第一篇:CDMA_1x_EV-DO无线网络规划和建设分析
CDMA 1x EV-DO无线网络规划和建设分析
在国家3G牌照呼之欲出的大环境下,中国电信接手CDMA网络后,除了保证现有网络的稳定性以不影响终端用户的体验,持续发展CDMA1x的语音容量扩容外,尽早筹划、启动cdma20001x(下称1x)网络向3G的cdma20001x EV-DO(下称EV-DO)的平滑演进是抢占市场先机、赢得差异化服务优势的技术保障,并且还可以充分发挥全业务运营的优势,进一步引入IMS网络以实现固网及移动的融合业务,吸引用户。
EV-DO无线网络规划特点
1.EV-DO和CDMA1X网络规划的相似点
EV-DO和CDMA1x是CDMA技术发展的不同阶段,虽然侧重点不同,但两者的技术基础具有广泛的一致性,具体表现在5个方面。
(1)两者的无线网络规划流程相似。
(2)两者的射频特性相同,包括3个方面。一是两者使用的载频特性相同,但EV-DO必须单独使用一个载频,如图1所示;二是射频子系统相同,两者可以共用;三是无线传播模型、路径损耗计算方法相同。
(3)两者的站点选择、天线选择方法相同。
(4)两者均为反向覆盖受限。
(5)两者的反向覆盖半径接近,因此两者的网络拓扑结构可以相似。
2.EV-DO和CDMA1X网络规划的差异 EV-DO专门为高速数据业务而开发,与CDMA1x网络规划的差异体现在7个方面。
(1)系统网络结构不同。
(2)业务模型不同。1x包括语音业务和数据业务;EV-DORev.A包括低时延业务和数据业务,但数据业务的种类比1x多,平均速率比1x高。
(3)容量计算方法不同。1x需要计算前反向语音、数据业务容量;EV-DORev.A需要综合计算低时延、数据业务容量,但计算方法与1x不同。
(4)单用户吞吐量差异大。EV-DORev.A的前向(3.1Mbit/s)、反向单用户理论峰值速率(1.8Mbit/s)均比1x大幅提高。
(5)扇区前向总吞吐量差异明显。EV-DORev.A的前向、反向扇区吞吐量均比1x明显提高。
(6)EV-DO前向覆盖范围大于1x。主要原因是:EV-DO前向以满功率发射,EV-DO双天线接收终端存在前向分集接收增益。
(7)两者链路预算的主要差异小结(如表1所示)。
EV-DO无线网络规划和建设策略
1.频率规划 依托收购联通已建成的CDMA1x网络,建议中国电信在同一频段上提供EV-DO服务,因为它具有以下两个优点。
(1)EV-DO可以与1x共站,基本不需新增站点,室内分布系统也可共用,节省大量成本。
(2)当使用1:1布站方式时,两网拓扑一致。
当一个频段上有多个CDMA可用载频时,建议CDMA1x和EV-DO分别靠两头使用,例如CDMA1x要从上往下启用,EV-DO要从下往上启用,1x和EV-DO载频之间应至少预留一个载频的间隔,以避免可能发生的远近效应影响。
在频段选择上,800MHz最优,适合城市覆盖。2.1GHz频段虽然是国家规划的3G移动通信专用频段,但存在缺乏终端市场支持、基站覆盖半径小等问题。450MHz频段也存在明显缺点,该频段缺乏终端产品的广泛支持,且不太适合城区环境的覆盖。
2.现有网络数据分析
对现有CDMA1x网络覆盖情况进行详细测试和分析,包括覆盖分析、网络质量分析等方面,以指导EV-DO工程建设。通过分析1x覆盖数据,发现现有网络覆盖相对较弱且有业务需求的区域,在EV-DO网络覆盖规划中重点考虑。通过分析1x数据业务话务数据,找出数据业务的热点地区,可以认为是EV-DO业务需求的主要区域,有利于确定EV-DO网络的覆盖范围和容量目标。
3.无线网络覆盖及基站设置
(1)共站与共用天馈
为了节省网络建设投资,EV-DO站点应尽量使用原有站点,在现有CDMA1x站点的基础上选点,尽量避免EV-DO单独建站。
对于天馈建设方式,应根据实际情况决定EV-DO是否与1x系统共用天馈,表2列出了两种方式的优缺点比较,以供参考。
当EV-DO与1x共用天馈时,使用的合路器有两种选择:宽带合路器,合路损耗约3.5dB,对覆盖半径的影响较明显,但成本低,使用方便;窄带合路器,合路损耗可小于1dB,但价格高,使用相对不便。
(2)网络拓扑设计
在进行EV-DO网络拓扑规划时,主要有两种布站方式:1:1方式和1:N方式。1:1方式是指EV-DO利用该区域所有的1x站点,每个EV-DO站点的覆盖范围与1x站点一致;1:N方式是指EV-DO只利用部分1x站点,总体上EV-DO站点数据量为1x站点的1/N。
1:1方式布站和1:N方式布站各有利弊,需要根据各地实际情况充分分析、灵活选择。以下对两种布站方式的优缺点做简要对比,如表3所示。
选择布站方式之前,笔者建议分析原CDMA1x网络规划的依据。如果原1x网络是覆盖受限,则EV-DO网络建议采用1:1方式布站;如果原1x网络规划是容量受限,则EV-DO网络可以选择1:1方式或1:N方式布站。
(3)EV-DO与CDMA1x共用室内分布系统
在1x系统上增加EV-DO系统时,现有室内分布系统是否需要改造,需要具体情况具体分析。如果信号源是基站,可以通过合路器将EV-DO和1x送到现有室内分布系统中,室内分布系统一般不需改动。如果信号源是多路选频直放站,可以对EV-DO和1x载频分别进行放大,则无需改动。如果信号源是宽频直放站,且直放站的设计裕量比较大,则仍可正常工作,或对直放站参数做适当调整。如果信号源是宽频直放站,但直放站的设计裕量不够大,由于EV-DO系统的发射功率常常大于1x系统的发射功率,直放站的大部分功率资源被EV-DO信号占用,致使直放站对1x信号的放大效果受到一定程度的影响,从而影响了1x的覆盖效果,需根据需要对直放站做适当的改造,包括更换双工器、更换滤波器等可选措施,或将直放站更换为多路选频直放站。
(4)深度覆盖特殊地形
此覆盖原则与CDMA1x一致,没有本质区别。
(5)EV-DO与CDMA1x切换边界选取
EV-DO基站应尽量连续成片覆盖,与CDMA1x的切换边界应尽量位于话务量较小的区域。
4.无线网络容量及基站配置
(1)业务模型
cdma2000的2G和3G网络将在很长一段时间内同时存在,应合理规划2G与3G的业务分担关系,例如2G负责话音业务和低端/非热点地区的数据业务,3G负责高端数据业务,避免3G网络的过度建设,保持两网的良性协调发展。
cdma20001xEV-DO网络容量设计中,纯数据业务可以使用简化业务模型,其基本参数有:平均会话时长、激活链接比例、忙时每用户会话次数、平均会话数据量、上下行数据流量比例等,由基本参数可以推导出的参数有:在线用户比例、激活链路前向平均吞吐量和激活链路反向平均吞吐量。简化业务模型的意义在于,不再细分描述各种各样的分组数据业务应用,例如网页浏览、电子邮件等等,而是将它们看成一个整体,只描述这个整体的规模和平均值。这种模型的优点在于化繁为简,实用性强。
如果有详细的业务模型,通过合适的算法可转换为简化模型。笔者建议由运营商确定模型中的参数具体取值。如果运营商不能提供参数取值,可临时采用业界的参考值,待商用有实际话务统计数据后,再进行修正。
(2)网络载扇数量配置
网络容量配置的第一步,是根据数据业务模型和计划放号用户的数量,从空中接口的角度确定所需的载扇的数量。
配置计算的主要思路是:计算网络需求的总话务量,反映忙时用户激活占用时长的总需求;根据前反向激活链路吞吐量、载扇可承载吞吐量、业务阻塞率要求等限制条件,计算载扇可承载数据话务量;最后得到网络需求的载扇数量。
EV-DORev.0的载扇数量计算相对简单,按照以上方法进行即可。EV-DORev.A还要考虑时延敏感业务,例如VoIP、视频电话等,业务模型有所不同,比较复杂;应该增加时延敏感业务的载扇需求数量的估算,再与纯数据业务所需数量叠加。获得载扇数量之后,再进行各基站所需信道板的配置计算。
(3)BTS到BSC之间的传输资源需求
一般商用满配置下,1个S111的3扇区EV-DO站需要2~3条的E1传输资源连接BSC。但在建网初期,用户很少可以一个站点先配置1条E1,并随着数据流量的增加再进行后续扩容。
(4)PN规划和邻区配置 EV-DO的PN规划和邻区配置原则与CDMA1x一致。例如,当1:1方式布站时,EV-DO的小区PN与对应1x小区保持相同;当1:N布站时,EV-DO的PN需要重新规划,但规划方法与1x一致。
5.EV-DO组网方案
EV-DO常见的建设方案主要是独立建网和混合建网。独立组网投资成本高且对现有资源利用率小,一般不予推荐。
常见的组网方案有EV-DO独立组网方式和1x/EV-DO混合组网方式。鉴于中国电信已全部收购联通CDMA1x网,为减少建设成本和快速部署EV-DO网络,笔者建议直接采用混合组网方式建设EV-DO。
所谓“混合组网”方式,即在现网1x主设备上增加DO信道板和控制单元,并对原有的1x系统软件进行升级,两者共用1x的分组核心网。“混合组网”方案又可细分为“升级方式”和“叠加方式”。
(1)升级方式
升级方式对应于EV-DO与1x共用BSC/RNC和BTS的情况,需对原BSC/RNC和BTS进行软件或硬件升级或者直接对现有设备进行替换,使之支持EV-DO功能。其中,接入网中的无线资源控制、呼叫控制和移动性管理等功能由BSC/RNC完成,调制解调和基站收发信等功能由基站来完成。
(2)叠加方式
当现网1x设备无法直接支持EV-DO功能或者EV-DO设备供应商与现网1x供应商为非同一厂商时,可采取叠加方式解决。叠加方式细分后有“同BSC/异BTS”、“异BSC/异BTS”和“同BSC/异BTS”三种情况。由于受限于各厂商设备间的特点和兼容性,前两种方式并不常见,推荐“同BSC/异BTS”方式作为叠加方式组网的首选。
“同BSC/异BTS”方式下,1x和EV-DO分别采用独立的基站设备,既可以选择共用天馈系统也可选择独立自建天馈系统。对于BSC/PCF侧可采用软件升级或者增加扩展机柜方式升级。这样既不影响1x网络布局和覆盖,又可结合目标覆盖区的实际情况,更有针对性地规划和部署EV-DO网络。
如果现网1x设备不能通过增加软/硬件方式完美提供EV-DO业务,建议直接使用新设备替换原有BSS系统。其中,新建BTS站使用全新设备,全部支持1x和1x增强;新建BSC具备大话务和高数据处理能力,同时支持1x和1x增强业务。BSC设置需要综合考虑减少跨BSC切换、BSC话务均衡及未来升级演进能力等问题,尽量减少BSC数量,减少跨BSC切换。同时,着手对PDSN、AAA进行软硬件升级,增加AN-AAA新设备。
EV-DORev.A部署建议
笔者建议,EV-DORev.A网络部署采取大覆盖,分阶段实施,逐步引入3G亮点业务的策略。
在现有的CDMA1x网络上部署EV-DO网络时,规划及实施的策略是至关重要的。因此在EV-DORev.A的部署初期,建议中国电信采取大覆盖策略,在大中型城市大规模部署,为大中城市市区、近郊及重点办公及居住地区提供连续的EV-DO覆盖,为用户提供良好的高速数据体验。
考虑到CDMA接手的过程及相应手续事宜的时间表,笔者建议网络分阶段实施并逐步深入开展相应业务。
第一阶段,2008~2009年底,重点实施部署大型城市及重点中型城市,争取一步到位提供高于80%以上的EV-DO连续覆盖,相当于将全网约50%~60%的CDMA1x基站站点通过升级或者叠加的方式部署EV-DORev.A的基站功能。考虑到更好的利用Rev.A的高速数据能力,提供差异化的应用,中国电信可以考虑选择试点,在CDMAEV-DO网络建设期间,同步建设IMS叠加网,更好的支持宽带多媒体业务。此阶段可以开展的业务主要包括完全QoS保障的视频电话业务、基于IMS和EV-DO的高性能PTT业务(如Qchat、多媒体推送业务包括Push To See,Push to Video等等)、多媒体彩铃业务以及支持DO数据卡上的增值业务(如VoIP)等。第二阶段,2010年继续深化大中型城市EV-DORev.A的覆盖,在热点高话务量地区启用第二个DO载频,并开始在其它中型或者小型城市推广EV-DO的部署,达到全网的80%覆盖。另外,此时的IMS网络架构和开放业务环境应该已基本完善,设备能力和业务应用都相当成熟,此阶段可以基于IMS提供更多的融合业务,并逐步实现电路域基本语音向IMS宽带语音的迁移。此阶段可考虑的业务包括固定和移动VoIP、智能业务、IMS和互联网融合业务(如基于位置的广告推送,基于日程安排的通信等)、IMS和IPTV融合业务(如TV来电显示、漏话通知、短信、留言提示、TV通话)等。
cdma2000的3G网络有其鲜明的特色,技术上全球领先,同时与其2G网络存在广泛的共同基础,最具备平滑演进的特征。中国电信应充分利用现有网络资源,准确预测3G业务发展需求,统筹规划,分步实施,在800MHz频段上从cdma20001x选择升级到3G的cdma20001x EV-DO。cdma2000 1x EV-DO将成为3G时代中国电信最闪亮的技术标签,引领宽带无线网的发展。
第二篇:TD-LTE无线网络规划
TD-LTE无线网络规划
TD-LTE是下一代移动通信网络的主流技术之一,2010年工信部研究院组织在北京进行了TD-LTE技术外场试验,中国移动在上海建设了世博TD-LTE示范网,这些试验网络的建设显示TD-LTE产业链初步具备端到端产品能力。目前,工信部及中国移动计划通过建设TD-LTE规模网络试验来进一步推进TD-LTE产业链尤其是终端产品尽快成熟,加速商用化进展,因此迫切需要对TD-LTE无线网络规划技术进行深入研究。
TD-LTE无线网络规划流程可以分成:需求分析、网络规模估算、站址规划、网络仿真、无线参数规划等5个阶段。
在需求分析阶段,首先应明确建网策略,提出相应的建网指标,并搜集到准确而丰富的现网GSM/TD-SCDMA基站数据、地理信息数据、业务需求数据,这些数据都是TD-LTE无线网络规划的重要输入。
网络规模估算主要是通过覆盖和容量估算来确定网络建设的基本规模,在进行覆盖估算时首先应了解当地的传播模型,然后通过链路预算来确定不同区域的小区覆盖半径,从而估算出满足覆盖需求的基站数量。容量估算则是分析在一定时隙及站型配置的条件下,TD-LTE网络可承载的系统容量,并计算是否可以满足用户的容量需求。
在站址规划阶段,主要工作是依据链路预算的建议值,结合目前网络站址资源情况,进行站址布局工作,并在确定站点初步布局后,结合现有资料或现场勘测来进行站点可用性分析,确定目前覆盖区域可用的共址站点和需新建的站点。可用站址主要依据无线环境、传输资源、电源、机房条件、天面条件及工程可实施性等方面综合确定。
完成初步的站址规划后,需要进一步将站址规划方案输入到TD-LTE规划仿真软件中进行覆盖及容量仿真分析,仿真分析流程包括规划数据导入、传播预测、邻区规划、时隙和频率规划、用户和业务模型配置以及蒙特卡罗仿真,通过仿真分析输出结果,可以进一步评估目前规划方案是否可以满足覆盖及容量目标,如存在部分区域不能满足要求,则需要对规划方案进行调整修改,使得规划方案最终满足规划目标。
在利用规划软件进行详细规划评估之后,就可以输出详细的无线参数,主要包括天线高度、方向角、下顷角等小区基本参数、邻区规划参数、频率规划参数、PCI参数等,同时根据具体情况进行TA规划,这些参数最终将做为规划方案输出参数提交给后续的工程设计及优化使用。
第三篇:CDMA2000无线网络规划与优化
调 话 分 析
目 录
1.调话机制................................................................................................................2 1.1.移动台调话机制..................................................................................................2 1.2.基站调话机制......................................................................................................2 2.调话分析模板........................................................................................................2 2.1.接入/切换掉话模版............................................................................................3 2.2.前向干扰掉话(长时干扰)..............................................................................4 2.3.前向干扰掉话(短时干扰)..............................................................................5 2.4.由于反向链路干扰引起的掉话..........................................................................6 2.5.由于导频污染引起的掉话..................................................................................7 2.6.前反向链路不平衡导致的掉话..........................................................................9 2.7.覆盖不好造成的掉话(长时覆盖不好)........................................................10 2.8.覆盖不好造成的掉话(短时覆盖不好)........................................................10 2.9.业务信道发射功率受限造成的掉话................................................................11 2.10.由于小区负荷引起的掉话..............................................................................12 2.11.由于软切换问题引起的掉话..........................................................................13 2.12.由于硬切换问题引起的掉话..........................................................................14 2.13.由于BTS时钟同步错误引起的掉话..............................................................15 2.14.软切换分支Abis链路传输时延超大.............................................................15
1.调话机制
1.1.移动台调话机制
移动台接收到坏帧:当连续接收到12个坏帧之后,移动台会关闭它的发射机。在连续接收到2个好帧帧之后会重新启动发射机。
移动台的衰落计时器:过高的FER意味着前向链路很差。移动台设有衰落定时器。定时器的期满值为T5m(5秒),该计时器一直在倒计时一直到0;当接收到连续的2个好帧时,计时器被重置。如果移动台在回零之前没有接收到连续的两个好帧,那么移动台将重新初始化。
移动台接收确认消息失败:移动台可能在业务信道上向基站发送消息,并需要基站的确认。如果在发送消息之后的N1m(在IS-95A和J-STD-008中设置为3s,在IS-95B中建议设置为8s)时间内没有接收到基站的确认消息,移动台将重新初始化。
1.2.基站调话机制
基站坏帧机制:基站有可能也有与移动台类似的“坏帧”机制:当接收到一定数目的反向坏帧之后,前向业务信道不再继续发送信号。具体的细节在IS-95A中没有描述。各个设备厂商可能不同。
基站接收确认消息失败:基站有可能也有与移动台类似的接收确认消息失败机制。具体的细节在IS-95A中没有描述。各个设备厂商可能不同。
2.调话分析模板
使用模版的原因:前面所提到的掉话机制并不能明确地看出究竟是前向链路失败还是反向链路失败或者为什么失败了。为了明确这些因素,我们需要从掉话点向后察看数据。如果利用模版的话,将会很快地确定原因。模版主要是列举各种原因造成的掉话现象(掉话之前的一段时间内一些重要参数的特点),我们只需要比较某一种实际掉话情况与哪一种标准模版列举的情况相近,就会很快地得到掉话的原因。
模版描述的一些特点: 模版仅列举一些关键的参数
导频强度Ec/Io的单位是dB。其它参数以dBm为单位。
2.1.接入/切换掉话模版
1)接入/切换掉话的定义
当移动台处于一个小区覆盖边缘时有可能发起呼叫,而此时切换也即将进行,而在IS-95A中不支持接入过程中进行切换。如果移动台在接入过程中沿着走出服务小区的覆盖范围的方向走,切换也只能在接入过程结束时才能进行。接入与切换不能同时进行,切换必须等待接入完成之后进行。如果接入过程太长,有可能在切换过程中失败。2)接入/切换掉话模版描述
在这种情况中,可以观察到随着移动台接收功率的增加而导频强度Ec/Io在不断减小。这往往表示另外一个强导频在前向链路造成强干扰应该进行切换。当导频强度跌至-15dB以下的时候,前向链路的质量会严重下降。如果这种情况发生在接收到信道指配消息之后的1-2秒内,很容易发生业务信道初始化失败,移动台将重新初始化。在一个新的导频上进行初始化明确地表明需要进行切换。
当因为干扰很大使导频强度低于-15dB时,前向链路的质量严重下降。当前向链路不能成功解调,移动台会关闭发射机,此时的反向闭环功控比特会被忽略。TX_GAIN_ADJ的幅度保持平坦,一般是正的几dB。由于移动台的接收功率很高,开环功控会低估移动台所需要发射的功率水平。3)解决方法
a、通过调整接入参数提高接入速度
b、开发支持接入切换的BS版本(对IS-95A移动台不起作用)
2.2.前向干扰掉话(长时干扰)
1)长时的定义
长时是指持续时间超过移动台的衰落计时器的期满值(例如,大于5秒)。2)长时前向干扰掉话模版描述
在前向链路干扰造成的掉话中,可以观察到随着移动台接收功率的增加导频强度Ec/Io在不断减小。这往往表示存在干扰源在前向链路造成强干扰。当因为干扰很大使导频强度低于-15dB时,前向链路的质量严重下降。当前向链路不能成功解调,移动台会关闭发射机,此时的反向闭环功控比特会被忽略。TX_GAIN_ADJ的幅度保持平坦,一般是正的几dB。由于移动台的接收功率很高,开环功控会低估移动台所需要发射的功率水平。3)干扰源
CDMA的自干扰(切换失败):如果移动台马上在另外一个导频上进行初始化,那么掉话是因为切换失败,这是前向链路干扰造成掉话的最普遍的情况。
外部干扰:如果移动台掉话后进入长时间的搜索模式中(超过10秒),那么造成很高的FER,从而导致掉话的干扰源不可能是CDMA中的可用导频信号(例如,可能是微波发射机)。3)解决方法:
a、合理的规划网络,避免不必要的干扰落入小区的覆盖范围-规划阶段 b、如果存在外部干扰的话,应该消除干扰源--规划阶段 c、合理的配置邻区关系,删除不必要的邻区-优化阶段
d、合理的设置搜索窗的大小,提高手机的搜索速度并使有用信号落入搜索窗范围内-优化阶段
e、合理的设计切换带,保证移动台及时的切换到更好的小区-规划阶段
2.3.前向干扰掉话(短时干扰)
1)短时的定义
短时是指持续时间低过移动台的衰落计时器的期满值(例如,小于5秒)。2)短时前向干扰掉话模版描述
在前向链路干扰造成的掉话中,可以观察到随着移动台接收功率的增加导频强度Ec/Io在不断减小。这往往表示存在干扰源在前向链路造成强干扰。当因为干扰很大导频强度低于-15dB时,前向链路的质量严重下降。当前向链路不能成功解调,移动台会关闭发射机,此时的反向闭环功控比特会被忽略。TX_GAIN_ADJ的幅度保持平坦,一般是正的几dB。由于移动台的接收功率很高,开环功控会低估移动台所需要发射的功率水平。
如果这种情况的持续时间很短(不超过5秒),移动台的衰落计时器可能会重新启动,掉话不会发生。如果导频强度在5秒内恢复到-15dB,但是TX_GAIN_ADJ的幅度仍然保持水平,这表示移动台的发射机并没有启动,衰落计时器仍然在计时。当计时器溢出时,移动台重新初始化。发生这种情况是因为基站的掉话机制比移动台的反应要快(例如,是在2秒内而不是5秒内)。当导频恢复时基站已经停止在业务信道上发射信号,一般来说在这种情况下,移动台会在同一个导频上重新初始化。3)干扰源
CDMA的自干扰(切换失败)外部干扰 4)解决方法
a、合理的规划网络,避免不必要的干扰落入小区的覆盖范围-规划阶段 b、合理的配置邻区关系,删除不必要的邻区-优化阶段
c、合理的设置搜索窗的大小,提高手机的搜索速度并使有用信号落入搜索窗范围内-优化阶段
d、合理的设计切换带,保证移动台及时的切换到更好的小区-规划阶段 e、如果BS侧启动了掉话机制,建议BS侧的掉话优先级应该低于移动台侧-优化阶段
2.4.由于反向链路干扰引起的掉话
1)反向链路干扰理论分析:
当反向链路的干扰较大时,反向链路的质量变差,误帧率上升,BS侧试图通过发送更多的TX_GAIN_ADJ“上升”命令来使得移动台的发射功率上升,当移动台没有足够的发射功率来克服反向链路的干扰时,反向链路上的FER持续变差,最后将导致FMR因误帧高向CCM上报TCH ERROR INDICATION,CCM释放呼叫导致掉话。
2)反向链路干扰现场特征:
在通话的过程中,如果
a、移动台的发射功率很高(接近满功率);而且 b、话统数据显示反向RSSI较高(大于-100dBm);而且 c、反向误帧率很高;而且
d、移动台掉话后,在同一PN上进行重新初始化 那么
该次掉话有可能是由于反向链路干扰造成的。3)解决方法:
a、确认干扰源,对于450,请参考《干扰测试指导书》
b、对于话务造成的干扰:合理分配小区的负荷,启动负荷控制或重定向机制来控制在小区负荷高时不允许新的移动台接入;或者直接通过增加基站来解决话务热点区;
c、对于外来干扰,必须进行清频。
2.5.由于导频污染引起的掉话
1)关于导频污染的理论描述:
当强的可用信号多于移动台的RAKE接收机的个数时,由于RAKE接收机个数的限制,多余的分支将无法被移动台利用,从而导致导频污染。2)分析:
关于导频污染的现场特征:当移动台处于导频污染区时,接收电平RX很好,激活集中的导频的Ec/Io与相邻集或候选集中的某些PN的Ec/Io相差不大(用QualComm Retriever和CAIT测试显示在该区域存在多个导频强度相近的小区信号)。
3)解决方法:
a、合理布置小区―――规划阶段
一个设计良好的网络应该根据覆盖区域的总体要求来设计整个网络的拓扑结构,设计每个小区应该满足的覆盖区域。不合理的小区布局可能导致部分区域出现覆盖空洞,而部分区域出现多个导频强信号覆盖。这样有可能会造成网络中大面积的导频污染或覆盖盲区。小区布局不合理造成的网络质量问题在优化过程中解决很困难,因此这种情况应该在预规划、规划阶段尽力避免。
b、避免采用高站―――规划阶段
如果一个基站选址太高,相对周围的地物而言,周围的大部分区域都在天线的视距范围内,使得信号在很大的范围内传播(尤其是在室外、街道等场所),但由于建筑物等地物的影响,使之又不能在覆盖区域内的所有地点都提供良好覆盖,尤其是室内部分,因此,就算单从覆盖来看,也需要增加其它的基站以满足整个区域的覆盖,这样,为了满足网络整体的覆盖,在高站的周围仍然要增加新的基站,这个高站就可能在许多区域影响到周围的其它站,造成导频污染问题。另外,从容量方面来看,一个基站提供的容量毕竟有限,尤其在现阶段采用一个载频的情况下,因此,要在城市中满足密集话务分布的需要,大多数情况是需要由多个站来满足容量要求,因此,在这样的多站环境下,若有一个高站的存在,则周围的其它站将可能受到来自高站信号的影响,在切换区域,由于增加了该高站的信号,可能会形成导频污染。由于高站可能会对多个基站形成干扰,系统容量将会受到较大的影响。在CDMA网络规划时,在多基站环境中,要求基站的高度基本保持一致,尽量避免高站的现象。
c、合理设置天线方位――规划、优化阶段
在一个多基站的网络中,天线的方位应该根据全网的基站布局、覆盖需求、话务量分布等来合理设置。一般来说,各扇区天线之间的方位设计应是互为补充。若没有合理设计,可能会造成部分扇区同时覆盖相同的区域,形成过多的导频覆盖;或者由于周围地物如建筑物的影响等,造成某个区域有多个导频存在;这时需要根据实际传播的情况来进行天线方位的调整。若基站位于较宽的街道附近时,当天线的方位沿街道时,其覆盖范围会沿街道延伸较远。这样,在沿街道的其它基站的覆盖范围内,可能会造成导频污染问题。这时,可能需要调整天线的方位或倾角等。这种情况在实际工程中很常见。
d、合理设置天线下倾角――规划、优化阶段
天线的倾角设计是根据天线挂高相对周围地物的相对高度、覆盖范围要求、天线型号等来确定的。倾角调整将对小区覆盖边缘的信号产生重要的影响,从而影响小区的覆盖范围。当天线下倾角设计不合理时,在不应该覆盖的地方也能收到其较强的覆盖信号,造成了对其它区域的干扰,这样就会造成导频污染,严重时会引起掉话。这种情况在实际工程中很常见。
e、合理设置导频功率――优化阶段
当基站密集分布时,若要求的覆盖范围小,而导频功率设置过大,也可能会导致严重的导频污染问题。导频信道功率典型范围是17-20%的载频总功率,经典为20%,可以在15-25%范围内进行微小调整。要解决覆盖和导频污染,首先应该考虑的是天线角度、倾角等参数的调整,然后可以考虑增加直放站。修改小区站址等方法,最后才应该考虑导频信道功率的调整。(理论思路是:工程参数――软件参数)
2.6.前反向链路不平衡导致的掉话
1)模版的描述
在这种情况中,很强的导频信号意味着前向链路很好,而移动台的发射功率却已经调整到了最大,这说明反向链路很差。这两项指标说明了存在前反向链路的不平衡。经过一定的时间(例如,3-5m),基站将放弃反向业务信道,并且停止发送前向业务信号。当然此时,移动台的前向业务FER变得极高,很快会关闭发射机,参数TX_GAIN_ADJ的幅度变得平坦。2)不平衡的原因
反向链路阻塞
分配给导频的功率比例过高 3)解决方法:
a、调整天线的参数,如:下倾角、高度---规划/优化阶段; b、调整扇区的发射功率—优化阶段;
2.7.覆盖不好造成的掉话(长时覆盖不好)
1)模版的描述
导频强度Ec/Io与移动台接收功率同时下降是这种掉话的显著特征。当导频强度低于-15dB时,前向链路的质量严重下降。当前向链路不能成功解调,移动台会关闭发射机,此时的反向闭环功控比特会被忽略。TX_GAIN_ADJ的幅度保持平坦,它的大致范围一般在0~-10dB的范围。在负载很重的小区内,可能会更高。
如果这种情况持续时间很长(超过5秒),那么移动台的衰落计时器将在到达5秒时超时溢出,移动台将重新初始化。这时候,移动台进入一个长时间的搜索模式(例如,大于10秒)。在掉话之前,移动台的发射功率一般接近最大值限制。当移动台关闭发射机的时候,从分析工具看到的发射功率大小的记录和显示值仍然保持不变(虽然实际上发射机已经被关闭了)。此时移动台的接收功率基本上接近-100dB或者更低。2)解决方法:
a、合理的规划网络,以减少网络覆盖的盲点
b、合理的规划切换带,保证移动台在当前服务小区信号变差时及时的切换到别的可用小区
c、启动智能切换算法,为处于边缘地区的移动台提供多个可用分支 d、增大基站的发射功率
2.8.覆盖不好造成的掉话(短时覆盖不好)
1)模版的描述
导频强度Ec/Io与移动台接收功率同时下降是这种掉话的显著特征。当导频强度低于-15dB时,前向链路的质量严重下降。当前向链路不能成功解调,移动台会关闭发射机,此时的反向闭环功控比特会被忽略。TX_GAIN_ADJ的幅度保持平坦,它的大致范围一般在0~-10dB的范围。在负载很重的小区内,可能会更高。
如果这种情况出现时间很短(小于5秒),移动台的衰落计时器有可能在掉话之前重新启动。如果导频强度在短于5秒的时间内恢复到-15dB以上,但是TX_GAIN_ADJ的幅度仍然保持平坦,说明移动台的发射机并没有重新启动。衰落计时器仍然在继续倒计时。当衰落计时器在5秒时溢出时移动台重新初始化。发生这种情况是因为基站的掉话机制比移动台的反应要快(例如,是在2s内而不是5秒内)。当导频恢复时基站已经停止在业务信道上发射信号。在掉话之前,移动台的发射功率一般接近最大值限制。当移动台关闭发射机的时候,从分析工具看到的发射功率大小的记录和显示值仍然保持不变(虽然实际上发射机已经被关闭了)。此时移动台的接收功率基本上接近-100dB或者更低。2)解决方法:
a、合理的规划网络,以减少网络覆盖的盲点
b、合理的规划切换带,保证移动台在当前服务小区信号变差时及时的切换到别的可用小区
c、启动智能切换算法,为处于边缘地区的移动台提供多个可用分支 d、增大基站的发射功率
e、如果BS侧启动了掉话机制,建议BS侧的掉话优先级应该低于移动台侧
2.9.业务信道发射功率受限造成的掉话
1)模版的描述
在前向链路中分配给业务信道的功率和反向链路设置的Eb/No目标值都限定在一定的范围内。当这些参数设置太低,业务信道不允许足够大的功率开保持前向链路,在这种情况下,即使导频可用,也有可能发生掉话。2)分析: a、当前向链路首先失败
在业务信道受限所导致的掉话中,可以看到导频强度和移动台的接收功率都在可接受的门限之上(例如,导频的Ec/Io大于-15dB,移动台接收功率大于-100dB)。在这种情况中,TX_GAIN_ADJ会在5s内保持水平,之后移动台重新初始化。这表明前向业务信道能量不足使移动台不能成功解调,关闭了发射机。既然导频强度足够,我们可以断定前向业务信道的发射功率受限(前向业务信道配置的最大发射功率受限)或者已经被停止发送。当移动台的衰落计时器在5秒之后溢出时移动台重新初始化。在同一个导频信道上初始化明确地表明掉话的原因是前向业务信道太弱。
b、当因反向链路受限而失败
基站设置的反向业务信道Eb/No目标值是反向信道的一个限制。当基站所接收到的反向业务信道的能量达不到一定的值,基站将掉话,从而中断前向业务信道的发送。现象与前面所描述的前向链路首先失败相同。3)解决方法:
a、合理的分配各信道的功率
b、设置相对较高的切换门限值,以便于手机能及时的切换到更好的服务小区
c、合理设置反向功率控制参数值
2.10.由于小区负荷引起的掉话
1)小区负荷的理论分析:
随着小区的负荷的上升,基站和移动台都需要提高各自的发射功率,以维护现有链路的通话质量;当小区的负荷上升到一定的程度时,如果没有采用有效的负荷控制方法来阻止新的用户接入,那么随着用户的接入干扰增大,移动台与基站任何一方没有足够的发射功率来克服该链路上的干扰时,都将导致掉话。负荷控制机制、前向功率控制参数的最小或最大发射功率值的设置不合理,都会导致小区出现高负荷。在话统中,我们可以通过对“载频功率控制统计”项进行统计来发现小区高负荷的情况。
2)解决方法: a、合理分布小区的话务;
b、合理设置前向功控参数的最小最大发射功率;
c、采用有效的负荷控制算法,避免在高负荷时新用户的接入。d、直接通过增加基站进行扩容
2.11.由于软切换问题引起的掉话
1)引起软切换问题的因素:
a、参数(T_ADD、T_DROP、T_TDROP、T_COMP、SRCH_WIN_A、SRCH_WIN_N,等)配置不合理。如果小区之间的切换带内的Ec/Io都很低,而T_ADD设置了较高的门限值,这将会导致手机不能及时触发PSMM上报,由于新的可用分支无法利用,干扰加大,从而导致掉话;搜索窗参数设置不合理也会引起掉话,当应该发生切换关系的源小区与目标小区之间的相对时延超过了SRCH_WIN_N时,目标小区的信号落在相邻集搜索窗的范围外,目标小区将不能被及时搜索到,从而影响切换。
b、邻区配置不合理。如果目标小区漏配,由于导频集的搜索优先级关系,落入剩余集的导频很难被及时搜索到,而且,当前版本的BSC不支持把来自手机剩余集的小区加入激活集,从而在切换带引起很强的干扰而导致掉话。另外,邻区配置过多和邻区优先级设置也会影响手机对相邻集的搜索。IS-95的手机其邻区的最大个数为20个,IS-2000的手机,其邻区的最大个数时40个;当手机的相邻集到达最大值时,剩余的邻区将被抛弃,如果优先级没有配置合理,这将导致好的邻区没有被加入相邻集。
c、其他原因,如:目标小区话务拥塞、BTS时钟不同步等也会导致切换的失败。2)分析: 通过话统指标的分析是否存在切换成功率低、切换失败的次数多、掉话率高的小区。查看告警,观察是否有与BTS相关的时钟告警(在南昌局和沧州局都出现过BTS时钟不同步掉话的情况),BTS时钟运行状态是否处于正常运行状态,必要时校验基站时钟,排除时钟问题;用CSL和呼叫跟踪进行跟踪分析;进行路测,在路测中发现有无切换问题。在有问题的小区附近多次路测,从多方面发现与切换有关的掉话问题,通过切换的优化来减少掉话。同时,切换失败导致的掉话在移动台侧可以观察到RX呈上升趋势、当前服务小区导频强度呈下降趋势,目标小区进入候选集后长时间不能进入激活集(漏配邻区)或目标小区信号较好(超过-14dB)但长时间不能进入候选集(切换门限太高)等。3)解决方法:
a、合理设置影响切换的参数,包括T_ADD、T_DROP、T_TDROP、T_COMP、SRCH_WIN_A、SRCH_WIN_N、SRCH_WIN_R、SOFT_SLOPE、NGHBR_MAX_AGE参数等
b、合理规划切换带和邻区关系及其邻区优先级
c、在小区间合理分配话务。如通过调整天线下倾角、方位角等工程参数,控制小区的覆盖范围,或者直接通过载频扩容来解决。
d、对时钟有问题的BTS进行BTS时钟校准,解决好时钟同步问题。
2.12.由于硬切换问题引起的掉话
1)分析:
硬切换包括同频硬切换和异频硬切换,下面对不同算法造成的切换失败进行分析。
同频硬切换:同频硬切换失败的原因很有可能是由于切换参数配置不合理造成的。在发生同频硬切换的地带,由于干扰较大(切换前,目标小区是干扰,切换后,原来的源小区变成新的干扰),切换时间一般较长,如果参数的配置不合理(如:T_ADD设置门限太高及同频硬切换参数设置不合理)或者邻区关系配置错误(如:邻区漏配、邻区优先级配置严重错误等),移动台将无法及时上报目标小区的情况或切换过程无法完成,这就非常容易造成而掉话。
异频硬切换:
伪导频硬切换算法:因为伪导频不提供业务,其所发射的导频信号只是用来判断在该处另外一个导频的强度,不能被作为软切换中的一个分支加入移动台的激活集,所以伪导频硬切换引入了更多的干扰;而且,异频(目标小区)上的负荷增加会导致其覆盖范围减小,而伪导频信号的覆盖范围也随其频点上的话务(干扰)变化而变化,这种变化将导致目标小区上的异频与其伪导频的覆盖范围不一致。如果伪导频信号的覆盖区与异频信号(目标小区)的覆盖区强度不一致,很有可能出现在某处伪导频信号很强但实际上异频信号很弱的情况,这种情况的出现会造成掉话。
移动台辅助硬切换算法:对于遵循IS-95B及IS-2000协议的手机,可以采用移动台辅助硬切换算法。当BS侧检测到移动台在当前频点上的信号变差时,指示移动台对异频进行搜索,以发现异频上可用的服务小区,并选择合适的时机进行切换。但是如果切换带太小,BS侧指示移动台进行搜索的门限设置太高的话,有可能导致移动台没有来得及上报异频搜索结果而导致掉话。
Handdown硬切换算法:在Handdown硬切换中,由于F1频点上的话务与F2上的话务量有可能不一致,从而导致F1与F2的频点的覆盖范围不一致,如果在F1频点上的PN信号较差时才进行切换,将有可能造成掉话。2)解决方法:
a、根据实际情况采用相应的切换算法 b、合理的规划切换带
c、合理的设置与硬切换相关的参数(具体请参考《CDMA1X BSS网络规划参数配置指导书v1.01》)
2.13.由于BTS时钟同步错误引起的掉话
1)分析:
由于移动台需要一个参考导频来完成对其他导频的搜索,这个参考导频来自于当前的服务小区。如果移动台当前服务小区的时钟出现错误,移动台将不能正确的搜索到别的导频的信号,在远离当前服务小区时,无法切换而且干扰加剧导致掉话。当移动台从别的小区向时钟有错误的小区移动时,也会出现相似的问题。通常,由于时钟同步问题造成的掉话其数量是很大的。2)解决方法:
解决时钟同步问题(如:复位BTS、更换时钟板等)
2.14.软切换分支Abis链路传输时延超大
1)分析:
在处于BTS间的软切换状态时,BTS接收到的业务帧将在FMR进行合并。如果其中某一通路在BTS到BSC之间的Abis链路的传输时延过大,FMR进行业务帧合并时,会由于来自各分支的业务帧不能对齐,而错误地认为是idle帧,从而造成掉话。单从话统中不能直接发现是由于Abis链路传输时延过大是掉话的原因,必须采用呼叫跟踪打印进行诊断。2)解决方法:
解决Abis链路上的传输时延问题。
第四篇:学校无线网络建设方案
**铁路**学校宿舍无线网络
建设方案
目录
第一章 项目背景.............................................................4 1.1无线网络建设背景.....................................................4 1.2需求分析.............................................................4 2.1.1项目建设要求...................................................4 1.3 方案设计原则.........................................................5 1.3.1基础方案设计原则...............................................5 第二章 无线网络规划..........................................................6 2.1学校无线网络建设整体规划.............................................6 2.2宿舍无线网络规划.....................................................6 2.3基础网络规划.........................................................7 2.4网络安全规划.........................................................9 2.5认证计费............................................................10 2.5.1设计原则......................................................10 2.5.2设计目标......................................................10 2.5.3运营网络设计方案..............................................10 2.5.4统一身份认证融合..............................................17 第三章 智分解决方案优势.....................................................20 3.1整体优势............................................................20 3.1.1智分型AP——无线网络设计简单方便..............................20 3.1.2美化天线——无线部署美观大方..................................20 3.1.3“i-share”技术——无处不在的满格信号..........................21 3.1.4双信道无线覆盖——节省信道资源................................21 3.1.5双路设计——公平高效..........................................22 3.1.6智能功率调整——节能更减干扰..................................23 3.1.7认证管理——利益保障..........................................24
第一章 项目背景
1.1无线网络建设背景
无线局域网技术是新世纪无线通信领域最有发展前景的技术之一,随着下一代宽带无线接入方式的宽带化、移动化、IP化理念的提出,WLAN凭借其接入速率高、架构使用便捷、系统费用低廉及可扩展性较好等优点,应用日趋广泛,成为近些年来各行各业信息化建设的重点之一。
校园中各种各样的WLAN终端如笔记本电脑、PDA、支持WiFi的千元智能机、即拍即传的数码相机如雨后春笋般涌现出来,同时价格越来越低,普及程度越来越高,而且学生群体重点活动区域宿舍的有线网络无法满足学生使用智能终端无线上网的迫切需求,所以无线宿舍网成为校园网建设的新热点。
1.2需求分析
2.1.1项目建设要求
项目建设的总体目标
利用先进的无线网络技术完成对**铁路**学校学生宿舍楼的无线信号覆盖,使学校学生能够在宿舍方便高效地使用无线网络;
构建一个真正可用的无线网络,满足学校日益增长的移动终端如笔记本电脑、PDA、手机、平板电脑对互联网访问的需求;
促进无线业务全面开展,改进管理方式,提高工作效率,推动**铁路**学校信息化建设。
项目具体的建设目标
**铁路**学校无线网络建设项目中用户场景属于多房间隔断、有屏蔽门、走道侧无窗设计等复杂、恶劣的无线部署环境,这对无线网络建设提出了更高的要求。信号覆盖要求:
宿舍基本上都是钢混墙壁、防盗门、无窗设计,有的甚至存在入户厕所等特殊的房屋格局,而房间内才是用户使用无线的主要区域。用户在室内使用的移动终端对无线信号灵敏度较高,所以室内的无线信号质量必须要满足移动终端应用需求。数据传输性能要求:
无线网络中用户的网络应用复杂,并发用户数较多,属于高密度无线接入。**铁路**学校宿舍网中每个房间平均6个用户,而且多以游戏、视频、下载、聊天、上网为主,需要一个具有高稳定性、高带宽的无线网络。信号干扰要求:
学校宿舍楼内房间数量较多,为了实现全面有效的无线信号覆盖,则需进行无线接入点的密集部署,但这样就可能存在同频干扰的问题,而同频干扰往往会导致整网性能低下,无线网络不可用的问题。所以低干扰、高可用也是无线网络建设的重点需求之一。美观、管理维护要求:
因为学校对楼道间、房间内的美观度有较高要求,无线网络建设施工不得对现有装修造成较大面积的破坏,不能影响环境的美观度。而无线网络维护对运维人员专业技术能力要求较高,所以整个无线网络结构要简单,涉及设备尽量要少,管理维护要方便。
1.3 方案设计原则
1.3.1基础方案设计原则
**铁路**学校无线网络的建设目标是实现类宿舍网环境下的无线网络全面覆盖,为满足智能终端用户无线上网、无线业务开展构建一个真正可用的无线网络。
总体要求:
一、高信号质量:保证用户环境下房间内各个角落的无线信号强度>-60dBm,注重满足应用及终端使用需求;
二、高数据传输性能:支持最新的802.11n标准并满足高密度用户的无线接入需求,提供高数据传输速率;
三、低干扰:确保同一房间内同频干扰信号强度<-70dBm,提高整网吞吐性能,构建真正可用的无线网络;
四、美观易管理:无线网络结构简单,需要管理的设备数量少,管理维护简单方便,整个无线部署不影响用户环境的美观度; 第二章 无线网络规划
2.1学校无线网络建设整体规划
根据前面对**铁路**学校无线网络建设原则及内容分析,结合当前学校宿舍的实际情况,此次学校无线网络建设方案主要针对无线覆盖、基础网络、数据安全的建设,下面将对无线网络建设作详细描述,整体拓扑如下:
**铁路**学校无线网络建设拓扑图
2.2宿舍无线网络规划
针对目前**铁路**学校无线网络的实际情况以及宿舍楼具体环境的分析,此次学校无线网络采用无线智分方案对学校宿舍进行无线网络建设。下面将对智分方案的构成作详细描述。新一代智分型AP
智分型AP采用了内置智能功分设计,单AP可进行“1分8”功率分配,轻松实现8个房间的覆盖,较原智分AP的“1分6”有了更大提升。相比传统室分型方案,覆盖同样的8个房间,为每个AP省去至少1个2功分器、8个耦合器和8条跳线。用户不再需要维护这些安装在天花板上、不能网管的物理器件了,极大的降低了无线方案的设计、实施和维护难度。
美化天线
自主研发的美化天线中,既有业界目前尺寸最小的硬币型天线,其尺寸只有传统吸顶天线的1/10,安装在墙上、天花板上几乎不会感觉到它的存在;还有极善伪装的面板型天线,外观和尺寸均与普通开关面板一致,有效地和室内装修融为一体。美化天线部署在房间内简单、美观、隐蔽性极佳,消除了普通用户对于天线“辐射大”的心理障碍,非常适合在宿舍中使用。
超柔低损馈线
无线智分解决方案中采用的是专门定制设计的超柔低损射频线缆。在保证信号传输损耗较低同时,不断的优化线缆的线径,甚至做到了比常见的以太网网线还细,可以实现近180°的弯曲,可根据用户的实际环境进行灵活部署,大幅提升了无线网络布线的速度,而且后期管理维护也更加简单。
2.3基础网络规划
核心网络部分是整网的中枢神经,几乎所有业务均需经过核心交换机,它担任着整网的数据转发决策,起到大脑的作用,这也为核心交换设备的性能及可靠性提出了相当高的挑战,以保证学校无线网络的可靠、稳定。其上连防火墙,下连接入设备,保证数据交换不丢包。核心设备需具备如下功能: 高性能
核心设备需具备万兆端口为适应了网络应用高速发展,网络带宽不断增加的需要。而万兆端口的可扩展性既方便用户现在使用万兆网络,也方便用户后续升级网络到万兆,满足当前需求,而且便于今后网络扩容。
灵活完备的安全策略
核心具有的多种内在机制可以有效防范和控制病毒传播和黑客攻击,如预防DoS攻击、防黑客IP扫描机制、端口ARP报文的合法性检查、多种硬件ACL策略等,还网络一片绿色;基于硬件的IPv6 ACL,即使在IPv4网络内有IPv6用户,也可轻松在网络边缘实现对IPv6用户的访问控制,既可允许网络内IPv4/IPv6用户并存,也可以对IPv6用户的访问权限进行控制,比如限制对网络敏感资源的访问等;业界领先的硬件CPU保护机制:特有的CPU保护策略(CPP技术),对发往CPU的数据流,进行流区分和优先级队列分级处理,并根据需要实施带宽限速,充分保护CPU不被非法流量占用、恶意攻击和资源消耗,保障了CPU安全,充分保护了交换机的安全; 高可靠性
设备支持生成树协议802.1D、802.1w、802.1s,完全保证快速收敛,提高容错能力,保证网络的稳定运行和链路的负载均衡,合理使用网络通道,提供冗余链路利用率;
支持VRRP虚拟路由器冗余协议,有效保障网络稳定;
支持RLDP,可快速检测链路的通断和光纤链路的单向性,并支持端口下的环路检测功能,防止端口下因私接Hub等设备形成的环路而导致网络故障的现象。
方便易用易管理
核心设备具备灵活复用的多种千兆接口形式,可灵活满足需要多个千兆铜缆和多个千兆光纤链路的连接,方便用户灵活选择线缆;
Syslog方便各种日志信息的统一收集、维护、分析、故障定位、备份,便于管理员网络维护和管理;
多端口同步监控,通过一个端口即可同时监控多个端口的数据流,可以只监控输入帧或只监控输出帧或双向帧,大大提高维护效率; CLI界面,方便高级用户配置和使用。
要实现的高速无阻塞网络架构,接入设备的性能也是不容忽视的,它担任无线终端用户的快速接入网络。为保证业务可靠、稳定性,需具备一下功能: 防ARP病毒攻击
ARP病毒或攻击是网络中最常见,同时影响较大的一类攻击。接入交换机需支持多种模式的ARP防欺骗功能,不论是用户通过DHCP服务器自动获取地址,还是使用固定的IP地址,接入交换机能够记录用户真实的IP+MAC地址,并在交换机端口收到主机发送的APR报文时,将ARP报文内容和记录的IP+MAC地址进行比对,只对内容真实的ARP报文进行转发,对虚假的ARP报文进行丢弃,从而将ARP欺骗屏蔽在网络之外,保障网络用户免受ARP病毒攻击。
主动防御网络中各类DOS攻击
网络由于其开放性,经常由于计算机感染病毒,或是接入网络的人员出于各种目的对网络设备、网络中的服务器进行攻击,导致网络无法正常使用。较常见的如ARP泛洪攻击导致网关无法响应请求、ICMP泛洪攻击导致网络设备CPU负载过高无法正常工作,DHCP请求泛洪攻击,导致DHCP服务器地址枯竭,用户无法正常获取IP地址访问网络。
防环路技术避免网络中出现环路导致的网络不稳定
网络环路是网络中经常出现的另一个导致网络不稳定的“罪魁祸首”,接入交换机需提供STP/RSTP/MSTP等生成树技术,能避免网络中由于误接环路导致网络不稳定的状况。
灵活的接入控制
大量网络由于需要确保接入用户身份可靠的需要,要求对接入网络的用户进行身份认证,接入交换机提供多种灵活的身份认证策略,在部署认证方案时能够满足各种不同用户和环境的需要:
接入设备能够在一台交换机上同时提供802.1X和WEB认证,802.1X认证提供更严格的安全管控,WEB认证则提供更好的用户体验,满足不同用户群体的需要。
绿色节能
接入交换机针对传统交换机在噪音及能耗方面存在的问题,对节能降噪技术进行了深入研究,解决了交换机部署在办公环境噪声大、以及批量部署后带来的能耗过大的问题。
2.4网络安全规划
如整体设计图所示,防火墙、出口网关,所有安全产品均采用千兆双绞线连接的方式连接。在整网网络部署一台千兆防火墙,对整网进行统一病毒、攻击和木马防护;出口处部署多功能出口网关,实现对学生的上网行为管理,日志审计,流量控制,负载均衡等功能。
首先保证网络和系统的整体安全运行,及时发现网络和系统主机的故障和性能瓶颈;其次通过获取安全信息的基础数据,通过对这些基础数据的协同分析得到计算环境的安全状况,依据安全状况提出安全决策;安全决策通过对网络节点的控制来实施安全策略;在智能引擎的支持下实现持续的监控、分析、决策循环。
2.5认证计费
2.5.1设计原则
1)先进性和成熟性
认证系统设计既要采用先进的概念、技术和方法,又要注意结构、和系统平台等的相对成熟。能反映当今的认证网络建设的先进水平,而且具有良好兼容及其扩展能力。2)具有高性能、可扩展性和可管理性
实现系统的扩展和维护,运营平台可以支持良好扩展,如提供集群或者分布式部署等功能,从而提高网络的易用性、可管理性,同时又具有很好的可扩充性,实现宿舍的网络的可维性。
2.5.2设计目标
建立一个高效运营、易扩展、易管理,业界先进运营体系的认证运营网络。做到校内网络整体的管理和运营。
2.5.3运营网络设计方案
认证和运营的技术选择
目前业界比较成熟和流行的认证技术有:
PPPoE + Radius; WEB Portal + Radius; 802.1X + Radius 认证计费网关技术
Web Portal认证最初是一种业务类型(如电子邮箱、计费浏览等)的认证,通过启动一个Web页面输入用户名/密码,实现身份认证。Web认证目前已经成为宿舍网络平台的认证计费方式,通过Web页面,实现对用户是否有使用网络权限的认证。Web认证方式有以下优点:无需特殊的客户端软件,降低网络维护工程量;无需多层数据封装,保证效率。但Web认证也有明显的缺点,Web承载在应用层协议上,对设备的要求较高,建网成本高;易用性不够好,用户访问网络前,不管是Telnet、FTP,还是其他业务,都必须使用浏览器进行Web认证;开放性不够好,Web Portal认证方式均为各厂商私有,没有国际标准。PPPOE网关认证技术
PPPoE(PPP over Ethernet)由传统的PSTN(公共电话网)窄带拨号接入技术发展而来,其优点是与原有的窄带网络用户接入认证体系一致,操作简单且用户较容易接受。但PPPoE也有不可避免的缺点,PPP协议与以太网技术存在本质的差异,需要被再次封装到以太网的帧里,存在封装效率问题,而且无法支持组播业务。802.1x认证技术
IEEE 802.1x 称为基于端口的访问控制协议,其实质上是交换机基于端口对用户接入的合法性进行认证,进而决定允许或拒绝用户进入网络。在802.1x的认证体系结构中,引入了受控端口与非受控端口两个概念,即将交换机的一个物理端口分为两个逻辑端口,同时也首次将用户的认证报文流与业务报文流区分开来。其中,非受控端口一直处于常开状态,但只能传送用户的认证、计费报文流。受控端口则可以传送用户的业务报文流。当用户尚未进行认证时,受控端口处于关闭状态,即用户无法使用网络资源;只有用户在进行合法身份认证后,交换机打开受控端口,用户开始进行正常的业务流传输。
通过对三种认证技术方式的对比,在校园网建设中,应该采取以802.1x为主体,网关认证为补充,采用两者的共同的优势进行网络认证及管理。经过分析对比,本方案建议宿舍区使用802.1X的技术认证方式,办公区使用基于接入交换机哦Web认证。SAM综合认证运营方案保障网络信息安全
1.SAM认证管理解决方案支持对用户名、密码、用户IP、用户MAC、NAS IP等元素进行灵活绑定,最终做到“让正确的人,在正确的地方,合法的访问网络”
2.通过采用SMP安全管理平台,实现和客户端杀病毒以及Windows补丁库的联动:如果客户端未安装或正确启用杀毒软件,则会收到SMP的警告,并被限制上网;在正确安装并启用杀毒软件之后,经SMP的检测通过,则可以在杀毒软件的保护下正常上网了;同时,可以自定义设定WSUS服务,必须安装有最新的windows补丁才能够接入网络,通过与防病毒软件和WINDOWS系统补丁的联动,保证用户客户端的安全性;
3.通过认证管理系统的日志系统,可以看到谁,在什么时间,以什么IP和MAC,从哪里(NAS IP、NAS Port)接入网络,方便日后进行查询;同时通过和ELOG配合,可以实现“谁,在什么时间,登录了哪些网站,产生了多少流量,占用了多少带宽”等记录进行查询,便于网络管理人员很直观的对网络中的行为进行审计,并且符合公安部82号令的要求;
最终,通过多元素绑定确保用户身份唯一,与防病毒软件和Windows补丁的联动,立体式防御ARP欺骗,提供用户上网明细。配合RG-eLog等进行上网日志查询等措施确保内网网络信息的安全。
SAM实现全网统一认证和分区运营
1.支持多业务统一认证,通过配置可以实现802.1X、VPN接入、Web portal、无线接入等多种方式认证,使同一个用户可以通过不同的服务接入,保证管理运营能基于服务类型的精细化管理
2.支持分区域精细化管理,按照地区区域区分用户和使用的服务,按区域分别定制计费策略和提供的服务,实现分区域的精细化管理。例如:在教学区和宿舍区,一个学生使用同一账户可以使用不同接入服务和相应的计费策略补充统一账号;同一账号,不同地区,不同策略。如在宿舍上网包月,在图书馆上网计流量,在机房上网计时长学生方便,老师省心!
3.采用Web认证方式进行用户身份认证,能够实现对现有网络设备的兼容,弥补802.1x技术对设备依赖高、造成客户早期投资浪费的不足;同时,用户无需安装客户端软件,打开浏览器访问外部网站就可以强制进行身份认证,大大减轻客户端部署和维护的工作量
最终,SAM3.0认证管理方案通过支持多种网络接入方式,支持分区域精细化运营,通过web认证方式兼容原有接入设备,提供第三方开发接口等措施,实现了全网统一认证和分区运营。
灵活认证和计费方式确保校园网的运营收益
1.校园网认证管理解决方案可以通过自定义计费策略配置为用户提供灵活、强大的计费策略配置,能够满足用户不同的计费要求。例如:周期、流量、计时计费三种方式可以自由组合成一种或几种计费策略,为网络管理运营提供多种计费方式:
2.校园网认证管理方案支持屏蔽代理服务器功能,还可限制屏蔽拨号上网,保障运营:我司是最先提出代理屏蔽技术的厂商,也是其他厂商争先效仿的对象。通过代理屏蔽技术,可以避免最终用户通过代理服务器上网。其一可以保障运营的受益,其二可以保障准确定位到个人。同时通过客户端软件版本限制及完整性检测技术可以保证用户使用的客户端保持在最新最安全的状态,避免客户端限制和安全功能过时实效或被非法破解。
3.配合RG-ACE支持针对基于用户身份的边界分类流量(国际国内上下行)计费,方便实施对P2P流量的管理;基于IPFIX技术的流量计费产品,准确统计用户流量,合理引导用户使用P2P技术,解决难以管理的大流量问题;
4.大量丰富的统计分析报表在监督用户上网行为、跟踪网络状态以及账务分析方面为网络管理者提供实时、可靠的可视化分析工具能实现:在线用户数报表、营帐报表、系统消费金额分析、上网明细、网络流量详细分析、系统业务量分析等
最终,通过随需应变的计费策略,提供流量计费方案,完善的代理屏蔽和防破解技术,以及丰富的统计报表保障了校园网运营的收益。
确保系统的高稳定性、多校区统一管理及账号漫游
1.支持高可用群集技术,可以有效地解决单服务器的性能限制,实现故障的快速转移,保证服务的高可用性以及灵活的扩展性。通过认证流量的负载均衡,在校园网认证管理解决方案中,同一高可用群集中的SAM分担处理认证请求,系统性能倍增!,使认证性能更可达到单机3倍左右,认证报文的响应时间不超过1秒
2.同时,高可用群集技术可实现多台服务器之间的信息同步,可以支持跨区域帐号漫游、容灾及不间断的系统故障处理;通过采用RGAC高可用群集技术,单台服务器故障不会造成全网无法认证,确保业务持续可用;高可用群集技术可实现多台服务器之间的信息同步,可以支持跨区域帐号漫游、容灾及不间断的系统故障处理;通过采用RGAC高可用群集技术,全网数据实时同步,即使出现机房事故,也能确保数据安全,及时恢复。高可用的群集技术不但可以有效地解决单服务器的性能限制,而且可以实现故障的快速转移,保证服务的高可用性以及灵活的扩展性。
认证客户端软件自动升级
通过在RG-SAM服务端上进行SU最低版本限制与客户端自动升级配置,轻松实现全网客户端自动升级。确保全网上万名用户、上万套客户端软件顺利升级,平稳切换。
2.5.4统一身份认证融合
全校认证运营解决方案的建设中,对于用户身份的认证是一个基础。对于用户的身份认证本方案采用了基于802.1x技术的RG-SAM系统进行统一的身份认证整合系统。
校园业务系统存的需求
全国许多高校在部署安全身份认证系统以提高对内网用户的认证管理和接入控制的同时。遇到如下的共性需求:
每个业务系统(以邮件系统、认证计费系统、一卡通支付系统为例),他们都涉及到能够访问系统管理的资源的用户的身份与权限。
多个业务系统同时部署,上述功能造成重复,为最终用户管理帐号与身份信息带来重复劳动与记忆混乱;管理员的工作量增加。
用户身份信息的特点:检索频率高,变更频率低,具有相对稳定的组织结构,可全部用字符串的数据格式存储。
迫切需要一个集中管理用户身份信息的解决方案。
总结述需求,即在部署实施身份认证运营网络解决方案的时候,希望系统可以支持多个业务子系统共享同一套用户身份信息,在方便网络用户的使用的同时,可以大大减轻网络管理人员对于用户信息管理和维护的工作量。
LDAP解决方案
计算机网络经过长期的发展,不同的操作系统和应用程序以不同的格式在网络上存储了大量的信息,一个网络管理员无法在一个集中的信息库中,以方便的方法管理网络信息和资源。用户必须使用不同的应用程序获取不同的信息和资源,这大大增加了用户的负担,也使许多信息难于共享,从而在一定程度上制约了网络的发展,因而需要一种新的技术,能够以通用的格式和方式实现信息的存储和共享,实现网络的共享。
目录服务技术就是用于实现上述需求的。目录服务可以命名、描述和指定一个企业范围内的用户和资源,从而简化通信与管理;它可以使用户通过简单的搜索查找资源及其他用户;它可以帮助管理人员收集和控制散布与该机构的信息,并可以使他们通观地审视这些信息。目前基于目录服务的各种网上应用越来越多。特别是随着Intranet的崛起以及轻型目录服务LDAP的开发,人们对其价值 的认识日趋明朗。
因此,使用LDAP(Lightweight Directory Access Protocol)轻型目录访问协议能够比较好的满足上述需求,RG-SAM系统在高校应用环境中与高校现有应用系统共享用户信息,在很多情况下,就是要共享LDAP服务器管理的用户信息。
RG-SAM系统与LDAP服务器配合应用,实现用户信息共享功能时,其组网不受具体的网络设备限制,RG-SAM服务器与使用LDAP服务器管理用户的应用服务器之间只要能通过LDAP协议通讯即可。
一卡通系统接口
要想彻底解决重复认证问题,还需要考虑到其他系统的接口,和SAM类似,校园内必须支持标准的LDAP认证服务器,这样可以实现SAM用户认证后把用户名透传到LDAP认证服务器,实现统一身份认证认证。
第三章 智分解决方案优势
3.1整体优势
无线智分方案是目前针对学校宿舍最适合无线网络的解决方案,它完美的解决了原有走廊部署AP方案的诸多弊端,相对于传统解决方案它有一下优势:
3.1.1智分型AP——无线网络设计简单方便
在宿舍场景下实现无线覆盖采用的最多就是室内分布式部署的方式。室分型大功率AP通过功率放大器、功分器、耦合器将无线信号经过多级处理后发射出去,获得较好的无线覆盖效果。整个系统涉及室分专用元器件众多,实际部署时施工复杂,而且这些元器件基本不能保证是由同一家厂商生产,管理维护工作量大。
此次校园网无线智分方案中智分型AP采用内置智能软功分设计,相同覆盖区域为每个AP省去了传统室分部署中的3个功分器、3个耦合器和3条跳线,使得整个无线部署方案的设计、实施和维护难度得到大幅降低。
3.1.2美化天线——无线部署美观大方
微型硬币天线,尺寸只有传统吸顶天线的1/10,具有极强的隐蔽性,消除了用户对于天线“辐射大”的心理障碍,非常适合用在美观性需求较高的宿舍里。
伪装天线,大小形状如同普通开关面板,配合定制的超柔低损馈线,延伸至房间内进行壁挂安装,巧妙的进行伪装,不仅提高了无线信号的有效覆盖范围,而且还保证了室内整体装修的美观性。
3.1.3“i-share”技术——无处不在的满格信号
学校宿舍中多采用钢混加固墙壁、防盗门、走廊侧无窗设计等,而传统的楼道放装AP的无线部署,无线信号就需要穿透墙壁来对房间内进行覆盖。墙壁对无线信号的损耗根据墙壁的厚度不同而有所区别,一般损耗都在20~30dB,倾斜的入射角度损耗更加严重。而且更有可能存在入户厕所的房间格局,这样无线信号就需要穿透多层墙壁才能到达房间内,实测的信号强度基本上都远<-60dBm,而目前市面上很多移动设备的信号灵敏度较高。
为了应对这种复杂的用户环境,此次学校无线网络建设采用了业界独创的“i-share”技术,使智分型AP与无线控制器建立连接之后,充分利用智分型AP 的多天线物理架构,自动调整智分型AP的6根天线的工作模式,保证每根天线都能独立的进行数据收发,实现“ 1分6 ”部署,即为单个AP对6间房间进行无线信号有效覆盖奠定基础。而且智分部署方案采用超柔馈线+美化天线入室的部署方式,不再需要无线信号穿透墙壁进行覆盖,结合“i-share”的智能模式调整,使房间内每个角落的信号都是“满格”。
3.1.4双信道无线覆盖——节省信道资源
无线网络建设过程中比较重要的一个环节就是信道规划,通过合理的信道规划能有效地降低AP部署时带来的信号干扰问题,例如蜂窝式覆盖等。但是这并没有从根本上解决这类宿舍网这种密集无线部署时必然会带来的同频干扰等问题。
此次学校网络智分解决方案创新的采用了双信道部署技术,使智分型AP的单张网卡对应的三根天线呈“L”字型对三间房间进行无线覆盖(如图所示),使同楼层与上下楼层的相邻房间实现了错频部署,避免了对角房间可能出现的同频信号干扰,而且只需要两个信道可以完成整个楼栋的无线覆盖。
2.4Ghz频段一共只有3个互不干扰的信道,采用智分方案中双信道部署技术后节省了一个2.4频段的宝贵信道资源。
3.1.5双路设计——公平高效
业界公认传统的室内分布式系统部署在类宿舍网环境中能得到较好的信号覆盖效果,而此前应用最为广泛的是采用802.11g标准的室分型AP,其提供的最大接入速率仅为54Mbps,远远无法应对现在普遍百兆接入的需求。目前市场上新推出的支持802.11n的室分型AP,天线的收发模式均为SISO模式,所以基本上均为单网卡设计,因此采用信道捆绑等技术后最大也只能提供150Mbps的接入速率,仅能满足不到20个移动终端的同时有效接入。可是学校宿舍网环境属于高密集接入的用户场景,单房间用户数为6人,也就是说支持802.11n的室分型AP也仅能满足三间房间的有效覆盖及并发使用。
此次网络无线智分部署方案中的智分型AP支持最新的802.11n标准,全面向下兼容802.11a、802.11b、802.11g标准。智分型AP采用双网卡设计,单网卡最大提供150Mbps的接入速率,整机最大可以提供高达300Mbps的接入速率,性能较传统G型室分系统提升6倍,较N型室分系统提升2倍,完全能满足30~40个用户并发接入无线网络同时使用视频、游戏、QQ聊天、浏览网页等应用。
3.1.6智能功率调整——节能更减干扰
为满足宿舍无线高性能的需求,常见的方法是将多个AP直接布放在楼道中进行直接放装的密集部署,而2.4GHz频段下互不干扰信道只有3个,所以当楼道中的AP数量超过4个后,就会存在多个AP使用相同信道的情况。AP在通透空旷的楼道中无线覆盖范围很大,这样就会造成使用相同信道的AP发射的无线信号产生严重的同频干扰,降低整网的吞吐性能,最终影响到用户正常的无线网络使用。
此次无线网络采用最新的RRM技术,结合超柔馈线+美化天线进行入室覆盖的部署模式,实时采集空间中无线信号的强度,为天线选择最适合的无线信号发射功率,实现智能功率调整,在保证每个房间都能获得优异信号强度的前提下,有效利用房间墙壁对无线信号的衰减,尽最大程度避免了相邻房间信号的干扰,保证了整网的吞吐性能,提高了无线网络的可用性。同样的环境下,采用智分前后,干扰改善的效果一目了然。
3.1.7认证管理——利益保障
1.保障客户端安全性
通过采用SMP安全管理平台,实现与客户端杀病毒软件以及Windows补丁强联动,用户必须安装有最新的windows补丁,正确安装并启用杀毒软件之后,经SMP的安全检测通过,则可以正常上网。
2.实现ARP三重立体防御体系
通过网络中“ARP三重立体防御体系”,解决了ARP欺骗中的网关型欺骗,中间人欺骗以及ARP泛洪攻击,在可能发生ARP请求和响应的所有环节,都加以防范,有效弥补了由于ARP协议本身的缺陷所带来的漏洞,解决了困扰广大网络管理员的ARP欺骗问题,给我们的局域网带来更加健康和谐的网络环境。3.详细日志审计
通过和ELOG配合,可以实现“谁,在什么时间,登录了哪些网站,产生了多少流量,占用了多少带宽”等记录进行查询,便于网络管理人员很直观的对网络中的行为进行审计。4.有线、无线、VPN统一认证
校园网认证管理解决方案支持多业务统一认证,通过配置可以实现802.1X、VPN接入、Web portal、无线接入等多种方式认证,使同一个用户可以通过不同的服务接入,保证管理运营能基于服务类型的精细化管理; 5.支持分区域精细化管理
按照地区区域区分用户和使用的服务,按区域分别定制计费策略和提供的服务,实现分区域的精细化管理。
6.代理屏蔽技术,保障运营的利益
支持屏蔽代理服务器功能,还可限制屏蔽拨号上网,通过代理屏蔽技术,可以避免最终用户通过代理服务器上网。其一可以保障运营的受益,其二可以保障准确定位到个人。7.实现多校区统一管理及账号漫游
通过采用RGAC高可用群集技术,单台服务器故障不会造成全网无法认证,确保业务持续可用;实现多台服务器之间的信息同步,可以支持跨校区域帐号漫游、容灾及不间断的系统故障处理;全网数据实时同步,即使出现机房事故,也能确保数据安全,及时恢复。
第五篇:校园无线网络建设探讨论文
1校园无线网络设计的一般原则
学校为了建设一套符合师生需求并具有良好性能和安全拓展空间的无线网络系统,在合理投入基础上以确保网络建设的效益,就需要在无线网络设计时遵循一定的原则,主要包括了以下几个方面。1)先进性:所选产品及其技术方案必须达到行业的主流,市场覆盖率高、标准化和技术成熟,并具备适当的技术前瞻性。2)经济性:所选产品具有较高的性价比,在符合用户需求的前提下选择价格、性能适合的产品。3)可管理性:无线网络必须提供界面友好、易于操作的管理方式,为网络管理者提供易于故障定位排除、系统维护调整等运行维护手段,对用户的接入提供灵活、安全的管理。4)可用及易用性:设备要具有一定程度的耐用和智能特性,以提高整个系统的可用性;同时,师生使用校园无线网络,应该简易便捷,方便使用和管理。5)安全性:随着无线网络的普及,在方便了大家使用网络的同时也给了不怀好意的电脑高手和蹭网者空间,所以无线网络系统设计时一定要注意安全性的原则,以防止来自网络内部和外部的各种破坏。
2无线网络技术简介
802.11协议802.11协议族是现行国际无线局域网标准,涵盖了无线局域网无线接入、传输速率、QoS、安全加密等各方面。从传输速率上看,现市场主流无线网络设备所支持的802.11协议主要有802.11ac、802.11n、802.11g等。
3北京市应用高级技工学校无线网络建设方案
学校原网络拓扑和无线网络建设需求北京市应用高级技工学校北校区现有教学楼1栋、综合楼1栋,建筑面积5000余平方米。其中,教学楼共3层,有标准教室12间,专业教室9间,办公室18间;综合楼6层,有标准教室3间,专业教室3间,办公室2间,学生宿舍61间。原楼内建设有线校园网络,现需要进行无线网络改造,建成一个覆盖两栋楼宇的无线网络,教室、专业教室、办公室、学生宿舍均要求无线网络覆盖,且教室及专业教室均需达到全班学生同时上网、教师无线广播教学的使用密度要求。同时,学校无线网络SSID统一设为“BJYY”进行漫游,根据用户类别分为“STU”“TEACHER”“GUEST”三类,配置不同的网络访问权限,用户可在教学楼和综合楼内各楼层进行无障碍网络漫游,其具体应用大致分为电子教学(无线多媒体教室)、移动办公和远程通讯(远程教学、互联网接入)三大部分。需求分析及技术方案初选本例中,受学校教学环境及无线客户端数量密度的要求,需要通过部署多台AP设备,以满足大范围无线覆盖及漫游需要。如果采用胖AP无线网络模式,各个胖AP(无线路由器)独立运行,其无线密码管理之类需要逐一登录设备进行配置,不安全也不方便,同时距离较近的多台胖AP设备还时常冲突,影响整网的正常使用。此外,对于使用者来说,每个胖AP都处于孤立状态,可能换一个地方就重新选择一个无线,再进行连接,非常繁琐,而且效果较差。因此,本方案宜采用瘦AP无线网络模式,使用无线网络控制器、瘦无线接入点来构建无线网络。考虑到学校无线网络应用包含大量多媒体信息,需能够支持电子教室广播教学等业务,校园无线网络采用802.11n或802.11ac技术,提供高带宽、高质量的WLAN服务。同时,校园无线网络在校园有线网络基础上建设,无线网络除了设置访问控制、数据加密等安全技术外,通过有线无线一体化管理,部署、共用有线网络的用户管理系统,实现用户认证、行为审计和管理。
4结论
综上所述,学校开展的无线校园网络建设,宜与原有线校园网相互配合,根据学校教学和管理需要,选择适合的技术和产品,为师生提供高效、方便的网络接入。具体在方案选择时需要注意:1)从技术发展及网络应用需要考虑,校园无线网络宜采用802.11n及以上的技术标准;2)校园无线网络宜采用基于无线控制器的瘦AP系统架构,满足可管理、安全、QoS、漫游等功能要求;3)AP的选型及数量应根据场地环境条件、可能并发的无线终端数、性价比等多方面进行合理设置;4)校园无线网络部署时应注意与原有线网络部分融合,通过有线无线一体化管理,统一对用户认证、管理和审计等,使网络整体运行安全可靠。