第一篇:材料分析基础实验报告之X射线衍射(XRD)物相分析
实验一 X射线衍射仪的结构与测试方法
一、实验目的
1、掌握X射线衍射的基本原理;
2、了解X射线衍射仪的基本结构和操作步骤;
3、掌握X射线衍射分析的样品制备方法;
4、了解X射线的辐射及其防护方法
二、实验原理
根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。当X射线波长与晶体面间距值大致相当时就可以产生衍射。
因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
三、实验设备
丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。
四、实验内容
1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;
2、选择合适的试验参数,获得XRD图谱一张;
3、理解样品、测试参数与XRD图谱特征的关系。
五、实验步骤
1、开机 1)打开总电源 2)启动计算机
3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19-22℃);
4)按下衍射仪ON绿色按键打开衍射仪主机开关 5)启动高压部分
(a)必须逐渐提升高压,稳定后再提高电流。电压不超过40kV,管电流上限是40mA,一般为30mA。
(b)当超过4天未使用X光管时,必须进行光管的预热。在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。6)将制备好的样品放入衍射仪样品台上; 7)关好衍射仪门。
2、样品测试
1)在电脑上启动操作程序
2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令
3)等待仪器自检完成后,设定好右边的控制参数; 4)鼠标左键点击“开始测量”,保存输出文件; 5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0.06°之间;(d)采样时间:推荐1s,一般0.2—1.0s;(e)测量方式:步进测量;
6)采集数据结束后,开始测量键弹起,数据自动保存在制定的文件里;
7)如需测量下一个样品,则开启衍射仪门,换好样品后,再关闭衍射仪门。从样品测试步骤1开始重复。
3、关机
1)当所有样品测试完成后,点击控制界面退出键; 2)退出高压;
3)待仪器顶部的高压指示灯熄灭后,按下off红色按钮关闭衍射仪 4)5分钟后关闭水循环制冷装置,关闭总电源; 5)关闭电脑
六、实验结果
1、控制参数:步进测量,管电压40kV,管电流30mA,起始角度10°,终止角度80°,步进角度0.03°,采样时间0.2s;符合规范要求。
2、得到的Li4Ti5O12样品的衍射图谱为:
3、上述测量数据可供后续分析得到样品的成分。
七、注意事项
1、样品的粗细对衍射峰的强度有很大的影响,对粉末进行长时间的研磨,使样品的平均粒径在10微米左右,以保证有足够的晶粒参与衍射。
2、在制作样品过程中避免择优取向,制样时尽量轻压。
3、根据研究工作的需要选用不同的测量方式与测量参数,记录的衍射图谱不同,因衍射图谱上必须注明主要的实验参数条件。
4、一定要等待X射线关闸关闭后再打开X射线衍射仪的门,防止受到辐射损伤。实验二 多晶粉末材料的X射线衍射物相定性分析
一、实验目的
1、掌握X射线衍射进行物相定性分析的原理
2、熟悉JCPDS卡片及其检索方法;
3、掌握多相物质进行相分析的方法和步骤。
二、实验原理
1、X射线衍射物相定性分析的原理
每一种结晶物质都有其特定的结构参数,包括点阵类型、晶胞大小、晶胞中原子的种类、数目及其位置等等,而这些参数在X射线的衍射图谱上均有所反映;
尽管物质的种类有千千万万,但却没有两种衍射花样完全相同的物质,图谱中衍射线的位置所反映的晶面间距及它们的强度(d-I系列)犹如人的指纹一样,是鉴别物相的依据。多相物质的衍射图谱, 是单相物质衍射图的简单叠加,任何物相都不会因其它物相的存在而改变其衍射特征。
2、JCPDS卡片
将已发现物质的衍射数据制成标准卡片,物相定性分析就成为简单的卡片检索与对照工作,一旦试样的衍射数据与标准衍射卡片相符,则其晶体结构和物理性能等便由卡片得知。1969年改由The Joint Committee on Powder Diffraction Standards(JCPDS)出版;称为PDF卡片。
三、实验设备 丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;衍射图谱;JCPDS卡片及索引;计算机,装有XRD定性分析软件。
四、实验内容
1、衍射花样测试,已在实验一测试完毕;
2、单物相鉴定实验
首先求出di和Ii/I1;根据待测相的衍射参数,得出三条强线的晶面间距值d1,d2,d3(包括误差);根据d1值(或d2,d3),在数值索引中检索适当d组,找出与d1,d2,d3值符合较好的一些卡片;把待测相的三条强线的d值和I/I1值与这些卡片上各物质的三强线d值和I/I1 值相比较,淘汰一些不相符的卡片,最后获得与实验数据一一吻合的卡片,卡片上所示物质即为待测物,鉴定工作完成。
五、结果分析
1、根据实验一的到的实验数据—衍射图谱:
2、通过MDI Jade5软件的PDF检索功能,PDF卡片索引建立后,处理上述数据,进行物相检索,得到以下结果:
可知:物相检索的结果是PDF#49-0207,物相为Li4Ti5O12,晶格常数a=b=c=8.3588A,符合实验,且得到以下详细数据:
六、实验结论
通过MDI Jade5物相检索,与标准PDF卡片对比,确认XRD所测物质为Li4Ti5O12,且晶格常数为8.3588埃,符合实验。
第二篇:X射线衍射的定量物相分析
摘要
X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。每种晶体所产生的衍射花样都是其内部原子分布规律的反映。研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。
0、引言
X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中。X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。
1、X射线定量物相分析的基本原理
物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法。X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。多相材料中某相的含量越多,则它的衍射强度就越高。但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正。
定量分析的依据,是物质中各相的衍射强度。设试样是由 n 个相组成的混合物,则其中第 j 相的衍射相对强度可表示为
式中(2μl)-1 对称衍射即入射角等于反射角时的吸收因子,μl 试样平均线吸收系数,V 试样被照射体积,Vc 晶胞体积,P 多重因子,|F|
2结构因子,Lp 角因子,e-2M 温度因子。
由于材料中各相的线吸收系数不同,因此当某相 j 的含量改变时,平均线吸收系数μ
l 也随之改变。若第 j 相的体积分数为 fj,并假定试样被照射体积 V 为单位体积,则 j 相被照射的体积为
Vj = V fj = fj
当混合物中j相的含量改变时,强度公式中除fj 及μl 外,其余各项均为常数,它们的乘积定义为强度因子,则第 j 相某根线条的强度 Ij 和强度因子 Cj 分别为
用试样的平均质量吸收系数μ
m 代替平均线吸收系数μl,可以证明
式中 wj 及 ρj 分别是第 j 相的重量分数和质量密度。
当试样中各相均为晶体材料时,体积分数fj和质量分数wj必然满足
这就是定量物相分析的基本公式,通过测量各物相衍射线的相对强度,借助这些公式即可计算出它们的体积分数或质量分数。这里的相对强度是相对积分强度,而不是相对计数强度,对此后面还要说明。
2、X射线定量物相分析的分析方法
X射线定量物相分析,又称定量相分析或定量分析,其常用方法包括直接对比法、内标法以及外标法等。
2.1、直接对比法
直接对比法,也称强度因子计算法。假定试样中共包含j种类型的相,每相各选一根不相重叠的衍射线,以某相(例如假设第1相)的衍射线作为参考。其它相的衍射线强度与参考线强度之比为
Ij / I1 =(Cj fj)/(C1 f1)
可变换为如下等式
如果试样中各相均为晶体材料,则全部体积分数 fj 之和为1,此时不难证明
这就是第 j 相的体积分。
因此,只要确定各物相的强度因子比 C1/Cj 和衍射强度比 Cj /C1,就可以利用上式计算出每一相的体积分数。
直接对比法适用于多相材料,尤其在双相材料定量分析中的应用比较普遍。例如钢中残余奥氏体含量测定,双相黄铜中某相含量测定,钢中氧化物 Fe3O4 以及 Fe2O3 测定等。残余奥氏体含量一直是人们关心的问题。如果钢中只包含奥氏体及铁素体(马氏体)两相,则
式中 fγ 为钢中奥氏体的体积分数,Cγ 及 Cα分别奥氏体和铁素体的强度因子,Iγ 及 Iα 分别奥氏体和铁素体的相对积分衍射强度。
必须指出的是,由于高碳钢试样中的碳化物含量较高,此时实际上已变为铁素体、奥氏体和碳化物的三相材料体系。因此,不能直接利用上式来计算钢材中的奥氏体含量,需要对其进行适当地修正。比较简单的修正方法是公式中分子项减去钢材中碳化物的体积分数 Cc,而分母项保持不变,即奥氏体的体积分数可表示为
至于钢中碳化物的体积分数 Cc,可借助定量金相的方法进行测量,或者利用钢中的含碳量加以估算。2.2、内标法
有时一些物理常数难以获得,无法计算强度因子Cj,也就不能采用直接对比法进行定量物相分析。内标法就是将一定数量的标准物质(内标样品)掺入待测试样中,以这些标准物质的衍射线作为参考,来计算未知试样中各相的含量,这种方法避免了强度因子计算的问题。2.2.1、普通内标法
在包含 n 种相的多相物质中,第j相质量分数为 wj,如果掺入质量分数 ws 的标样,则 j 相的质量分数变为(1-ws)wj,可得到
式中 Ij 为 j 相衍射强度,Is 为内标样品衍射强度。该式表明,ws 一定时,第 j 相含量 wj 只与强度比 Ij /Is 有关,而不受其它物相的影响。利用上式测算第 j 相的含量,必须首先确定常数R 值。
为此,制备不同 j 相含量 wj’ 的已知试样,它们中都掺入相同含量 ws 的标样。
分别测量不同 wj’ 的已知试样衍射强度比
Ij’/Is 利用测得的数据绘制出 Ij’/Is 与 wj’ 直线,这就是所谓的定标曲线,如图所示。采用最小二乘法求得直线斜率,该斜率即为系数 R 值。
然后,方可测量未知试样中 j 相的含量。在待测试样中也掺入与上述相同含量 ws 的标样,并测得 Ij /Is 值及系数 R 来计算待测试样中 j 相的含量 wj 值。需要说明,未知试样与上述已知试样所含标样质量分数 ws 必须相同,在其它方面二者之间并无关系,而且也不必要求两类试样所含物相的种类完全一样。常用的内标样品包括-Al2O3、ZnO、SiO2及Cr2O3等,它们易于作成细粉末,能与其它物质混合均匀,且具有稳定的化学性质。上述内标法的缺点是:首先在绘制定标曲线时需配制多个混合样品,工作较量大。其次由于需要加入恒定含量的标样粉末,所绘制定的定标曲线只能针对同一标样含量的情况,使用时非常不方便。为了克服这些缺点,可采用下面将要介绍的K值内标法。2.2.2、K 值内标法
选择公认的参考物质 c 和纯 j 相物质,将它们按质量 1:1 的比例进行混合,混合物中它们的质量分数为 wj’ = wc’ = 0.5。
令上式中 wj=wc=0.5,此混合物衍射强度比为
式中 Ij’ 为 j 相的衍射强度,Ic’ 为参考物质的衍射强度,Kj 称为 j 相的参比强度或 K 值。K值只与物质的参数有关,而不受各相含量的影响。目前,许多物质的参比强度已经被测出,并以 I/Ic 的标题列入PDF卡片索引中,供人们查找使用。这类数据通常以α-Al2O3为参考物质,并取各自的最强线计算其参比强度。当试样中各相均为晶体材料时,并且各相质量分数 wj 之和为1,此时不难证明
在这种情况下,一旦获得各物相的参比强度K 值,测量出各物相的衍射强度 I,利用上式即可计算出每一相的质量分数。其中各个物相的参比强度为相同参考物质,测量谱线与参比谱线晶面指数也相对应,否则必须对它们进行换算。
由于 K 值法简单可靠,因而应用比较普遍,我国对此也制订了国家标准,从试样制备和测试条件等方面均提出了具体要求。2.2.3、增量内标法
假设多相物质中第 j 相为待测未知相,第1相为参考未知相。如果添加质量分数为Δwj 的纯 j 相物质,则此时第 j 相的含量由 wj 变为(wj+Δwj)/(1+Δwj),第1相的含量由 w1 变为 w1/(1+Δwj)。可以得到
式中 Ij 为 j 相的衍射强度,I1 为第1相的衍射强度,B 为常数。
分别测量不同 Δwj 试样的衍射强度比 Ij /I1,采用最小二乘法,将测量数据回归为 Ij /I1 与Δwj 的直线,往左下方延长,直至它与横轴相交,此交点横坐标的绝对值即为待测 wj 值,如图。
增量内标法不必掺入其它内标样品,避免了试样与其它样品衍射线重叠的可能,通过增量还可提高被测物相的检测灵敏度。当被测相含量较低或被分析的试样很少时,用此方法效果明显,为了提高准确度,可取多根衍射线来求解。
对于多相物质,仅留一相作为参考相,其余均给予一定的增量,按此方法就能得到全面的定量分析结果。
上述三种内标法,特别适合于粉末试样,而且效果也比较理想。尤其是 K 值内标法,在已知各物相参比强度 K 值的情况下,不需要往待测试样中添加任何物质,根据衍射强度及 K 值计算各物相的含量,因此该方法同样对块体试样适用。2.3、外标法
如果不能实现K值内标法,则块体试样只能采用外标法进行定量分析。下面将根据各相吸收效应差别,分两种情况进行讨论。
2.3.1、各相吸收效应差别不大
当试样中各相的吸收效应接近时,则只需测量试样中待测 j 相的衍射强度并与纯 j 相的同一衍射线的强度对比,即可定出 j 相在试样中的相对含量。若混合物中包含 n 个相,它们的吸收系数及质量密度均接近(例如同素异构物质),可以证明,试样中 j 相的衍射强度 Ij 与纯 j 相的衍射强度 Ij0 之比为
式中表明,在此情况下第 j 相的体积分数 fj 和质量分数 wj 都等强度比 Ij /Ij0 值。可见,这种方法具有简便易行的优点。
但是,在对试样和纯 j 相进行衍射强度测量时,要求两次的辐照情况及实验参数必须严格一致,否则将直接影响到测量的精度,这是此方法的缺点。2.3.2、各相吸收效应差别较大
各相吸收效应差别较大时,可采用以下的外标方法进行定量分析。选择 n 种与被测试样中相同的纯相,按相同的质量分数将它们混合,作为外标样品。即 w1’: w2’ ….wn’ = 1 其中第1相作为参考相。可以证明,它们的衍射强度比为
对于被测试样,相应的衍射强度比为
各相均为晶体材料,并且各相质量分数 wj 之和为1,可以得到
式中表明,只要测得外标样品的强度比 I1’/Ij’ 和实际试样的强度比 Ij /I1,即可计算出各相的质量分数。此法不需要计算强度因子,不需要制作工作曲线,也不必已知吸收系数。但是,前提是可以得到各个纯相的物质,这是此方法的缺点。
3、结束语
通过本课程的学习,我初步掌握了X射线衍射分析的原理和方法,姜老师上课轻松而不失严谨,使我获益匪浅,在此感谢姜老师的传授和指导!
第三篇:2017X射线衍射及物相分析实验报告写法
请将以下内容手写或打印在中原工学院实验报告纸上。实验报告内容:文中红体字部分请删除后补上自己写的内容
班级
学号
姓名
综合实验 X射线衍射仪的使用及物相分析
实验时间,地点
一、实验目的
1.了解x射线衍射仪的构造及使用方法; 2.熟悉x射线衍射仪对样品制备的要求;
3.学会对x射线衍射仪的衍射结果进行简单物相分析。
二、实验原理
(X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。)
三、实验设备
Ultima IV型 变温全自动组合粉末多晶X射线衍射仪。
(以下为参考内容)
X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。
图1 热电子密封式X射线管的示意图
图1是目前常用的热电子密封式X射线管的示意图。阴极由钨丝绕成螺线形,工作时 1
通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。x射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。一般的照相多采用点焦点,而线焦点则多用在衍射仪上。
图2 在与靶面成6角的方向上接收X射线束的示意图
0自动化衍射仪采用微计算机进行程序的自动控制。图3为日本生产的Ultima IV型 变温全自动组合粉末多晶X射线衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进人脉冲高度分析器。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经徽处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样(θ)及探测器(2θ)进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。
物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。当检索开始时,操作者要选择输出级别(扼要输出、标准输出或详细输出),选择所检索的数据库(在计算机硬盘上,存贮着物相数据库,约有物相176000种,并设有无机、有机、合金、矿物等多个分库),指出测试时所使用的靶,扫描范围,实验误差范围估计,并输入试样的元素信息等。此后,系统将进行自动检索匹配,并将检索结果打印输出。
图3 Ultima IV型 变温全自动组合粉末多晶X射线衍射仪工作原理方框图
四、试样准备
实验所测样品如下:
(三种样品的已知信息,制备方法,形态尺寸,选用样品托的高度,放置方法等。)样品1: 样品2: 样品3:
(参考资料:衍射仪一般采用块状平面试样,它可以是整块的多晶体,亦可用粉末压制。粉末样品应有一定的粒度要求,这与德拜相机的要求基本相同(颗粒大小约在1-10 μm)数量级。粉末过200-325目筛子即合乎要求),不过由于在衍射仪上摄照面积较大,故允许采用稍粗的颗粒。根据粉末的数量可压在的深框或浅框中。压制时一般不加粘结剂,所加压力以使粉末样品压平为限,压力过大可能导致颗粒的择优取向。当粉末数量很少时,可在平玻璃片上抹上一层凡士林,再将粉末均匀撒上。)
五、实验过程
1.教师演示X射线衍射仪的操作过程;
(选用扫描角度范围为:
扫描速度为:
等等)2.对已备好样品进行衍射,获取样品的衍射图;
3.学生对衍射结果进行物相分析。
六、实验结果与分析
1.处理曲线,粘贴结果(样品的衍射图)
2.对衍射结果进行物相分析,得出结论并说明理由。(可能存在的误差及原因)
七、(小结,体会,收获,实验过程及分析中存在问题,不懂之处等)
第四篇:X射线衍射分析
X射线衍射分析 实验目的
1、了解X衍射的基本原理以及粉末X衍射测试的基本目的;
2、掌握晶体和非晶体、单晶和多晶的区别;
3、了解使用相关软件处理XRD测试结果的基本方法。实验原理
1、晶体化学基本概念
晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。
对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais点阵
表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。
2、X衍射的测试基本目的与原理
X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示:
2dsinn 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。
X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。仪器与试剂
仪器型号及生产厂家:丹东浩元仪器有限公司DX-2700型衍射仪。测试条件:管电压40KV;管电流40mA;X光管为铜靶,波长1.5417Å;步长0.05°,扫描速度0.4s;扫描范围为20°~80°。试剂:未知样品A。4 实验步骤
1、打开电脑主机电源。
2、开外围电源:先上拨墙上的两个开关,再开稳压电源(上拨右边的开关,标有稳压)。
3、打开XRD衍射仪电源开关(按下绿色按钮)。
4、开冷却水:先上拨左边电源开关,再按下RUN按钮,确认流量在20左右方可。
5、开高压(顺时针旋转45°,停留5s,高压灯亮)。
6、打开XRD控制软件XRD Commander。
7、防光管老化操作:按照20KV、5mA;25KV、5mA;30KV、5mA;35KV、5mA;40KV、5mA;40KV、40mA程式分次设置电压、电流,每次间隔3分钟。设置方法:电压、电流跳到所需值后点set。
8、设置测试条件:设置扫描角度为3°~80°,步长0.05°,扫描速度0.4s。
9、点击Start开始测试。
10、降高压:将电压、电流分别降至20KV,5mA后,点击Set确认。
11、关高压:逆时针旋转45°,高压灯灭。
12、等待5min,再关闭冷却水,先关RUN,再关左边电源。
13、关闭控制软件(XRD Commander)。
14、关XRD衍射仪电源开关(按下红色按钮)。
15、关电脑。
16、关外围电源。实验数据及结果
本实验测定了一种粉末样品的XRD图谱并对测定结果进行物相检索,判断待测样品主要成分、晶型及晶胞参数。粉末样品的XRD图谱:
图2 未编号粉末样品X-Ray衍射图谱 实验结果分析与讨论
数据处理:对图谱进行物相检索
结论:经过对样品谱图进行物相检索,发现该粉末样品中含有两种晶相,主相为Sr2CaMoO6,另外一种杂相为SrMoO4.7 思考题
1、简述X射线衍射分析的特点和应用。
答:X射线衍射仪具有易升级,操作简便和高度智能化的特点,灵活地适应地矿、生化、理化等多方面、各行业的测试分析与研究任务。X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。
2、简述X射线衍射仪的工作原理。
答:用高能电子束轰击金属“靶”材产生X射线,X射线的波长和晶体内部原子面间的距离相近,当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合布拉格方程的条件下,将在反射方向上得到因叠加而加强的衍射线。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型。
第五篇:X射线衍射技术及物相分析
X射线衍射技术及物相分析
(一)实验目的要求
1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤;
二、实验仪器
本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。3.给定实验样品,设计实验方案,做出正确分析鉴定结果。
1.X射线管
X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。2.测角仪
测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。
(1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。
(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。
(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为
接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。(4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。(5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,RS和SS.
3.X射线探测记录装置
衍射仪中常用的探测器是闪烁计数器(SC),它是利用X射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转换为能够测量的电流。由于输出的电流和计数器吸收的X光子能量成正比,因此可以用来测量衍射线的强度。
闪烁计数管的发光体一般是用微量铊活化的碘化钠(NaI)单晶体。这种晶体经X射线激发后发出蓝紫色的光。将这种微弱的光用光电倍增管来放大,发光体的蓝紫色光激发光电倍增管的光电面(光阴极)而发出光电子(一次电子),光电倍增管电极由10个左右的联极构成,由于一次电子在联极表面上激发二次电子,经联极放大后电子数目按几何级数剧增(约106倍),最后输出几个毫伏的脉冲。
三、实验原理
根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X 2
射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映。
在材料科学工作中经常需要进行物相分析,即分析某种材料中含有哪几种结晶物质,或是某种物质以何种结晶状态存在。根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质方法,就是X射线物相分析。利用X射线衍射分析可确定某结晶物质属于立方、四方、六方、单斜还是斜方晶系。
由布拉格(Bragg)方程得晶体的每一个衍射峰都和一组晶面间距为d的晶面组的关系:
式中,为入射线与晶面的夹角,λ为入射线的波长。
另一方面,晶体的每一条衍射线的强度I又与结构因子F模量的平方成正比:
式中,I0为单位截面上入射X射线的功率;K为比例因子,与实验衍射几何条件、试样的形状、吸收性质、温度及一些物理常数有关;V为参加衍射的晶体的体积;|F|2称为结构因子,取决于晶体的结构,它是晶胞内原子坐标的函数,由它决定了衍射的强度。可见d和|F|2都是由晶体的结构所决定的,因此每种物质都必有其特有的衍射图谱。因而可以根据它们来鉴别结晶物质的物相。通常利用PDF衍射卡片进行物相分析。
四、参数选择 1.阳极靶的选择
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。不同靶材的使用范围。
必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶)。当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X射线,背底增高。其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。
X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。X射线衍射所需测定的d值范围大都在1nm至0.1nm之间。为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或Cr靶。此外还可选用钼靶,这是由于钼靶的特征X射线波长较短,穿透
能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。2.扫描范围的确定
不同的测定目的,其扫描范围也不同。当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子,有机化合物的相分析,其扫描范围一般为60~2°;在定量分析、点阵参数测定时,一般只对欲测衍射峰扫描几度。
3.管电压和管电流的选择
工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。
X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。但是,当管压超过激发电压5倍以上时,强度的增加率将下降。所以,在相同负荷下产生X射线时,在管压约为激发电压5倍以内时要优先考虑管压,在更高的管压下其负荷可用管流来调节。靶元素的原子序数越大,激发电压就越高。由于连续X射线的强度与管压的平方呈正比,特征X射线与连续X射线的强度之比,随着管压的增加接近一个常数,当管压超过激发电压的4~5倍时反而变小,所以,管压过高,信噪比P/B将降低,这是不可取得的。具体数据见表三:衍射仪测试条件参数选择。4.发散狭缝的选择(DS)
发散狭缝(DS)决定了X射线水平方向的发散角,限制试样被X射线照射的面积。如果使用较宽的发射狭缝,X射线强度增加,但在低角处入射X射线超出试样范围,照射到边上的试样架,出现试样架物质的衍射峰或漫散峰,对定量相分析带来不利的影响。因此有必要按测定目的选择合适的发散狭缝宽度。
生产厂家提供1/6°、1/2°、1°、2°、4°的发散狭缝,通常定性物相分析选用1°发散狭缝,当低角度衍射特别重要时,可以选用1/2°(或1/6°)发散狭缝。5.接收狭缝的选择(RS):
生产厂家提供0.15mm、0.3mm、0.6mm的接收狭缝,接收狭缝的大小影响衍射线的分辨率。接收狭缝越小,分辨率越高,衍射强度越低。通常物相定性分析时使用0.3mm的接收狭缝,精确测定可使用0.15mm的接收狭缝。6.滤波片的选择: Z滤
常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,4
微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。
五、样品制备
X射线衍射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。样品不同,分析目的不同(定性分析或定量分析),则样品制备方法也不同。1.粉末样品
X射线衍射分析的粉末试样必需满足这样两个条件:晶粒要细小,试样无择优取向(取向排列混乱)。所以,通常将试样研细后使用,可用玛瑙研钵研细。定性分析时粒度应小于44微米(350目),定量分析时应将试样研细至10微米左右。较方便地确定10微米粒度的方法是,用拇指和中指捏住少量粉末,并碾动,两手指间没有颗粒感觉的粒度大致为10微米。
常用的粉末样品架为玻璃试样架,在玻璃板上蚀刻出试样填充区为20×18平方毫米。玻璃样品架主要用于粉末试样较少时(约少于500立方毫米)使用。充填时,将试样粉末-点一点地放进试样填充区,重复这种操作,使粉末试样在试样架里均匀分布并用玻璃板压平实,要求试样面与玻璃表面齐平。如果试样的量少到不能充分填满试样填充区,可在玻璃试样架凹槽里先滴一薄层用醋酸戊酯稀释的火棉胶溶液,然后将粉末试样撒在上面,待干燥后测试。2.块状样品
先将块状样品表面研磨抛光,大小不超过20×18平方毫米,然后用橡皮泥将样品粘在铝样品支架上,要求样品表面与铝样品支架表面平齐。3.微量样品
取微量样品放入玛瑙研钵中将其研细,然后将研细的样品放在单晶硅样品支架上(切割单晶硅样品支架时使其表面不满足衍射条件),滴数滴无水乙醇使微量样品在单晶硅片上分散均匀,待乙醇完全挥发后即可测试。4.薄膜样品制备
将薄膜样品剪成合适大小,用胶带纸粘在玻璃样品支架上即可。
六、样品测试
1.首先打开冷却循环水系统电源;
2.15min后开启衍射仪总电源,将制备好的试样插入衍射仪样品台;
3.打开计算机,当计算机与X射线衍射仪联机完成后,点击XG operation,启动X射线衍射仪。将管电压、管电流逐步由默认值20kV、2mA升至40kV、20mA。关闭XG operation。
4.点击Standard Measurement,设置参数;(1)设置存盘路径、文件名;(2)扫描范围的确定;
当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子、有机化合物的相分析,其扫描范围一般为60°~2°。本实验为 5
10~80;
(3)扫描速度的确定;
常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定、微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。本实验为4°/min;
(4)管电压和管电流的选择;
工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。本实验为40kV、20mA。
(5)狭缝的选择;
DS和SS均为1°,RS为0.3mm。
(6)各项设置完成后点击Attachment键开始测量。
5.测量完毕,关闭X射线衍射仪应用软件。点击XG operation,先将管电压、管电流逐步由40kV、20mA降至默认值20kV、2mA,然后关闭X射线衍射仪,关闭X射线衍射仪电源;取出试样;15分钟后关闭冷却循环水系统及线路总电源。
七、数据处理
采用Jade5.0分析软件分析测试数据,步骤如下:
1.打开Jade5.0分析软件,点击File patterns,双击所选测试数据01.raw; 2.鼠标左键点击S/M键进行自动检索;
3.若自动检索结果不好,可进行人工手动检索,鼠标右键点击S/M键; 4.物相检索后,选择最为匹配的PDF卡;
5.文件的添加。若分析的一系列测试数据为不同条件制备的同一物质,不必逐一分析,可进行文件的添加。点击File patterns,单击所选数据02.raw,然后点击add键,文件添加完成。XRD图谱自动按添加顺序由下向上排列,点击窗口右侧的功能键来调节谱图间距;
6.生成物相分析报告。点击File→Print set up。通过Copy可将物相分析报告粘贴到画图板或Word文档里。
八、实验报告及要求
1.实验课前必须预习实验讲义和教材,掌握实验原理等必需知识。
2.根据教师给定实验样品,设计实验方案,选择样品制备方法、仪器条件参数等。
3.要求实验报告用纸写出:实验原理,实验方案步骤(包括样品制备、实验参数选择、测试、数据处理等),选择定性分析方法,物相鉴定结果分析等。
4.鉴定结果要求写出样品名称(中英文)、卡片号,实验数据和标准数据三强线的d值、相对强度及(HKL)。