线性代数 §1.2 n阶行列式 习题与答案

时间:2019-05-14 03:47:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线性代数 §1.2 n阶行列式 习题与答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线性代数 §1.2 n阶行列式 习题与答案》。

第一篇:线性代数 §1.2 n阶行列式 习题与答案

第一章

行列式 ——

§1.2 n阶行列式

§1.2 n阶行列式

为了得到更为一般的线性方程组的求解公式,我们需要引入n阶行列式的概念。为此,先介绍排列的有关知识。

㈠排列与逆序:(课本P4)

1、排列的定义:由数码1,2,…,n,组成一个有序数组i1i2in,称为一个n级排列。

【例1】1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列。(课本P4中例)

【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3!= 6个。

【例3】数字由小到大的n级排列1234…n 称为自然序排列。

2、逆序的定义:在一个n级排列i1i2in中,如果有较大的数it排在is的前面,则称it与is构成一个逆序。(课本P4)

【例4】在4 级排列3412中,31,32,41,42,各构成一个逆序,在5 级排列34152中,31,32,41,42,52,共构成5个逆序。

3、逆序数的定义:一个n级排列i1i2in中逆序的总数,称为这个排列的逆序数,记为N(i1i2in)。(课本P4)【例5】排列3412的逆序数为N(3412)= 4,排列52341的逆序数为N(52341)= 7,自然序排列的逆序数为0。

4、奇、偶排列的定义:如果排列i1i2in的逆序数N(i1i2in)是奇数,第一章

行列式 ——

§1.2 n阶行列式

则将i1i2in称为奇排列;如果排列i1i2in的逆序数N(i1i2in)是偶数,则将i1i2in称为偶排列。(课本P4)

【例6】由于N(3412)= 4,知排列3412是偶排列,由于N(52341)=7,知排列52341是奇排列,由于N(123…n)= 0,知自然排列123…n是偶排列。

【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!= 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。奇偶排列各占一半。

5、对换的定义:在一个n级排列i1itisin中,如果其中某两个数it与is对调位置,其余各数位置不变,就得到另一个新的n级排列i1isitin,这样的变换称为一个对换,记作(it,is)。(课本P5)

【例8】在排列3412中,将4与2对换,得到新的排列3214。【例9】偶排列3412经过4与2的对换后,变成了奇排列3214;

反之,奇排列3214经过2与4的对换后,变成了偶排列3412。定理1.任意一个排列经过一个对换后,其奇偶性改变。(课本P5)定理的证明见课本P5。

【例10】奇排列132经对换(3,2)得到偶排列123,偶排列312经对换(1,2)得到奇排列321。

定理1.n个数码(n2)共有n!个n 级排列,其中奇、偶排列各占一半。(课本P6)

定理的证明见课本P6。

【例11】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!= 6个,其中,奇排列有132,213,321三个,偶排列有 2 第一章

行列式 ——

§1.2 n阶行列式

123,312,231三个。

相应练习见课本

【第四版】习题一(A)中的8大题。

= ㈡ n阶行列式的定义:(课本P6)

我们从观察二阶、三阶行列式的特征入手,引出n阶行列式的定义。二阶行列式为a11a21a12a22a11a22a12a21,a11三阶行列式为a21a12a22a32a13a23a11a22a33a12a23a31a13a21a32 a33a11a23a32a12a21a33a13a22a31,a31我们可以从二阶、三阶行列式中发现以下规律:

(1)二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2)二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;

(3)每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号。

作为二、三阶行列式的推广,我们给出n阶行列式的定义。定义1.2 用n个元素aij(i,j1,2,,n)和双竖线组成的记号 2 3 第一章

行列式 ——

§1.2 n阶行列式

a11a21an1a12a1n

a22a2nan2ann称为n阶行列式。有时简记为aij。(课本P7)

n阶行列式的定义包含如下的内容:

⑴构成:n阶行列式的横排称为行,纵排称为列。元素aij的第一个下标i表示这个元素位于第i行,称为行标,第二个下标j表示这个元素位于第j列,称为列标。(课本P7)

258【例12】三阶行列式 A147有3行3列共32 = 9个元素。

369其中,第二行元素为 1,4,7;第二列元素为5,4,6,元素7的位置为第2行第3列。

⑵含义:n阶行列式是n!个项的代数和,其中每一项是取自不同行和不同列的n个元素的乘积。(课本P8)

由于一个项中的n个乘积元素来自不同的行,而乘法满足交换率,故为方便分析,可以将n个元素按行码的自然数顺序排列,再分析列码的状态。

当行码按自然序列排列后,列码的不同排列即对应不同的项,由于n个元素共有不同排列n!个,从而n阶行列式中共有n!个不同的项。【例13】一阶行列式│a│= a只有1个项。【例14】三阶行列式

a11Aa21a31a12a22a32a13a23a11a22a33a12a23a31a13a21a32 a33 4 第一章

行列式 ——

§1.2 n阶行列式

a11a23a32a12a21a33a13a22a31,共有3!=6个不同的项,a11a22a33和a13a21a32的元素都来自不同行且不同列,都可能是A中的一个项,而a11a21a33中的a11与a21同来自第1列,不是其中的一个项,a13a21a22中的a21与a22同来自第2行,也不是其中的一个项,a11a22a33与a22a11a33是同一个项,a11a23a32与a11a22a33是不同的项。

⑶各项符号:n阶行列式中各项符号的确定有两种方法:

①只考察列标的排列:若该项中各元素的行标按自然数顺序排列,则列标构成的排列为偶排列时,该项取正号;为奇排列时,该项取负号。

亦即,将某项中各元素的行标按自然数顺序排列后得到a1i1a2i2anin,含ai1j1ai2j2ainjn的项应带符号为(1)N(i1i2in)。

于是n阶行列式所表示的代数和中的一般项为

(1)N(i1i2in)a1i1a2i2anin。(课本P7)

【例15】在5阶行列式中,a12a23a35a41a54与a12a21a35a43a54这两项各取什么符号?

【解】由于该两项的行标已按自然数顺序排列,故

a12a23a35a41a54应取符号为(1)N(23514)(1)41,为正号,a12a21a35a43a54应取符号为(1)N(21534)(1)31,为负号。

第一章

行列式 ——

§1.2 n阶行列式

②综合考察行标与列标的排列:若该项中各元素的行标构成的排列的逆序数为S,列标构成的排列的逆序数为T,则S+T为偶数时,该项取正号;S+T为为奇数时,该项取负号。

亦即,含ai1j1ai2j2ainjn的项应带符号为(1)N(i1i2in)N(j1j2jn)。

于是n阶行列式所表示的代数和中的一般项为

(1)N(i1i2in)N(j1j2jn)ai1j1ai2j2ainjn。(课本P10)

显见,①为②的特例。

【例16】在5阶行列式中,含a32a23a15a41a54或含a12a41a55a24a33的两项各取什么符号?

【解】由于该两项的行标未按自然数顺序排列,故

含a32a23a15a41a54的项应取符号为

(1)N(32145)N(23514)(1)341,为负号,含a12a41a55a24a33的项应取符号为

(1)N(14523)N(21543)(1)441,为正号。

⑷ n阶行列式的展开式:(课本P10)

n阶行列式的展开式有两种表达方式,一种较为简单,是将各项元素的行标按自然数顺序排列形式的表达式,另一种是各项元素任意排列的表达式。具体分别叙述如下:

①各项元素的行标按自然数顺序排列时:

第一章

行列式 ——

§1.2 n阶行列式

a11a21an1其中,(1)这里,a12a1na22a2nan2annN(i1i2in)1i1,i2,,inn(1)N(i1i2in)a1i1a2i2anin。

a1i1a2i2anin称为n阶行列式的一般项。

为连加号,表示对该符号下的所有项求和。

于是,n阶行列式展开后是n!个项的和,各项都含两个因素:

1》n个来自不同行和不同列的元素的乘积,2》将一个项的n个元素的行标按自然数顺序排列后,该项的符号由列标的排列数的奇偶性确定为(1)②一般情况下:

N(i1i2in)。

a11a21an1a11a1na22a2nan2annj1j2jn遍取所有n级排列(1)N(j1j2jn)a1j1a2j2anjn

i1i2in遍取所有n级排列j1j2jn(1)N(i1i2in)N(j1j2jn)ai1j1ai2j2ainjn

其中,(1)的普通形式。N(i1i2in)N(j1j2jn)ai1j1ai2j2ainjn是n阶行列式的一般项于是,n阶行列式展开后是n!个项的和,各项都含两个因素:

1》n个来自不同行和不同列的元素的积。

2》一个项的符号由行标的排列数与列标的排列数的和的奇偶性确定为(1)N(i1i2in)N(j1j2jn)。

【例17】求4阶行列式中带负号且包含因子a11和a23的所有项。

第一章

行列式 ——

§1.2 n阶行列式

【解】4阶行列式中,当行标按自然数顺序排列后,包含因子a11和a23的项为(1)a11a23a3ia4j其中,i,j可以分别是2,4之一。

由于2,4两个数可以产生两个不同的排列24和42,所以,4阶行列式中包含因子a11和a23的所有项可以为(1)N(1324)Na11a23a32a44或(1)N(1342)a11a23a34a42两项,但题目要求的是带负号的项,而因为N(1324)1为奇数,N(1342)2为偶数,故4阶行列式中带负号且包含因子a11和a23的所有项只有一个,为(1)N(1324)a11a23a32a44a11a23a32a44。

【例18】判断a14a23a31a42,a11a23a32a44,a11a24a33a44以及a31a24a43a12是a11否为四阶行列式Da12a22a32a42a13a23a33a43a14a24a34a44中的一项? a21a31a41【解】①a14a23a31a42的行标为1234,这4个元素来自不同的行,列标为4312,这4个元素来自不同的列。由于行标已按自然数顺序排列,其符号应为(1)N(4312)(1)51,故a14a23a31a42不是4阶行列式中的一项;

②a11a23a32a44的行标为1234,这4个元素来自不同的行,列标为1324,这4个元素来自不同的列。由于行标已按自然数顺序排列,其符号应为(1)N(1324)(1)11,故a11a23a32a44不是4阶行列式中的一项;

③a11a24a33a44的行标为1234,这4个元素来自不同的行,列标为1434,这4个元素中a24和a44都来自相同的第4列。故a11a24a33a44不是4 8 第一章

行列式 ——

§1.2 n阶行列式

阶行列式中的一项;

④a31a24a43a12的行标为3241,这4个元素来自不同的行,列标为1432,这4个元素来自不同的列。其符号应为(1)故a31a24a43a12不是4阶行列式中的一项;

N(3241)N(1432)(1)431,)【例19】若(1N(i432k)N(521j4)ai5a42a3ja21a4k是五阶行列式aij的一项,则j,j,k应为何值?此时该项的符号是什么?(课本P11例2)

【解】①由于行列式定义规定每一项的元素来自不同行不同列,故五阶行列式的项中,行标和列标都只能是1,2,3,4,5这五个数字的排列,从而,该项的列标52j14中的j只能是3,该项的行标i432k中的i和k只能从1和5中选择,于是i1,k5或i5,k1,综合起来,应得两组答案:i1,j3,k5或i5,j3,k1。

②当i1,j3,k5时,该项的符号是

(1)N(14325)N(52314)(1)361,即a15a42a33a21a54是五阶行列式aij的一项;

当i5,j3,k1时,该项的符号是

(1)N(54321)N(52314)(1)1061,即a55a42a33a21a14是五阶行列式aij的一项。

a【例20】计算行列式

b0h0e000f0。00gcd 9 第一章

行列式 ——

§1.2 n阶行列式

【解】由于该4阶行列式的各项中,只要含有一个0元素,该项就为0,所以,要计算该4阶行列式,只须找到其由不同行不同列的4个非0元素相乘的所有项。

考虑到来自不同行及不同列的要求,该4阶行列式不为0的项,使行标按自然数顺序排列后,只有含adfh及含bdfg的两个,而含adfh的项,其符号为(1)N(1342)(1)21,知该项为adfh,(1)31,知该项为含bdfg的项,其符号为(1)N(2341)bdfg,a从而,b0h0e000f***11adfhbdfg。00gcd【例21】用行列式定义计算。(课本P11)

【解】用aij表示行列式中第i行第j列元素,由于该4阶行列式的各项中,只要含有一个0元素,该项就为0,所以,要计算该4阶行列式,只须找到其不为0的所有项。而要得到非0项,项中各元素必须非0!

【解法一】第一行若取a12,这样第二行无论取a21还是a23,第三行都必然取到0,这样无法得到非0项;

第一行若取a14,这样第二行无论取a21还是a23,第三行都必然取a32,10 第一章

行列式 ——

§1.2 n阶行列式

这时,当第二行取a21时,取完第三行后得到a14a21a32,第四行可取a43,当第二行取a23时,取完第三行后得到a14a23a32,第四行必然取到0,综上知,该行列式中仅有含a14a21a32a43的一项非0,该项符号为(1)N(4123)(1)31,于是,由于a14a21a32a431,得

***1【解法二】由于第三行只有一个非零元,故可以从它入手,按不同行不同列的原则去确定展开式中的项的构成:

取定a32后,第一行就只能取a14了,从而第四行也就只能取a43了,于是,最后确定第二行只能取a21了。于是确定展开式中仅有一个非零项,它由a14,a21,a32,a43构成,而含这四个元素的项的符号由逆序数N(4123)3确定,为负号,1。

0101即知,1010010000111。

【例22】计算上、下三角形行列式和对角形行列式。

【补充定义】上三角形行列式就是主对角线下方元素全为0的行列式,下三角形行列式就是主对角线上方元素全为0的行列式,对角形行列式就是主对 11 第一章

行列式 ——

§1.2 n阶行列式

角线以外元素全为0的行列式。【解】先计算上三角形行列式的值:

a11000a12a2200a13a1na23a2na33a3n 0ann要得到其非零项,第一列元素只能取a11,这时,第二列元素只能取a22,从而,第三列元素只能取a33,…,最后,第n列元素只能取ann,于a110是,0a12a2200a13a1na23a2na33a3na11a22a33ann。0ann0结论:上三角形行列式的值等于其主对角线上元素的相乘积。同样道理,下三角形行列式和对角形行列式的值都等于其主对角线上元素的相乘积。

a11a21a31an1a110000a22a32an20a220000000a11a22a33ann,a33an3ann00000a11a22a33ann。

a330ann结论是:上三角形、下三角形、对角形行列式的计算结果,都是主对角 12 第一章

行列式 ——

§1.2 n阶行列式

线上元素的相乘积。

相应练习见课本

【第四版】课本习题一(A)中的⒏⒐⒑⒒12.大题。

第二篇:线性代数习题答案

习题 三(A类)

1.设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)

2.设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α)整理得:α=16163(3α1+2α2-5α3),即α=(6,12,18,24)

=(1,2,3,4)3.(1)×

(2)×

(3)√

(4)×

(5)×

4.判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2)α1=(1,2),α2=(2,3), α3=(4,3);(3)α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4)α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5.设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关.证明:设

k11k2(12)k3(123)0,即

(k1k2k3)1(k2k3)2k330.由1,2,3线性无关,有

k1k2k30, k2k30,k0.3所以k1k2k30,即1,12,123线性无关.6.问a为何值时,向量组

1(1,2,3),2(3,1,2),3(2,3,a)

'''线性相关,并将3用1,2线性表示.1312237(5a),当a=5时,3a117解:A231172.7.作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关, 所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,110)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为110100100000.01

8.设1,2,,s的秩为r且其中每个向量都可经1,2,,r线性表出.证明:1,2,,r为1,2,,s的一个极大线性无关组.【证明】若

1,2,,r

(1)线性相关,且不妨设

1,2,,t(t

(2)是(1)的一个极大无关组,则显然(2)是1,2,,s的一个极大无关组,这与1,2,,s的秩为r矛盾,故1,2,,r必线性无关且为1,2,,s的一个极大无关组.9.求向量组1=(1,1,1,k),2=(1,1,k,1),3=(1,2,1,1)的秩和一个极大无关组.【解】把1,2,3按列排成矩阵A,并对其施行初等变换.11A1k11k111200110110100k101k1k01110100k1001k011k10010 10当k=1时,1,2,3的秩为2,1,3为其一极大无关组.当k≠1时,1,2,3线性无关,秩为3,极大无关组为其本身.10.确定向量3(2,a,b),使向量组1(1,1,0),2(1,1,1),3与向量组1=(0,1,1), 2=(1,2,1),3=(1,0,1)的秩相同,且3可由1,2,3线性表出.【解】由于

0A(1,2,3)111B(1,2,3)1012111111001021a0b011021001;02,ba2

而R(A)=2,要使R(A)=R(B)=2,需a2=0,即a=2,又

0c(1,2,3,3)1112110121a0b0210010 ,2ba2a要使3可由1,2,3线性表出,需ba+2=0,故a=2,b=0时满足题设要求,即3=(2,2,0).11.求下列向量组的秩与一个极大线性无关组.(1)α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2)α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);

(3)α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α=(2,1,5,6).解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B,则 111 0 1 4 11 4 11 4 1950 1 2 1 30 9 55A90 1 B

1 5 40 9 590 0 00 0 00 0 03 6 70 18 100 0 05可知:R(Α)=R(B)=2,B的第1,2列线性无关,由于Α的列向量组与B的对应的列向量有相同的线性组合关系,故与B对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组.(2)同理, 6 1 1 70-11 55 71 2-9 0 4 0 4 10 8 40 10-11 55 7 1 2-9 01 2-9 00-8 40 11 3-6 10 5-15-10 5-15-1 2 4 22 30 8 40 10 0 0 01 2-9 070 1-5-11450 0 0-11240 0 10 110 0 0 01 2-9 01 0 0 00 1-5 00 1 0 00 0 10 00 0 1 0B0 0 0 10 0 0 10 0 0 00 0 0 0

可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组.(3)同理,1 0 3 1 21 0 3 1 21 0 3 1 21 0 3 1 2-1 3 0-1 10 3 3 0 30 1 1 0 10 1 1 0 1, A2 1 7 2 50 1 1 0 10 0 0-4-40 0 0 1 14 2 14 0 60 2 2-4-20 0 0 0 00 0 0 0可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.(1)α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2)α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7).解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.31 0 11-1 5-11-1 5-11-1 5-1271 1-2 30 2-7 470 1-2 20 1-2B, A3-1 8 10 2-7 420 0 0 00 0 0 00 0 0 01 3-9 70 4-14 8 0 0 0 0可知,α1,α2为向量组的一个极大无关组.x1x2537x1x22设α3=x1α1+x2α2,即解得,x1,x2

223x1x28x3x912x1x21x1x23设α4=x3α1+x4α2,即解得,x11,x22

3x1x21x3x712所以a332a172a2,a4a12a2.1 1 1 4-31 1 1 4-31 0 2 1-21-1 3-2-10-2 2-6 20 1-1 3-1B(2)同理, A2 1 3 5-50-1 1-3 10 0 0 0 03 1 5 6-70-2 2-6 20 0 0 0 0可知, α

1、α2可作为Α的一个极大线性无关组,令α3=x1α1+x2αx1x21可得:即x1=2,x2=-1,令α4=x3α1+x4α2, xx312x1x24可得:即x1=1,x2=3,令α5=x5α1+x6α2, x1x22x1x23可得:即x1=-2,x2=-1,所以α3=2α1-αxx1122 α4=α1+3α2,α5=-2α1-α 13.设向量组1,2,,m与1,2,,s秩相同且1,2,,m能经1,2,,s线性表出.证明1,2,,m与1,2,,s等价.【解】设向量组

1,2,,m

(1)与向量组

1,2,,s

(2)的极大线性无关组分别为

1,2,,r

(3)和

1,2,,r

(4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

riaj1ijj(i1,2,,r).因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出j(j1,2,,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14.设向量组α1,α2,…,αs的秩为r1,向量组β1,β2,…,βt的秩为r2,向量组α1,α2,…,αs,β1,β2,…,βt的秩为r3,试证:

max{r1,r2}≤r3≤r1+r2.证明:设αs1,…,Sr1为α1,α2,…,αs的一个极大线性无关组, βt1,βt2,…,t为β1,r2β2,…,βt的一个极大线性无关组.μ1,…,r为α1, α2,…,αs,β1,β2,…,βt的一

3个极大线性无关组,则α

s1,…,S和βt1,…,β

r1tr2

可分别由μ1,…,r线性表示,所

3以,r1≤r3,r2≤r3即max{r1,r2}≤r3,又μ1,…,r可由α

3s1, …,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r3≤r1+r2.15.已知向量组α1=(1,a,a,a)′,α2=(a,1,a,a)′,α3=(a,a,1,a)′,α4=(a,a,a,1)′的秩为3,试确定a的值.解:以向量组为列向量,组成矩阵A,用行初等变换化为最简形式: 1 a a a1 a a a13a a a aa 1 a aa-1 1a 0 00 1-a 0 0 a a 1 aa-1 0 1-a 00 0 1-a 0a a a 1a-1 0 0 1-a0 0 0 1-a由秩A=3.可知a≠1,从而1+3a=0,即a=-

13.16.求下列矩阵的行向量组的一个极大线性无关组.2575(1)75***4204311320;

(2)213448112012130251411.3112【解】(1)矩阵的行向量组的一个极大无关组为1,2,3;

3412(2)矩阵的行向量组的一个极大无关组为1,2,4.3417.集合V1={(x1,x2,,xn)|x1,x2,,xn∈R且x1x2xn=0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V1知V1非空,设(x1,x2,,xn)V1,(y1,y2,,yn)V2,kR)则

(x1y1,x2y2,,xnyn)k(kx1,kx2,,kxn).因为

(x1y1)(x2y2)(xnyn)(x1x2xn)(y1y2yn)0, kx1kx2kxnk(x1x2xn)0,所以V1,kV1,故V1是向量空间.18.试证:由1(1,1,0),2(1,0,1),3(0,1,1),生成的向量空间恰为R3.【证明】把1,2,3排成矩阵A=(1,2,3),则

1A101010120, 1所以1,2,3线性无关,故1,2,3是R3的一个基,因而1,2,3生成的向量空间恰为R3.19.求由向量1(1,2,1,0),2(1,1,1,2),3(3,4,3,4),4(1,1,2,1),5(4,5,6,4)所生的向量空间的一组基及其维数.【解】因为矩阵

A(1,2,3,4,5)1210111234341121415006401102320411114130024011003200111043 ,20∴1,2,4是一组基,其维数是3维的.20.设1(1,1,0,0),2(1,0,1,1),1(2,1,3,3),2(0,1,1,1),证明: L(1,2)L(1,2).【解】因为矩阵

A(1,2,1,2)110010112133011001101100230001 ,00由此知向量组1,2与向量组1,2的秩都是2,并且向量组1,2可由向量组1,2线性表出.由习题15知这两向量组等价,从而1,2也可由1,2线性表出.所以

L(1,2)L(1,2).21.在R3中求一个向量,使它在下面两个基

(1)1(1,0,1),(2)1(0,1,1),2(1,0,0)2(1,1,0)3(0,1,1)3(1,0,1)

下有相同的坐标.【解】设在两组基下的坐标均为(x1,x2,x3),即

x1x1(1,2,3)x2(1,2,3)x2,x3x31011000x101x2111x31101x10x21x3

1102101x1x0, 120x3求该齐次线性方程组得通解

x1k,x22k,x33k

(k为任意实数)故

x11x22x33(k,2k,3k).22.验证1(1,1,0),2(2,1,3),3(3,1,2)为R3的一个基,并把1(5,0,7), 2(9,8,13)用这个基线性表示.【解】设

A(1,2,3),B(1,2),又设

1x111x212x313,2x121x222x323, 即

x11(1,2)(1,2,3)x21x31x12x22, x32记作

B=AX.则

1(AB)1010***25079r2r18131002331003420105570019r2r317r2r3132313329作初等行变换134

因有AE,故1,2,3为R3的一个基,且

2(1,2)(1,2,3)3133, 2即

121323,2313223.(B类)

1.A 2.B 3.C 4.D 5.a=2,b=4 6.abc≠0

7.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表示?证明你的结论.(2)α4能否由α1,α2,α3线性表示?证明你的结论.解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3, α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性相关,但其中任意

n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,kn,kn+1,使

k1α1+k2α2+…+kn+1αn+1=0.证明:因为α1,α2,…,αn,αk1α1+k2α2+…+kn+1αn+1=0

n+1=0,由任意

n+1线性相关,所以存在不全为零的k1,k2,…,kn,kn+1使若k1=0,则k2α2+…+kn+1αn个向量都性线无关,则k2=…=kn+1=0,矛盾.从k1≠0,同理可知ki≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,kn,kn+1,使k1a1+k2a2+…+kn+1an+1=0.9.设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.

第三篇:线性代数习题答案

综合练习一01AA.01BB、C.01CA.01DA.01Er2,s5,t8或r5,s8,t2或r8,s2,t5.01Fi2,j1.01G12.01Ha13a25a31a42a54;a13a25a32a44a51;a13a25a34a41a52.01I排列的逆序数为k2;当k为偶数时,排列为偶排列,当k为奇数时,排列为奇排列.a11aaa01K(1)1;(2)(aa1222a13a1411a22a33a44);(3)aa21aa23a24a3141a3242a3343a34.44f(x)g(x)s(x)01M48x18.01Nf(x)g(x)s(x).01O1.f(x)g(x)s(x)02AB、D.02B3.02C6.02Dx0,1,2.02E(1)n1(n1)xn.02F(12131)n!.02G(1)n(n1)2nn1(n1)n.2.02H(1)n1(nax)xn1.02I(1)n[(1)nn].03AB.03BD.03CD.03DD.03E12246000.03Fa0,b0.4403G1,3.03Habii03If(x)2x23x1.i1i1ai03Jx4.03L0.03M0.04A(1aa2)(1a)3.04Bn1.04Cx1x2...xn1(1a1x1a2x2...anxn).04Dx1x2...xn[1a(1x1...1.1x2xn)]04E(x1)n..49.04F1(1)a1(1)2a2an1...(1)anan1...a2a1n04G(n1)当a,n1n1当a.05A0.05B1.05C12/5.05D0.05E0.05F0.05G(1)0;(2)144.05H9,18.06An!(n1)!(n2)!...2!1!.06B(cos).4ij1icosj07A(1x)2(10x).08AA、B.08BD.08CC、D.08DD.08E2.08Fa0且bb/4.08Gf(x)2x23x1.08H甲、乙、丙三种化肥各需3千克,5千克,15千克.综合练习二01AB.01BD.01CC.01DC.01ED.01FB.01GD.01HC.01I1/3.01J2.01K0.01La2(a2n).01N(AB)(AB).01S(2)A249(A2E).01T(1)1,(2)n.01U(1)(1)n1n1k2(n1)!.(2)(1)n1n!(k1,2,,n).01V两年后在岗职工668人,培训人员334人.01W即晴天概率为146256,阴天的概率为6248256,下雨天的概率为256.xnx426001X1y023/21/200xn.yn1nyzn101/40zn4236z224012102A4982242.02B2n102420121.02C2220242222.1nn(n1)2.4n14n0002D201n.02En1n142.400001002nn.2n1.0002n.50.10002FA20061.由于A5A.1100003A(1)(1)n11(2)1200n!A.0230.0034(3)A6E.(4)12(EB).(5)B(E2A)1.10103BB510E.03D1211.03C(2)A2A5(A2E).03EA11(A3E).(A4E)11106(AE).03FB1114(5A23AE).03G(EABA)1B(EAB)1B1.03HB1110(A23A4E).03I(EAB)1EA(EBA)1B.10001/21/20003NA1003O1122212.1/21/61/391/85/241/121/422100201003403P000123310005200003Q(A1A2A41A3)1A11A2(A4A3A11A2)1A111(A4A3(A1A2A4A3)4A3A11A2)1.04A(1)8/3;(2)9;(3)81;(4)1/9;(5)1/3;(6)576;(7)3.04B10804F521220101.04GA0A(bTA1),05AD.05C2.05D当a1且b2,r(A)4;当a1且b2时,r(A)2;.51.当a1,b2或a1,b2时,r(A)3.05E当c1,并且a1或b0时,r(A)1;当c1,a1且b0时,r(A)3;当c1,但a1或b0时,r(A)3;当c1,a1且b0时,r(A)2.05F当ab0时,r(A)0;当ab0时,r(A)1;当ab,且a(n1)b0时,r(A)n1;当ab,且a(n1)b0时,r(A)n.05G11n.05Hr[(A*)*]n,如果r(A)n,0,如果r(A)n.1111101005K111105L01041111.11110010.00022400110005M220005N12200022.00120233.003405OA.0211106A1321.06B202.03052231106C43206D22.319/213/2.21112300106E020.06F21001.121012103006G003300..52.综合训练三01AC.01BB.01CB.01Dt1.01Ea2b.01F(1)当t5时,1,2,3线性相关;(2)当t5时,1,2,3线性无关;(3)3122.01G(1)当a1时,1,2,3线性相关;(2)当b2且a1时,可由i唯一的表出:122;当b2且a1时,可由i线性表出:(2t1)1(t2)2t3,其中t是任意常数.02AB.02BC.02C B.02D D.02E t5.02F不能.02G(1)能;(2)不能.02I(1)当a2时,不能用1,2,3线性表出;(2)当a2且a1时,有唯一的表达式:a11(a1a2a2)212a23;当a1时,(1kl)1k2l3,k,l.02J(1)若0且3,可由1,2,3唯一线性表示;(2)若0,可由1,2,3线性表示,但不唯一;(3)若3,不能由1,2,3线性表示.02K(1)当b2时,不能由1,2,3线性表出;(2)当b2,a1时,可唯一表示为122;当b2,a1时,可表示为(2k1)1(k2)2k3()k为任意常数.02L(1)当a1,b0时,不能表示成1,2,3,4的线性组合;(2)当a1时,有唯一表示式:2ba1ab1b1a12a130.402M(1)当a4时,可由1,2,3唯一线性表出..53.(2)当a4时,不能由1,2,3线性表示.(3)当a4且3bc1时,可由1,2,3线性表出,但不唯一:t1(2tb1)2(2b1)3(t为任意常数).02N不等价.03AD.03B1.03Cn.03D(1)R(1,2,3,4)2;向量组的一个极大无关组为2,4;12(24),3234;(2)R(1,2,3,4,5)3;向量组的一个极大无关组为1,3,5;2135,4135;(3)R(1,2,3,4,5)3;向量组的一个极大无关组为1,2,3;4123,5120.3.03ER(1,2,3,4,5)3.03Fa15,b5.04AD.04B(1,0,0,...,0)T.04Ct1.x1y1104D4.04E矩阵xy221的秩小于3.xnyn111422204F(1)C3,(CR);(2)k170k012,(k1,k2R);201523/23/4(3)C13/2C217/40,(C1,C2R).0104G(1)无解;(2)(1/2,2,1/2,0)Tk(1/2,0,1/2,1)T,其中k为任意常数;(3)(514,3314,0,7)Tk(1,1,2,0)T.(k为任意常数);.54.(4)C131(7,177,1,0,0)TC(101911127,7,0,1,0)TC3(7,7,0,0,1)T(2,3,0,0,0)T,(C1,C2,C3R).04H(1)1,2,3是所给方程组的基础解系.(2)1,2,3不是所给方程组的基础解系.104I当1时,有解,解为1k12,其中k为任意常数.0104J(1)当1且45时,方程组有唯一解;1当1时,其通解为1k01,其中k0为任意实数;1当45时,原方程组无解;(2)当2且1时,方程组唯一解;当2时,方程组无解;当1时,方程组有无穷多组解.全部解为21k110k012001,其中k1,k2是任意常数.04K(1)当a0时,方程组无解;x12/a,当a0,b3时,方程组有唯一解:x21,x30;x12/a,当a0,b3时,方程组有无穷多解:x213t,(tR).2x3t.(2)当a0或a0时b4,方程组无解;方程组不可能有唯一解;当a0且b4时,方程组有无穷多解.通解是.55.(6,4,0,0,0)Tk1(2,1,1,0,0)Tk2(2,1,0,1,0)Tk3(6,5,0,0,1)T.其中k1,k2,k3是任意实数.(3)当a1,b36时,方程组无解;当a1,a6时,方程组有唯一解,x(b36)a1,x12(a4)(b36)162a1,xb36230,x4a1;当a1,b36时,方程组有无穷多解,通解为(6,12,0,0)Tk(2,5,0,1)T.k为任意常数;当a6时,方程组有无穷多解,通解是(1(1142b),1(122b),0,1(bT77736))k(2,1,1,0)T.04L(1)当ab,bc,ca时,方程组仅有零解x1x2x30.(2)当abc时,方程组有无穷多组解,全部解为k1(1,1,0)T(k1为任意常数).当acb时,方程组有无穷多组解,全部解为k2(1,0,1)T(k2为任意常数).当bca时,方程组有无穷多组解,全部解为k3(0,1,1)T(k3为任意常数).当abc时,方程组有无穷多组解,全部解为k4(1,1,0)Tk5(1,0,1)T(k4,k5为任意常数).2104M(1)方程组有无穷多组解,通解为41k(k为任意常数502).1(2)当m2,n4,t6时,方程组(I),(II)同解.04Na2,t4.04O非零公共解为t(1,1,1,1)T.(t为任意常数)04P原来至少要有3121个桃子,最后还剩下1020个桃子.05A B.05BC.05CA.05DC.05ED.05FD.05G1.05H1..56.05I(1,2,3,4)Tk(1,1,1,1)T,其中k是任意实数.05J(3,2,0)Tk(1,1,1)T.(k为任意常数)05K通解为(9,1,2,11)Tk1(10,6,11,11)Tk2(8,4,11,11)T05L3m2n.05M2.1/2005N通解为1/21k,其中k为任意常数.011105O(1)1可由2,3,4线性表出.(2)4不能用1,2,3线性表出.x1k2t,06A(2)通解是x2k2,其中t是任意实数.x3t,06B通解是(a8,4,2,1)T12a24a3,a22a3,a3,0)Tk(,其中k是任意实数.06E方程组的唯一解为(ATA)1ATb.06L(II)的通解为c1(a11,a12,...,a1,2n)Tc2(a21,a22,...,a2,2n)T...cn(an1,an2,...,an,2n)T,其中c1,c2,...,cn为任意常数.综合练习四1/21/61/(23)01A45.01B11/221/6;31/(23).0;02/601/(23)3/202A(1)10,22,33,1/2k10对应特征向量为11/2,1.57.1122对应特征向量为k2,013对应特征向量为k331.1(2)18,231,218对应特向量为k11,其中k1为任意非零常数.21231对应特征向量为k201k32,其中k2,k3是不全为10零的实数.(3)101232全部特征向量为k12k20,(k1,k2不全为零).0102BA的特征值是1,2,2a1,a221对应的特征向量依次是k13,k22,k31.(k1,k2,k3全不为0).01a102CA的特征值2(二重)及0,2对应特征向量为k1(0,1,0)Tk2(1,0,1)T.0对应特征向量为k3(1,0,1)T.02D(1)当b0时,A的特征值为12na,则任一非零向量均为其特征向量.(2)当b0时,A的特征值为12n1ab,na(n1)b当1n1ab对应特征向量为1111k1000k21kn100,01.58.1a(n1)b对应特征向量为k1nn,(kn0).102Ea2,b3,c2,01.2n21102F112n212n23n1.112n202GA与B特征值相同但不相似.02Ha7,b2,P15112202I1102.0.101302Ja1,b8,c10.02K(1)|EA|4a34a23a2a1.03AB.03BB.03CA.03D(1)k(2)2i(i1,2,,n);i(i1,2,,n);(3)kii(i1,2,,n);(4)i(i1,2,,n);(5)1(i1,2,,n);(6)|A|1,2,,n);i(ii(7)f(i),(i1,2,,n).03E|A|21.03F1/2.03G2203H4/3.03J(1)0;(2)A的特征值全为零.0对应特征向量为k11k11...kn1n1(k1,k2,...,k3不全为零的任意常数).03L3,2,2.03M(1)P1AP全部特征值是1,12,,n.Pi是P1AP的属于i的特征向量..59.(2)(P1AP)T全部特征值是11,2,,n.PTi是(PAP)T的属于i的特征向量.03P1(n1重),3,1对应特征向量为k1(y2,y1,0,,0)Tk2(y3,0,y1,,0)Tkn1(yn,0,0,,y1)T,k1,k2,,kn1不全为0,3对应特征向量为kn(x1,x2,,xn)T,kn0.04AD.04B546333.76804C(1)a3,b0,1.(2)A不能相似于对角阵.404D当a1时,A1116114.442当a111410222时,A301055.22519132504E(1)3k(1,0,1)T(2)A162102.(k);为任意非零常数521301104F1/201/200004G.1011/201/2.11011104H111.04IAPP1P(2E)P12E.1115404J6333.76804OA的特征值是2与1(n1重)..60.X1(1,1,,1)T是A属于2的特征向量,X2(1,1,0,,0)T,X3(1,0,1,,0)T,,Xn(1,0,0,,1)TA属于1的特征向量.11112n2n2nA111112n2n2n.12n112n12n05A0.05BA能对角化.05CA能对角化.1105D(1)12(2);1;(3)311;21(4)1(5)A2.;不能对角化;(6)20405E令P212100,则11.011021005F(1)T12403212,T1AT010122002.111263(2)T111133263,TAT.01166311123605GP120036,P1AP1.1114236.61.221535305HQ1425353,QTAQ22.705235305Ia1,b3.A能对角化.05J01,a3,b0.A不能相似于对角阵.1105Kxy0.05L111111.05MA~1111.0905N105PA~B.0.00105Q(1)x0,y2;(2)P210.11106An!.06B6.06C(2n3)!.06Dk(k2)2.06FO.06EE.3n13n106G(1)(2)6n13123n123n1;93;(3)10013n123n13n.13n223n23n06Hx10051001.06Ix51003210013.n06Ja1n563,nliman5.06Ka站至多有240只小船,b站至少有80只小船..62.是综合练习五01AB.01BB.01CB.01D3.01E1.00101F010.01Gy21y22y23.10001H(1)fz21z22,相应的线性变换为zPy(P1112P1)x.P1010,P1002013,001001x1(2)z2z22111/2z112z3.相应的线性变换x2x3112z2.001/2z3100(3)f12y2222y3相应的线性变换x1101/21/21y,x101Ix1212y1201Jc3,4y219y22.3122y2x3221y311126301Ka2,b3.xCy,C111263,2106301Lf(x)x2221,x2,x312x2x32x1x22x2x34x1x3.切平面方程为2x1x2x31.02AD.02BA.02CC.02DA.02EC.02F(2,2).02G(1)正定.(2)正定.02H(1)2;(2)1.1012241102I0,P01002NB1314111.114.022.63.综合练习六01A(1)V1是向量空间.(2)V2是向量空间.01B(1)W1不是子空间.(2)W2是子空间.dimW22.(0,1,0),(0,0,1)是W2的一组基.(3)W3是子空间,dimW32.(1,1,0),(2,0,1)是W3的一组基.(4)W4不是子空间.(5)W5不是子空间.01CW1W2是V的子空间,W1W2不一定是V的子空间.T02B5114,14,4,4.02C坐标变换公式为x1111x1x1212x1x2102x2或x32001x2x010x3x3111x3在所给定的两组基下具有相同坐标的全部向量为k32,k3为任意实数.T02D(1)(3,4,4)T;(2)112,5,132.02E(5/21/21,2)(1,2,3)3/23/2.5/25/202F(1,2,2)T时,坐标乘积的极大值是18.002G(1)A110011000110.1011(2)所求非零向量010203k4k4(k为非零任意常数).02H(1)111011;(2)0011(1,0,0)T,2(0,1,0)T,3(0,0,1)T;(3)A11.02I(1,1,,1).3.64.a11a1203Aa21a22a11a12a31a32a2203C(1)a12a32a21a11a31a23a13;a33a12a22a12a32a13a23a13.a3301103B020.210a11a21(2)ka31ka12a22ka32a13a23;ka33a11a21a11a12a21a22(3)a21a31a21a22a31a32aa31a3231a11a12a13a21a22a23a21a22a23a31a32a33a31a32a33.65.

第四篇:线性代数教案-第三章 行列式及其应用

第三章行列式及其应用

本在线性代数应用于几何、分析等领域时,行列式理论起着重要的作用,线性代数范畴的矩阵理论的进一步深化,也要以行列式作工具.本章研究行列式理论以及它的一些作用.一、教学目标与基本要求

(一)知识

1n阶行列式的定义及性质

现将这些性质作为公理体系来定义n阶行列式.设A[aij]是任意一个n阶方阵,用Ai记其第i行元素为分量的n元向量,即

2,,n, Ai(ai1,ai2,,ain),i1,并称其为行向量.有序向量组{A1,,An}所定义的实值函数d(A1,,An)被称为n阶行列式函数,如果它满足下列公理: 公理1 对每行具有齐性,即对任意实数t,有

,n.d(,tAk,)td(,Ak,),k1,公理2 对每行都具加性.即对任意n元向量B,有

d(,AkB,)d(,Ak,)d(,Ak1,B,Ak1,), k1,,n.公理3若任意相邻两行相等,则行列式为零.即若AkAk1(k1,,n1),则d(A1,,An)0.公理4 对于R中常用基{e1,,en},有 nd(e1,,en)1.当{A1,,An}取定,则称d(A1,,An)为一个n阶行列式.有时也简称为n阶行列式函数为n阶行列式.n行列式常被记为detA,|A|,或

a11a21an1a12a22a1na2n.an2ann公理4意味着,对于n阶单位方阵E,有 detE|E|1.前两个公理意味着,行列式函数是它每一行的线性函数,即对任意一行(如第1行)而言,若t1,,tp是任意p个实数,B1,,Bp是任意p个n元向量(p是任意正整数),有

d(tkBk, A2,,An)tkd(Bk,A2,,An)

k1k1pp定理3.1.1满足公理1,2,3的行列式函数d(A1,,An)具有以下性质:(1)若行列式某一行为零,则此行列式为零.(2)对调行列式任意两行,则行列式变号.(3)若行列式任意两行相等,则此行列式为零.(4)若向量组{A1,,An}是相关的,则行列式d(A1,,An)0.(5)把行列式某行乘以数加到另一行去,行列式值不改变.行列式的计算

例3.2.2设A是形如下式的n阶对角方阵

a11000a22000(a0,ij)

ijann则detAa11a22ann.由该例可得到: 例3.2.3设A是形如下式的n阶上三角方阵

a1100a12a220a1na2n(主对角线下方各元素为零)ann则detAa11a22ann.定理3.2.1 设d是满足行列式公理1~4的n阶行列式函数,f是满足行列式公理1~3的n阶行列式函数,则对任意选定的n元向量A1,,An及R中常用基{e1,,en},有

nf(A1,,An)d(A1,,An)f(e1,,en).(3.2.2)若f还满足行列式公理4,则有

f(A1,,An)d(A1,,An).1定理3.2.2 若A是一个非奇异方阵(即A存在),则detA0,且

detA11 detA定理3.2.3 设A1,,An是n个n元向量.该向量独立的充要条件是d(A1,,An)0.本节最后,讨论分块对角方阵的行列式的简便算法.定理3.2.3 形如式(3.2.10)的分块对角方阵成立着

AOdetdetAdetB OB本定理可以推广到一般情形:若C是一个具有对角子块A1,,An的分块对角方阵,即

A1COA2O, An则detC(detA1)(detA2)(detAn).行列式的展开公式

定义3.3.1给定n阶方阵A[akj](n≥2).去掉其元素akj所在的第k行和第j列后,余下元素按原来位置构成的n1阶方阵,被称为元素akj的余子阵,记为Akj.而称detAkj为akj的余子式.定理3.3.1对任意n阶方阵A[akj](n≥2),有

(1)kjdetAkj,k1,,n.(3.3.2)detAkj从而有

n,n.(3.3.3)detAakj(1)kjdetAkj,k1,j1此式被称为行列式按第k行的展开式.定义3.3.2对行列式detA而言,称(1)kjdetAkj为元素akj的代数余子式,记为cofakj.下面将利用数学归纳法来证明n阶行列式函数的存在性,从而在理论上确立了n阶行列式函数的存在唯一性.与此同时,可得到行列式按列展开的公式.定理3.3.2设n1阶行列式函数存在.对任意n阶方阵A[akj],定义函数

f(A1,,An)(1)k1ak1detAk1,(3.3.4)k1n则它是n阶行列式函数

定理3.3.3对任意n阶方阵A[akj],有

(1)j1nnij ikdetA,(3.3.6)akjdetAij 0, ik ikdetA,ij(3.3.7)(1)adetAjkji ikj1 0,定理3.3.4对任意n阶方阵A[akj],有

detAdetAT.4 伴随阵及方阵的逆

定义3.4.1给定n阶方阵A[aij],称n阶方阵[cofaij]为A的伴随阵,记为

TA*.据此定义知: A的伴随阵A*位于第j行第i列的元素,就是A的元素aij的代数余子式

cofaij(1)ijdetAij.定理3.4.1对任意n阶方阵A[aij](n≥2),有

AA*(detA)E.1又:若detA0,则A存在,且有

A11A*.detA1定理3.4.2对任意n阶方阵A而言,A存在得充分必要条件是detA0.当detA0,就有

A111A*,detA1 detAdetA5

矩 阵 的 秩

定义3.5.1在一个mn矩阵A中,任取k行k列(k≤min(m,n)),位于这些行列交叉处的元素按原来位置构成的k阶行列式,被称为矩阵A的k阶子式.A中不为零的子式.A中不为零的子式的最高阶数,被称为矩阵A的秩,记为R(A).若A没有不为零的子式(等价的说法是: A是零矩阵),则认为其秩为零.推论 若A有一个r阶子式不为零,而所有r1阶子式全为零,则R(A)r.定理3.5.1初等变换不改变矩阵的秩.等价的说法是:若A~B(即A与B等价),则R(A)R(B).若A是n阶方阵且R(A)n,则称A为满秩方阵.显然,下列命题等价:(1)A是满秩方阵.(2)detA0.(3)A是可逆的(非奇异的).克莱姆法则

定理3.6.1对于含有n个未知量x1,,xn的n个线性代数方程构成的方程组

a11x1a12x2a1nxnb1,axaxaxb,2112222nn2(3.6.1)    an1x1an2x2annxnbn,(或写为aj1nij,n.)xjbi,i1,如果其系数方阵A[aij]是非奇异的(即detA0),则它是唯一解.这里cofakj是方阵A的元素akj的代数余子式.式(3.6.2)表示的线性代数方程组(3.6.1)的解亦可表示为

xjdetCjdetA,j1,,n.(3.6.3)这里方阵Cj是A中第j列换为列阵b所成的n阶方阵.读者容易验证(3.6.3)式右端与(3.6.2)式右端相等.二本章重点及难点

1、理解用公理定义行列式概念中的数学原理

2、利用公理4进行行列式计算

3、方阵的行列式及方阵可逆之间的关系

4、矩阵的秩

5、利用伴随阵求解方阵的逆

6、克莱母法则

三:本章教学内容的深化和拓宽

1. 2. 若第四个公理改变,行列式的值如何改变 当克莱母法则法则的相关条件改变又如何? 四:思考题和习题

1(3)(4)

3(1)5(2)

7(3)

10(2)15 16(2)

五、教学方式(手段)

本章主要采用讲授新课的方式。

第五篇:线性代数教案 第一节:低阶行列式

《线性代数》教案

第一章:行列式 本章重点:行列式的计算及其性质的应用

本章难点:行列式的几条性质的证明及利用这些性质计算行列式 基本要求:

1. 会用对角线法则计算2阶行列式和3阶行列式 2. 了解n阶行列式的概念

3. 了解行列式的性质并掌握4阶行列式的计算,会计算简单的n阶行列式 4. 了解克莱姆法则

下载线性代数 §1.2 n阶行列式 习题与答案word格式文档
下载线性代数 §1.2 n阶行列式 习题与答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数二次型习题及答案

    第六章二次型 B1与合同. AB22证:因为A1与B1合同,所以存在可逆矩C1,使B1C1TAC11, 1.设方阵A1与B1合同,A2与B2合同,证明T因为A2与B2合同,所以存在可逆矩C2,使B2C2A2C2. A1令CC1,则C可逆,......

    线性代数习题及答案复旦版

    线性代数习题及答案(复旦版) 线性代数习题及答案习题一 1. 求下列各排列的逆序数. 341782659; 987654321; n(n?1)…321; 13…(2n?1)(2n)(2n?2)…2. 【解】......

    线性代数 第一单元(行列式)试卷(专升本)

    第1题 标准答案:D 1-3-1 计算行列式 ,结果=( )。 A、60 B、70 C、80 D、90 第2题 标准答案:C 1-1-1 排列32145的逆序数是。 A、1 B、2 C、3 D、4 第3题 标准答案:B 1-2-1 已知3阶......

    线性代数附录答案习题1和习题2

    习题一 1.计算下列排列的逆序数 1)9级排列 134782695; 2)n级排列n(n1)2。1 解:(1)(134782695)04004200010 ;(2)[n(n1)21](n1)(n2)102.选择i和k,使得: 1)1274i56k9成奇排列; 2)1i25k4897为......

    线性代数习题册

    线 性 代 数习题册 江苏师范大学科文学院 第一章矩阵 重点掌握:矩阵的运算;行列式的计算;元素的代数余子式和伴随矩阵的定义;可逆矩阵的性质和逆矩阵的求法;矩阵秩的求法等。......

    线性代数习题2

    第2章线性方程组练习题 1、已知 1 = ( 1 , 1 , 0 , 1 )T ,2 = ( 2 , 1 , 3 , 1 )T ,3 = ( 1 , 1 , 0 , 0 )T ,4 = ( 0 , 1 , 1 , 1 )T , = ( 0 , 0 , 0 , 1 )T ,(1)求向量组 1 ,2 ,3......

    线性代数习题及解答

    线性代数习题一 说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题,每......

    考研辅导--线性代数--第1章行列式(共5篇)

    考研辅导《线性代数》教案-1 第一章 行列式 ◆ 基础知识概要 1.n阶行列式的定义 二阶行列式 a11a21a11a21a31a12a22a12a22a32a11a22a12a21. 三阶行列式. a13a23a33a11a22a33......