydospore)。它能抵抗不良环境,待条件适宜时,再萌发成菌丝。[编辑本段]真菌的繁殖体

当营养生活进行到一定时期时,真菌就开始转入繁殖阶段,形成各种繁殖体即子实体(fruitingbody)。真菌的繁殖体包括无性繁殖形成的无性孢子和有性生殖产生的有性孢子。

1.无性繁殖(asexual reproduction)

无性繁殖是指营养体不经过核配和减数分裂产生后代个体的繁殖。它的基本特征是营养繁殖通常直接由菌丝分化产生无性孢子。常见的无性孢子有三种类型:

(1)游动孢子(zoospore):形成于游动孢子囊(zoosporangium)内。游动孢子囊由菌丝或孢囊梗顶端膨大而成。游动孢子无细胞壁,具1—2根鞭毛,释放后能在水中游动。

(2)孢囊孢子(sporangiospore):形成于孢囊孢子囊(sporangium)内。孢子囊由孢囊梗的顶端膨大而成。孢囊孢子有细胞壁,无鞭毛,释放后可随风飞散。

(3)分生孢子(conidium)产生于由菌丝分化而形成的分生泡子梗(conidiophore)上,顶生、侧生或串生,形状、大小多种多样,单胞或多胞,无色或有色,成熟后从袍子梗上脱落。有些真菌的分生抱子和分生孢子梗还着生在分生孢子果内。袍子果主要有两种类型,即近球形的具孔口的分生抱子器(pycnidium)和杯状或盘状的分生孢子盘(acervulus)。

2.有性生殖(sexualreproduction)真菌生长发育到一定时期(一般到后期)就进行有性生殖。有性生殖是经过两个性细胞结合后细胞核产生减数分裂产生袍子的繁殖方式。多数真菌由菌丝分化产生性器官即配子囊(gametangium),通过雌、雄配于囊结合形成有性泡子。其整个过程可分为质配、核配和减数分裂三个阶段。第一阶段是质配,即经过两个性细胞的融合,两者的细胞质和细胞核(N)合并在同一细胞中,形成双核期(N+N)。第二阶段是核配,就是在融合的细胞内两个单倍体的细胞核结合成一个双倍体的核(2N)。第三阶段是减数分裂,双倍体细胞核经过两次连续的分裂,形成四个单倍体的核(N),从而回到原来的单倍体阶段。经过有性生殖,真菌可产生四种类型的有性孢子。

(1)卵孢子(oospore):卵菌的有性孢子。是由两个异型配子囊——雄器和藏卵器接触后,雄器的细胞质和细胞核经授精管进入藏卵器,与卵球核配,最后受精的卵球发育成厚壁的、双倍体的卵孢子。

(2)接合孢子(zygospore):接合菌的有性孢子。是由两个配子囊以配子囊结合的方式融合成1个细胞,并在这个细胞中进行质配和核配后形成的厚壁孢子。

(3)子囊孢子(ascospore):子囊菌的有性孢子。通常是由两个异型配子囊——雄器和产囊体相结合,经质配、核配和减数分裂而形成的单倍体孢子。子囊孢子着生在无色透明、棒状或卵圆形的囊状结构即子囊(ascus)内。每个子囊中一般形成8个子囊孢子。子囊通常产生在具包被的子囊果内。子囊果一般有四种类型,即球状而无孔口的闭囊壳(cletothecium),瓶状或球状且有真正壳壁和固定孔口的子囊壳(perithecium),由于座溶解而成的、无真正壳壁和固定孔口的子囊腔(locule),以及盘状或杯状的子囊盘(9pothecium)。

(4)担孢子(basidiospore):担子菌的有性孢子。通常是直接由“+”、“-”菌丝结合形成双核菌丝,以后双核菌丝的顶端细胞膨大成棒状的担子(basidium)。在担子内的双核经过核配和减数分裂,最后在担子上产生4个外生的单倍体的担孢子。

此外,有些低等真菌如根肿菌和壶菌产生的有性孢子是一种由游动配子结合成合子,再由合子发育而成的厚壁的休眠抱子(restingspore)。[编辑本段]真菌的起源和演化

关于真菌的起源和演化主要有两派看法。一派认为真菌是由藻类演化而来。这些藻类因丧失色素而从自养变成异养,生理的变化引起了形态的改变。另一派认为除卵菌来自藻类外,其余的真菌来自原始鞭毛生物。

真菌是一项丰富的自然资源。人和动物每年消耗大量的真菌菌体和子实体;真菌也是重要的药材。真菌的某些代谢产物在工业上具有广泛用途,如乙醇,柠檬酸,甘油,酶制剂,甾醇,脂肪,塑料,促生素,维生素等。而且这些东西都能进行大规模的生产。在真菌的腐解作用中,它使许多重要化学元素得以再循环。真菌直接或间接地影响着地球生物圈的物质循环和能量转换。

真菌有以下几种:

霉菌

亦称“丝状菌”。属真菌。体呈丝状,丛生,可产生多种形式的孢子。多腐生。种类很多,常见的有根霉、毛霉、曲霉和青霉等。霉菌可用以生产工业原料(柠檬酸、甲烯琥珀酸等),进行食品加工(酿造酱油等),制造抗菌素(如青霉素、灰黄霉素)和生产农药(如“920”、白僵菌)等。但也能引起工业原料和产品以及农林产品发霉变质。另有一小部分霉菌可引起人与动植物的病害,如头癣、脚癣及番薯腐烂病等。

酵母菌

属真菌。体呈圆形、卵形或椭圆形,内有细胞核、液泡和颗粒体物质。通常以出芽繁殖;有的能进行二等分分裂;有的种类能产生子囊孢子。广泛分布于自然界,尤其在葡萄及其他各种果品和蔬菜上更多。是重要的发酵素,能分解碳水化合物产生酒精和二氧化碳等。生产上常用的有面包酵母、饲料酵母、酒精酵母和葡萄酒酵母等。有些能合成纤维素供医药使用,也有用于石油发酵的。

啤酒酵母(Saccharomyces)

属酵母菌属。细胞呈圆形、卵形或椭圆形。以出芽繁殖,能形成子囊孢子。在发酵工业上,可用来发酵生产酒精或药用酵母,也可通过菌体的综合利用提取凝血质、麦角固醇、卵磷脂、辅酶甲与细胞色素丙等产品。

红曲霉素(Monascuspurpureus)属于囊菌纲,曲霉科。菌丝体紫红色。无性生殖时,茵丝分枝顶端形成单独的或一小串球形或梨形的分生抱子。有性生殖时,产生球形、橙红色的闭囊果,内生含有八个子囊孢子的子囊。红曲霉可制红曲、酿制红乳腐和生产糖化酶等。

假丝酵母(Candida)

一属能形成假菌丝、不产生子囊孢子的酵母。不少的假丝酵母能利用正烷烃为碳源进行石油发酵脱蜡,并产生有价值的产品。其中氧化正烷烃能力较强的假丝酵母多是解脂假丝酵母(C.lipolytica)或热带假丝酵母(C.tropicalis)。有些种类可用作饲料酵母;个别种类能引起人或动物的疾病。

白色念珠菌(Candidaalbicans)

或亦称“白色假丝酵母”。一种呈椭圆形、行出芽繁殖的假丝酵母。通常存在于正常人的口腔、肠道、上呼吸道等处,能引起鹅口疮等口腔疾病或其他疾病。

黄曲霉(Aspergillusflavus)

半知菌类,黄曲霉群的一种常见腐生真菌。多见于发霉的粮食、粮食制品或其他霉腐的有机物上。菌落生长较快,结构疏松,表面黄绿色,背面无色或略呈褐色。菌体由许多复杂的分枝菌丝构成。营养菌丝具有分隔;气生菌丝的一部分形成长而粗糙的分生孢子梗,梗的顶端产生烧瓶形或近球形的顶囊,囊的表面产生许多小梗(一般为双层),小梗上着生成串的表面粗糙的球形分生孢子。分生孢子梗、顶囊、小梗和分生孢于合成孢子穗。可用于生产淀粉酶、蛋白酶和磷酸二酯酶等,也是酿造工业中的常见菌种。近年来,发现其中某些菌株会产生引起人、畜肝脏致癌的黄曲霉毒素。早在六世纪时,《齐民要术》中就有用“黄衣”、“黄蒸”两种麦曲来制酱的记载,这两种黄色的麦曲,主要由黄曲霉一类微生物产生的大量孢子和蛋白酶、淀粉酶所组成。

白地霉(Geotrichumcandidum)

属真菌。菌落平面扩散,组织轻软,乳白色。菌丝生长到一定阶段时,断裂成圆柱状的裂生抱子。菌体生长最适宜的温度为28℃。常见于牛奶和各种乳制品(如酸牛奶和乳酪)中;在泡菜和酱上,也常有白地霉。可用来制造核苦酸、酵母片等。

抗生菌

亦称“拮(颉)抗菌”。能抑制别种微生物的生长发育,甚至杀死别种微生物的一些微生物。其中有的能产生抗菌素,主要是放线菌及若干真菌和细菌等。如链霉菌产生链霉素,青霉菌产生青霉素,多粘芽抱杆菌产生多粘菌素等。

假菌丝

某些酵母如假丝酵母经出芽繁殖后,子细胞结成长链,并有分枝,称为假菌丝。细胞间连接处较为狭窄,如藕节状,一般没有隔膜。

抗菌素

亦称“抗生素”。主要指微生物所产生的能抑制或杀死其他微生物的化学物质,如青霉素、链霉素、金霉素、春雷霉累、庆大霉素等。从某些高等植物和动物组织中也可提得抗菌素。有些抗菌素,如氯霉素和环丝氨酸,目前主要用化学合成方法进行生产。改变抗菌素的化学结构,可以获得性能较好的新抗菌素,如半合成的新型青霉素。在医学上,广泛地应用抗菌素以治疗许多微生物感染性疾病和某些癌症等。在畜牧兽医学方面,不仅用来防治某些传染病,有些抗菌素还可用以促进家禽、家畜的生长。在农林业方面,可用以防治植物的微生物性病害。在食品工业上,则可用作某些食品的保存剂。

病原性真菌

真菌(Fungus)在生物学分类上属于藻菌植物中真菌超纲,具真核细胞型的微生物,它们在自然界分布广泛,绝大多数对人有利,如酿酒、制酱,发酵饲料,农田增肥,制造抗生素,生长蘑茹,食品加工及提供中草药药源(如灵芝、茯苓、冬虫夏草等,都是真菌的产物或本身或利用真菌的作用所制备的)。对人类致病的真菌分浅部真菌和深部真菌,前者侵犯皮肤、毛发、指甲,为慢性,对治疗有顽固性,但影响身体较小,后者可侵犯全身内脏,严重的可引起死亡。此外有些真菌寄生于粮食、饲料、食品中,能产生毒素引起中毒性真菌病。

常见真菌培养基有:

配方一 萨市(Sabouraud’s)培养基

蛋白胨 10克 琼脂 20克

麦芽糖 40克 水 1000毫升

先把蛋白胨、琼脂加水后,加热,不断搅拌,待琼脂溶解后,加入40克麦芽糖(或葡萄糖),搅拌,使它溶解,然后分装,灭菌,备用。

本培养菌是培养许多种类真菌所常用的。

配方二 马铃薯糖琼脂培养基

把马铃薯洗净去皮,取200克切成小块,加水1000毫升,煮沸半小时后,补足水分。在滤液中加入10克琼脂,煮沸溶解后加糖20克(用于培养霉菌的加入蔗糖,用于培养酵母菌的加入葡萄糖),补足水分,分装,灭菌,备用。

把这培养基的pH值调到7.2~7.4,配方中的糖,如用葡萄糖还可用来培养放线菌和芽孢杆菌。

配方三 黄豆芽汁培养基

黄豆芽 100克 琼脂 15克

葡萄糖 20克 水 1000毫升

洗净黄豆芽,加水煮沸30分钟。用纱布过滤,滤液中加入琼脂,加热溶解后放入糖,搅拌使它溶解,补足水分到1000毫升,分装,灭菌,备用。

把这培养基的pH值调到7.2~7.4,可用来培养细菌和放线菌。

配方四 豌豆琼脂培养基

豌豆 80粒 琼脂 5克

水 200毫升

取80粒干豌豆加水,煮沸1小时,用纱布过滤后,在滤液中加入琼脂,煮沸到溶解,分装,灭菌,备用。[编辑本段]真菌与生活

环境的再循环

真菌像细菌和微生物一样都是分解者,就是一些分解死亡生物的有机物的生物。真菌将生物分解为各类无机物,使土地肥力增强。

食物与真菌

还有些真菌也成为重要的食物来源。可食用的蕈菌有200多种,如冬菇、草菇、木耳、云耳等。以及真菌所侵入后的生(动)物空壳,如冬虫夏草。

还有的真菌用于食物加工,例如酵母菌用于面包等加工,酿酒也需要真菌。

致病的真菌

在农业、林业和畜牧业中,真菌又有有害的一面。真菌能引起植物多种病害,从而造成巨大的经济损失。例如,1845年欧洲由于马铃薯晚疫病的流行摧毁了5/6的马铃薯,中国由于1950年的小麦锈病和1974年的稻瘟病而使小麦和水稻各减产60亿千克。

真菌还可引起动、植物和人类的多种疾病,在人类主要有三种类型:①.真菌感染;②.变态反应性疾病;③.中毒性疾病。

抗病的真菌

亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。

霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。

真菌与植物根系的关系

植物的根和真菌也有共生关系,和真菌共生的根称为菌根。

外生菌根:真菌的菌丝在根的表面形成菌丝体包在幼根的表面,有时也侵入皮层细胞间,但不进入细胞内,此时以菌丝代替了根毛的功能,增加了根系的吸收面积,如松等;

内生菌根:菌丝通过细胞壁侵入到表皮和皮层细胞内,加强吸收机能,促进根内的物质运输,如柑橘、核桃等;

内外生菌根:也有菌丝不仅包在幼根表面同时也深入到细胞中,称内外生菌根,如苹果、柳树等。

菌丝吸收水分、无机盐等供给植物,同时产生植物激素和维生素B等促进根系的生长;植物供给真菌糖类、氨基酸等有机养料。

能形成菌根的高等植物2000多种,如侧柏、毛白杨、银杏、小麦、葱等;

具菌根的植物在没有真菌存在时不能正常生长,因此造林时须事先接种和感染所需真菌,以利于荒地上成功造林。

真菌【词外小释】

由菌丝组成,无根、茎、叶的分化,无叶绿素,不能自己制造养料,以寄生或腐生方式摄取现成有机物的低等植物独立类群。真菌具有分解或合成许多种有机物的能力,可用于获取维生素、抗菌素、酶等制剂,而有些真菌也可产生毒素,引起动植物中毒生病。由真菌所产生的毒素就称之为真菌毒素。真菌作为病原微生物还能侵入人体和动物,引起毛发、皮肤、神经系统、呼吸系统和其他内脏的病变。如头皮屑和脚气 赞同0| 评论

2009-3-23 12:03 48680009 | 二级

木霉:通常菌落扩展很快,特别在高温高湿条件下几天内木霉菌落可遍布整个料面。菌丝生长温度4—42℃,25—30℃生长最快,孢子萌发温度10—35℃,15—30℃萌发率最高,25—27℃菌落由白变绿只需4—5昼夜,高温对菌丝生长和萌发有利。孢子萌发要求相对湿度95%以上,但在干燥环境也能生长,菌丝生长pH值为3.5~5.8,在pH值4~5条件下生长最快。

纤维单胞菌:不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜

酵母菌:同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质。象细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。酵母菌能在pH 值为3-7.5 的范围内生长,最适pH 值为pH4.5-5.0。在低于水的冰点或者高于47℃的温度下, 酵母细胞一般不能生长,最适生长温度一般在20℃~30℃之间。酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。

第四篇:干细胞的生物学特性

干细胞的生物学特性

干细胞具有高度自我更新能力、高度繁殖和多向分化潜能,界定干细胞,有4条标准:1.干细胞可进行多次的,连续的,自我更新式的细胞分裂,这是维持群体稳定的首要条件;2.起源于单一细胞的子细胞可分化超过1种以上的细胞类型,例如造血干细胞可分化为所有的血细胞,有些成熟干细胞只能分化成单一的细胞类型,例如角膜干细胞;3.当干细胞被移植入损伤的患者体内时,它有重建原来组织的功能。4.不易确定的标准:即使无组织损伤,干细胞也能在体内分化扩增,胚胎干细胞能完全符合上述标准,能以一种不确定的未分化状态扩增,将其注入胚泡中,便能生成所有类型的细胞。

根据干细胞的发育阶段,可将其分为胚胎干细胞(ESC)和成体干细胞(ASC),从干细胞到成熟细胞有许多分化阶段,ESC和 ASC实质上是发育的不同阶段。胚胎干细胞即具有分化为机体任何一种组织器官潜能的细胞,包括胚胎干细胞、胚胎生殖细胞(EGC),成体干细胞具有自我更新能力,但通常只能分化为相应组织器官组成的“专业细胞”,它是存在于成熟个体各种器官中的干细胞,包括胚胎干细胞、造血干细胞、骨髓间质干细胞

(Mesenchymal stem cell,MSCs)、神经干细胞(Neural stem cell,NSCs)、肌肉干细胞(Muscle stem cell)、成骨干细胞(Osteogenic stem cell)、内胚层干细胞(Endodermal stem cell)、视网膜干细胞(Retinal stem cell)、胰腺干细胞等等。

第五篇:实验二_____土壤中放线菌的分离

实验讲义5 土壤中枯草芽孢杆菌分离方法

取土样时最好选取如花坛等地方的土样,去掉表层5~10cm的土壤后取样。

放入100ml三角瓶中,加入30ml水,常压加热至水沸腾后维持20min,取出,置28-37摄氏度培养24-48h,液面则产生黄白色皮膜。用接种环取皮膜适量于无菌水中分散,稀释涂布于蔗糖豆芽汁琼脂平皿,置28-37摄氏度培养24-48h,挑取典型菌落。

实验6

土壤中放线菌的分离(实训)

实验目的:1掌握配制合成培养基的一般方法。

2掌握稀释倒平板法从土壤中分离放线菌的基本原理和基本操作技术。3掌握平板划线法从土壤中分离放线菌的基本原理和基本操作技术。4掌握涂布平板法从土壤中分离放线菌的基本原理和基本操作技术。

实验材料:

药品:可溶性淀粉、KNO3、NaCl、K2HPO4•3H2O、MgSO4•7H2O、FeSO4•7H2O、琼脂。其他:高压蒸汽灭菌锅、扭力天平、药匙、烧杯、量筒、玻璃棒、三角瓶、试管、牛皮纸、硫酸纸、线绳、无菌培养皿、铁锹、小铲、酒精棉球、镊子、玻璃铅笔。

实验原理:

高氏一号合成培养基是培养放线菌的培养基。这种培养基是采用化学成分完全了解的纯试剂配制而成的培养基,高氏一号培养基:碳源为可溶性淀粉、氮源为KNO3、NaCl、K2HPO4•3H2O、MgSO4•7H2O 作为无机盐,FeSO4•7H2O作为微生物的微量元素,提供铁离子等组成。

放线菌是重要的抗生素产生菌,主要分布在土壤中,其数量仅次于细菌,一般在中性偏碱性、有机质丰富、通气性好的土壤中含量较多。由于土壤中的微生物是各种不同种类微生物的混合体,为了研究某种微生物,就必须把它们从这些混杂的微生物群体中分离出来,从而获得某一菌株的纯培养。分离放线菌常用稀释倒平板法。根据放线菌的营养、酸碱度等条件要求,常选用合成培养基或有机氮培养基。如果培养基成分改变,或土壤预先处理(120℃热处理1h),或加入某种抑制剂(如加数滴10%酚等),都可以使细菌,霉菌出现的数量大大减少,从而淘汰了其它杂菌。再通过稀释法,使放线菌在固体培养基上形成单独菌落,并可得到纯菌株。

实验步骤:

1.高氏一号合成培养基的制备

高氏一号琼脂培养基(培养放线菌用)

可溶性淀粉20g,硝酸钾1g,氯化钠0.5g,K2HPO4 •3H2O 0.5g,MgSO4•7H2O 0.5g,FeSO4•7H2O 0.01g,琼脂20g,水1000ml,pH7.2~7.4。

配制时,先用冷水,将淀粉调成糊状,倒入煮沸的水中,在火上加热,边搅拌边加入其他成分,溶化后,补足水分至1000ml。112℃灭菌20分钟。

2.土壤中放线菌的分离(1)待测样液的制备

选定取样点(最好是有机质含量高的菜地),按对角交叉(五点法)取样。先除去表层约2cm的土壤,将铲子插入土中数次,然后取2~10cm处的土壤。盛土的容器应是无菌的。将5点样品约1kg充分混匀,除去碎石、植物残根等,土样取回后应尽快投入实验。

称土样1g于盛有99mL无菌水或无菌生理盐水并装有玻璃珠的三角瓶中,振荡10~20min,使土样中的菌体、芽孢或孢子均匀分散,此即为10-2浓度的菌悬液,静置30s。另取装有9ml无菌水的试管3支,编号10-

3、10-

4、10-5。用无菌吸管无菌操作取10-2浓度的土壤悬液1ml并加入编号10-3的无菌试管中,并吹吸吸管2~3次,使与9ml水混匀,即为10-3浓度的土壤稀释液。依此类推,直到稀释至10-5的试管中(每个稀释度换1支无菌吸管)。稀释过程需在无菌室或无菌操作条件下进行。(2)稀释倒平板法分离土壤中放线菌

-5-4-5-4取2支1毫升移液管分别从10、10菌悬液中吸取1毫升菌悬液,分别注入编号10、10的培养皿内。将温度为45~50℃的高氏一号培养基倒入上述各培养皿内,轻轻旋转使菌悬液充分混合均匀,凝固后,将培养皿倒扣放置在温暖处(28℃左右),每天观察培养基表面有无微生物菌落。(3)涂布平板法分离土壤中放线菌

取2套无菌平皿,在皿底贴上标签,注明土壤稀释液的稀释度(10-

4、10-5)、组别、姓名、操作日期等。每个稀释度做一个培养皿。然后在每皿中倒入已溶化并冷至50℃左右的高氏一号培养基15~20ml左右,待冷凝成平板。

用无菌吸管从浓度最小稀释液开始,每次吸取0.1ml加到一组相应编号(10-5)的高氏一号平板上(每次吸取前,吸管要在液体内吹吸几次),再依次将10-4的土壤稀释液加到相应平板上。用无菌刮棒(从浓度小的稀释液开始)将加入平板培养基上的土壤稀释液在整个平板表面涂匀。(4)平板划线法分离土壤中放线菌

取一培养皿置于实验台上,左手将培养皿打开稍许,向培养皿内注入熔化的营养固体培养基10~12毫升,轻轻转动培养皿,使其中的培养基分布均匀,平放桌上,使其凝成平板。然后在皿底用蜡笔划分A、B、C、D几个区。每组两个平板培养基。

将培养皿底部用姆指和无名指固定成倾斜状态,在火焰旁将培养皿稍微打开。在此同时,用环状接种针在火焰旁取少许10-2浓度的土壤稀释液,迅速送入培养皿内,在平板培养基的一边,作第1次平行划线 6~7条,转动培养皿约70°角,用烧过冷却的接种针,通过第1次划线部分作第2次平行划线,然后再用同样方法,作第3次平行划线。划线时,接种针应与平板表面成30°角左右。不要使接种针碰到培养皿边缘,也不要将培养基划破。(5)培养

接种完毕,将平皿放入28℃恒温箱培养7天,观察平皿上放线菌(主要是链霉菌)菌落。(6)挑菌落

待三种方法的平板长出菌落后,鉴定微生物类群,并根据镜检结果,判断是否已分离到了纯菌种。如果菌种很纯,则可转移到斜面培养基上进一步培养。转种至斜面,菌种用牛皮纸包好,置4℃冰箱中保存。

准备实验内容:

问曾老师借 无菌刮棒 打火机 酒精灯

无菌报纸包(1个)

99mL水/三角瓶(玻璃珠)

5支移液管 3支9mL水的试管

培养皿6套 枪头(1mL/0.1mL)

高氏一号培养基500mL(150mL三角瓶2个,200mL试管)思考题:

1.检查接种后培养物的生长情况和染菌情况。

2.观察与记录以下内容。

大小

形状

边缘颜色

表面代谢物

种类 3.如何区分放线菌和真菌、细菌?

放线菌菌落小而紧密、干燥、不透明、难以挑取,当大量孢子覆盖于菌落表面时,就形成表面为粉末状或颗粒状的典型放线菌菌落,由于基内菌丝和孢子常有颜色,使得菌落的正反面呈现出不同的色泽。霉菌菌落的话应该是比较大的,可能是大而疏松也可能大而紧密,其他一些跟放线菌都差不多,比如都是颜色多种多样,与培养基紧密结合难于挑取。但在气味上有很大差别,放线菌具有泥腥味,而霉菌具有霉味。还有一点就是放线菌菌落周围琼脂平面会有变形的现象。若稀释平板的稀释度不够,放线菌会被抑制了或者菌落太小,而其他细菌的菌落又太多,不容易找到。

下载药用植物内生放线菌的分离和生物学特性word格式文档
下载药用植物内生放线菌的分离和生物学特性.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    南美白对虾生物学特性(精选5篇)

    南美白对虾生物学特性 南美白对虾(Penaeus vannamei),又称白皮虾、白对虾、白虾,原产于南美太平洋沿岸的水域。以厄瓜多尔沿岸的分布最为集中,是当今世界养虾类产量最高的三大品......

    内外网分离解决方案(范文)

    内外网分离解决方案 随着计算机在报社的普及,对互联网的广泛使用,网络病毒的泛滥,以严重干扰了采编工作。面对目前乃至以后计算机的发展,病毒与反病毒将会在很长的时间内共存,是......

    猪多杀性巴氏杆菌的分离鉴定及生物学特性研究

    猪多杀性巴氏杆菌的分离鉴定及生物学特性研究 唐先春1, 吴 斌1*, 索绪峰2, 王大林2 ,陈焕春1, 尹争艳1 (1.华中农业大学动物病原微生物实验室, 武汉430070) (2.海口市美兰区罗......

    土壤中放线菌的分离和纯化实验(精选5篇)

    土壤中放线菌的分离和纯化实验 一、实验目的 1、制作MS培养基的方法,掌握母液的保存方法。 2、掌握培养基的灭菌方法。 掌握外植体的消毒和超净工作台的使用。 4、掌握放线菌......

    三红蜜柚生物学特性及栽培技术

    摘要 介绍了三红蜜柚的生物学特性,并对三红蜜柚的主要栽培技术进行了概述,以供参考。 关键词 三红蜜柚;生物学特性;栽培技术 中图分类号 s666.3.04+.7 文献标识码 b 文章编号 1......

    土壤中放线菌的采集、分离、培养、发酵及提取实验报告

    土壤中放线菌的采集、分离、培养、发酵及提取 实验目的: 1、从土壤中分离产抗生素的放线菌 2、放线菌的培养 3、放线菌的发酵产生活性物质 4、放线菌产生的活性物质提取。 实......

    实验2 土壤中稀有放线菌的分离--土壤样品采集

    实验2 土壤中稀有放线菌的分离--土壤样品采集 1 目的 1.1 了解微生物分离和纯化的原理 1.2 掌握常用的分离纯化微生物的方法 2 原理 从混杂微生物群体中获得只含有某一种或......

    果树生物学特性调查及田间管理实习报告

    果树生物学特性调查及田间管理实习报告 一、实习目的 通过果树夏季肥水管理和整枝修剪的实习,将理论知识应用到具体实践中去,提高同学们解决实际生产问题的能力,提高同学们熟练......