指数函数精讲

时间:2019-05-14 07:30:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《指数函数精讲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《指数函数精讲》。

第一篇:指数函数精讲

指数函数精讲(1)

一、说教材

(一)教材地位和作用

《指数函数》是人教版高一数学必修1第二章第一节的内容。指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质,为今后进一步熟悉指数函数的性质和作用,进一步研究等比数列的性质打下坚实的基础,也为后面进一步学习对数函数的概念、图象及性质打下基础。此外,指数函数的知识与我们日常生产、生活和科学研究有着紧密的联系。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)教学目标:

1、知识目标:掌握指数函数的概念,图像和性质

2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生 分析问题,解决问题的能力。

3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的 特殊性与一般性之间的关系,培养学生善于探索的思维品质。(三)教学重点,难点和关键:

1、重点:指数函数的定义、性质和图象

2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

3、关键:能正确描绘指数函数的图象

(四)教学基本思路: 在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

二、说学法

1、学情分析:

学生数学基础,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。2、学法指导: 针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

三、说教法

1、本节课采用的教学方法有 :直观教学法、启发发现法、课堂讨论法、电化教学法。2、采用这些方法的理论根据: 为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我们引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

四、教学过程:

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

1.创设情景、导入新课

教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1个分裂成2个,2个分裂成4个,......,一个这样的细胞分裂 x次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。

③引导学生把对应关系概括到形式。学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式; 设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;

②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;

③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。2.启发诱导、探求新知(1)指数函数概念的引出

教师活动:①引导学生观察这两个函数,寻找他们的特征 ②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。

学生活动:①学生独立思考并回忆指数的概念;

②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;

③理清指数函数与幂函数在概念上的区别。设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;

②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。(2)研究指数函数的图象

教师活动:①给出两个简单的指数函数和,并要求学生画它们的图象

②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象

③利用函数作图器和几何画板作图。学生活动:①思考画函数图象的方法有哪些?

②画出这两个简单的指数函数图象 ③让学生利用计算器或计算机来画。设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。(3)研究特殊指数函数的性质

教师活动:①引导学生观察画出的两个指数函数和 ②引导学生类比前面讨论函数性质时的方法,强调数形结合,指出研究指数函数性质的方法。学生活动:①观察、交流、讨论这两个图象

②类比前面讨论函数性质时的方法,归纳出研究函数性质涉及的方面 ③总结出这两个指数函数的性质。

设计意图:在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。由特殊到一般,对特殊图象研究彻底则对研究指数函数的一般性质打下了基础,研究过程中更是要注重学生的观察能力的培养。揭示两个函数图象还关于y轴对称,并能让学生利用轴对称性画指数函数的图象。(4)研究一般指数函数的性质

教师活动:①利用“函数作图器”或“几何画板”演示指数函数图象的形式,即将底数a不断变化,要求学生仔细观察它们的图象

②讨论研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作用,注意从特殊到一般的思想方法的应用,渗透概括能力的培养 ③板书指数函数的性质。

学生活动:①观察教师将指数函数的底数a不断变化时,指数函数图象图象有何变化 ②交流、讨论、尝试自己作图研究 ③总结出底数a的规定

④分类讨论总结出指数函数的性质。

设计意图:借助“函数作图器” 或“几何画板”用多媒体将指数函数的图象推广到一般情况,给出了研究指数函数的思路,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

3.巩固新知

学生活动:①完成课后练习A中的第1题

②现在的股市是牛市,每天涨停板(增加10%),若现在投资一万元,以天数为自变量,每天的资金为函数,请写出x与y的关系式。

设计意图:本环节的设计目的是实现学生对指数函数的定义、图象、性质更深入理解,完成学生学习的“观察―认识模仿—理解―掌握”的过程。更向学生展示了数学来源于生活且应用于生活。

4.归纳小结、深化目标

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳; ②引导学生去思考教科书是怎样研究指数函数的。

学生活动:完成对指数函数的概念和性质的课内小结

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与能力目标,经过师生、生生之间的交流与合作,进一步深化师生、生生之间的感情。

5.作业布置

教师活动:①布置课后作业第11页习题第3题与第7题

②拓展视野,实践作业—上网查找与指数函数相关的历史资料以及指数函数在生活或其他方面中的应用。学生活动:通过课后作业进一步深化学习目标,有能力的同学完成网上资料的查找工作并在下节课与同学交流利用指数函数在自己专业知识上的发展或在其他方面所取得的成果。设计意图:①通过作业实现目标的巩固;

②为下节课指数函数的应用打下基础。

五、板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,板面分配比例为2:1:1:1,第一大板块为投影屏幕,第二板块是指数函数的定义和性质,第三板块是指数函数和的图象以及它们的图象特征分析;第四板块悬挂课前准备的画有坐标系和表格的小黑板

课题:指数函数(第一课时)

投影屏幕

1.指数函数的概念 和的图象 悬挂 课前准备的画

指数函数的图像特有

征 坐标系和表格的小黑

2.指数函数的性质 板

第二篇:指数函数

指数函数练习题一

1、下列哪个函数是指数函数?()

A.y3xB.yx

3C.y2x

D.ylog3x

2、若指数函数y(a2)x是单调减小函数,则a的取值范围是()A.a0,1

B.a1,

C.a2,3

D.a3,

3、下列函数中指数函数的个数是().① ② ③

0个 1个 2个 3个(2)已知 的定义域为 ,则 的定义域为__________.(3)当 时, ,则 的取值范围是__________.(4)若 ,则函数 的图象一定不在第_____象限.(5)已知函数 ____________.的图象过点 ,又其反函数的图象过点(2,0),则函数 的解析式为(6))函数 与 的图象大致是().指数函数及其性质(习题)

一.选择题

1.下列以x为自变量的函数中,是指数函数的是()

Ay(4)x Byx

Cy4 D.yax2,(a0且a1)2.若a > 0,则函数yax1x1的图像经过定点()

1aA.(1,2)B.(2,1)C.(0,113.若4mn)D.(2,1+a)

0.25,则m,n的关系是()

A.mn2 B.m = n C.m > n D.m < n 1ax4.下列命题中,正确命题的个数为()(1)函数y,(a0且a1)不是指数函数。

(2)指数函数不具有奇偶性。

(3)指数函数在其定义域上是单调函数。

A.0 B.1 C.2 D.3 5.若a,b满足0 < a < b <1,则下列不等式中成立的是()

abA.aa B.babb C.ab D.ba

aabb二.填空题

1.如果函数f(x)(a1)在R上是减函数,那么实数a的取值范围是___________________.2.比较大小

1.72.5x____1.73,0.80.1____1.250.2,1.70.3___0.93.1,4.54.1___3.73.6

3.若函数y2xm的图像不经过第二象限,则m的取值范围是____________________.14.函数y2x1的定义域是__________.三.解答题 1.求函数 y()x3123x2 的单调区间。

2.指数函数f(x)ax图像过点(2,116),求f(0),f(1),f(2)

x11图像,并求定义域与值域。3.画出函数y2

指数函数练习题

1.函数f(x)(a21)x是R上的减函数,则a的取值范围是()

A.a1B.1a2C.a2D.a2

2.下列关系式中正确的是()A.2321.51221311B. 221121323C.21.5131322x1D.21.51313 223.y=0.3的值域是()

B.1,xA.,0C.0,1D.,1

4.当x1,1时函数f(x)32的值域是()

5A.,13B.1,15C.1,3D.0,1

5.函数yax在0,1上的最大值与最小值的和为3,则a=()A.12

B.2

C.4

D.114 ,b6.若点(2,)既在函数y2axb的图象上,又在它的反函数的图象上,则a

47.函数f(x)ax11a0且a1的图象一定通过点

x2x8.求函数y1的值域和单调区间

2

x1x9.已知9x103x90求函数y14412的最大值与最小值 2

第三篇:指数函数教案

1、引例1:折纸问题:让学生动手折纸

观察:①对折的次数x与所得的层数y之间的关系,得出结论y=x

②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)

引例2:《庄子。天下篇》中写到:“一尺之棰,日取其半,万世不竭”。请写出取x次后,木棰的剩留量与y与x的函数关系式。设计意图:

(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①a>1②0

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接受指数函数的形式。

2、形成概念:

形如y=a(a>0且a≠1)的函数称为指数函数,定义域为x∈R。提出问题:为什么要限制a>0且a≠1? 这一点让学生分析,互相补充。

分a﹤0,且a=0,0﹤a﹤1,a=1,a>1五部分讨论。

(二)发现问题、深化概念

问题1:判断下列函数是否为指数函数。1)y=-3x x

22)y=3 3)y=3 4)y=(-3)5)y=3=(1/3)1/x1+xx-x x设计意图:

1、通过这些函数的判断,进一步深化学生对指数函数概念的理解,指数函数的概念与一次、二次函数的概念一样都是形式定义,也就是说必须在形式上一模一样方行,即在指数函数的表达式中y=a(a>0且a≠1)。

1)a的前面系数为1,2)自变量x在指数位置,3)a>0且a≠1

2、问题1中(4)y=(-3)的判定,引出问题1:即指数函数的概念中为什么要规定a>0且a≠1

1)a<0时,y=(-3)对于x=1/2,1/4,„„(-3)无意义。2)a=0时,x>0时,a=0;x≤0时无意义。3)a=1时,a= 1=1是常量,没有研究的必要。xxxx

x

xx

x设计意图:通过问题1对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时也为后面研究函数的图像和性质埋下伏笔。

落实掌握:1)若函数y=(a-3a+3)a是指数函数,求a值。

2)指数函数f(x)= a(a>0且a≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。——待定系数法求指数函数解析式(只需一个方程)。

(三)深入研究图像,加深理解性质

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。第一环节:分三步

(1)让学生作图(2)观察图像,发现指数函数的性质(3)归纳整理 学生课前准备:利用描点法作函数y=2,y=3,以及y=(1/2)、y=(1/3)的图像。设计意图:(1)观察总结a>1,0

(2)观察y=2与y=2,y=3与y=3图像关于y轴对称。

x

-x

x

-x

x

x

x

x

x

x

x

(3)在第一象限指数函数的图像满足“底大图高。(4)经过(0,1)点图像位置变化。

变式:去掉底数换成字母,根据图像比较底数的大小。方法提炼:①用上面得到的规律;

②作直线x=1与指数函数图像相交的纵坐标,即为底数。

第二环节:

利用多媒体教学手段,通过几何画板演示底数a 取不同的值时,让学生观察函数图像的变化特征,归纳总结:y=a的图像与性质

x

以y=2为例,让学生用单调性的定义加以证明;

设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。(2)学习用做商法比较大小。

4、奇偶性: 不具备

5、对称性:y=a不具备,但底数互为倒数的两个指数函数图像关于y轴对称。从形式上可变为y=ax与y=a-x

总结:两个函数y=f(x),y=f(-x)关于y轴对称。

6、交点:(1)与y轴交于一点(0,1)(2)与x轴无交点(x轴为其渐近线)

7、当x>0时,y>1;当x<0时,00时, 01

8、y=a(a>0且a≠1)在第一象限图像“底大图高”(直线x=1辅助)

难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。为帮助学生记忆,教师用一句精彩的口诀结束性质的探究: 左右无限上冲天,永与横轴不沾边。大1增,小1减,图像恒过(0,1)点。

(四)强化训练落实掌握

例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。

例2:比较下列各题中两值的大小 xxx(1)(4/3)-0.23 与(4/3)

-0.2

5;(2)(0.8)与(0.8)。

2.53方法指导:同底指数不同,构造指数函数,利用函数单调性

(3)与;(4)与

方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。(5)(3/4)与(5/6);(6)(-2.1)与(-2.2)

方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。

(7)(0.3)与(2.3);(8)1.7与0.9。

方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)〔(10/3)或(2.3)〕(2.3)。变式:已知下列不等式, 比较

(l)

(2)

(3)(4)

(且)的大小 : 32/

332/3-32/3

0.3

3.12/32/3

3/7

3/7设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。

(五)归纳总结,拓展深化

请学生从知识和方法上谈谈对这一节课的认识与收获。

1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1 和1>a>0时函数图像的不同特征和性质是学好本节的关键。

2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。

(六)布置作业,延伸课堂 A类:(巩固型)面向全体同学

1、完成课本P93/习题3-1 A B类:(提高型)面向优秀学生

2、完成学案P1/题型1

第四篇:指数函数教案

课题:指数函数的定义及性质

一、教学类型

新知课

二、教学目标

1.理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性.2.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.三、教学重点和难点

重点:理解指数函数的定义,把握图象和性质.难点:认识底数对函数值影响的认识.四、教学用具

投影仪

五、教学方法

启发讨论研究式

六、教学过程 1)引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.指数函数(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为

.问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出

与 之间的函数关系.由学生回答:

.在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为指数函数.2)指数函数的概念(板书)

1.定义:形如 的函数称为指数函数.(板书)

教师在给出定义之后再对定义作几点说明.2.几点说明(板书)

(1)关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 时 ,会有什么问题?如 ,此等在实数范围内相应的函数值不存在.若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定

且.(2)关于指数函数的定义域(板书)

教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.(3)关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.(1)

(4),(2),(5),(3)

.学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)

可以写成 ,也是指数图象.最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.3.归纳性质

作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.函数

1.定义域 :

2.值域:

3.奇偶性 :既不是奇函数也不是偶函数

4.截距:在 轴上没有,在 轴上为1.对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)

在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近轴, 越大,图象上升的越快),并连出光滑曲线.七、思考问题,设置悬念

我们已学习了指数函数的定义与有关性质,能否自己给出其图像呢?其图像有何性质?请学生自己下去思考,这就是我们下一节所要学习的。

作业:习题1、2、3

八、小结

指数函数的概念、定义域、值域、奇偶性

课题:第十六章指数函数

---概念及性质

教 案

11级数学与应用数学

汪飞飞

2012年10月18日

第五篇:指数函数教案

3.1.2.指数函数教学设计

内蒙古呼和浩特市第一中学 张燕

本节课的内容是高中数学必修一第三章第三节“指数函数”的第一课时——指数函数的定义,图像及性质。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从下面这几个方面加以说明。

一、教材的地位和作用

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

二、教学目标

知识目标:①掌握指数函数的概念;

②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。

能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;

②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;

情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景;

②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。

三、教学重难点

教学重点:进一步研究指数函数的图象和性质。

指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此它对知识起到了承上启下的作用。

教学难点:弄清楚底数a对函数图像的影响。

对于底数a>1 和1>a>0时函数图像的不同特征,学生不容易归纳认识清楚。突破难点的关键:

通过学生间的讨论、交流及多媒体的动态演示等手段,使学生对所学知识,由具体到抽象,从感性认识上升到理性认识,由此来突破难点。

因此,在教学过程中我选择让学生自己去感受指数函数的生成过程以及从这两个特殊的指数函数入手,先描点画图,作为这一堂课的突破口。

四、学情分析及教学内容分析

1、学生知识储备

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识方面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能方面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质方面:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

2、学生的困难

本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,但学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来有一定难度。

五、教法分析

本节课我采用引导发现式的教学方法。通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

六、教学过程分析

根据新课标的理念,我把整个的教学过程分为六个阶段,即:1.情景设置,形成概念深理解性质

2.发现问题,深化概念

5.小结归纳

3.深入探究图像,加 6.布置作业 4.强化训练,落实掌握

(一)情景设置,形成概念

学情分析:

1、学生初中就接触过一次函数、二次函数,在第二章再次学习一次函数、二次函数时,学生有一定的知识储备,但对于指数函数而言,学生是完全陌生的函数,无已有经验的参考,在接受上学生有困难。

2、课本给出了两个引例以及在本章章前语也给了一个例子,分别是细胞分裂、放射性物质省留量及“指数爆炸”,这三个例子比较好但离学生的认知仍存在一定距离,于是我在引课这里翻查了一些参考资料,发现这样一个例子,——折纸问题,这个引例对学生而言①便于动手操作与观察②贴近学生的生活实际。

1、引例1:折纸问题:让学生动手折纸

观察:①对折的次数x与所得的层数y之间的关系,得出结论y=x

②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)

引例2:《庄子。天下篇》中写到:“一尺之棰,日取其半,万世不竭”。请写出取x次后,木棰的剩留量与y与x的函数关系式。设计意图:

2(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①a>1②0

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接受指数函数的形式。

2、形成概念:

形如y=a(a>0且a≠1)的函数称为指数函数,定义域为x∈R。提出问题:为什么要限制a>0且a≠1? 这一点让学生分析,互相补充。

分a﹤0,且a=0,0﹤a﹤1,a=1,a>1五部分讨论。

(二)发现问题、深化概念

问题1:判断下列函数是否为指数函数。1)y=-3x x2)y=3 3)y=3 4)y=(-3)5)y=3=(1/3)1/x1+xx-x x设计意图:

1、通过这些函数的判断,进一步深化学生对指数函数概念的理解,指数函数的概念与一次、二次函数的概念一样都是形式定义,也就是说必须在形式上一模一样方行,即在指数函数的表达式中y=a(a>0且a≠1)。

1)a的前面系数为1,2)自变量x在指数位置,3)a>0且a≠1

2、问题1中(4)y=(-3)的判定,引出问题1:即指数函数的概念中为什么要规定a>0且a≠1

1)a<0时,y=(-3)对于x=1/2,1/4,„„(-3)无意义。2)a=0时,x>0时,a=0;x≤0时无意义。3)a=1时,a= 1=1是常量,没有研究的必要。

设计意图:通过问题1对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时也为后面研究函数的图像和性质埋下伏笔。

落实掌握:1)若函数y=(a-3a+3)a是指数函数,求a值。

2)指数函数f(x)= a(a>0且a≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。——待定系数法求指数函数解析式(只需一个方程)。

x

x

xxxxx

x

xx

x

(三)深入研究图像,加深理解性质

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。第一环节:分三步

(1)让学生作图(2)观察图像,发现指数函数的性质(3)归纳整理 学生课前准备:利用描点法作函数y=2,y=3,以及y=(1/2)、y=(1/3)的图像。设计意图:(1)观察总结a>1,0

(2)观察y=2与y=2,y=3与y=3图像关于y轴对称。

x

-x

x

-x

x

x

x

x

(3)在第一象限指数函数的图像满足“底大图高。(4)经过(0,1)点图像位置变化。

变式:去掉底数换成字母,根据图像比较底数的大小。方法提炼:①用上面得到的规律;

②作直线x=1与指数函数图像相交的纵坐标,即为底数。

第二环节:

利用多媒体教学手段,通过几何画板演示底数a 取不同的值时,让学生观察函数图像的变化特征,归纳总结:y=a的图像与性质

x

以y=2为例,让学生用单调性的定义加以证明;

设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。

(2)学习用做商法比较大小。

4、奇偶性: 不具备

5、对称性:y=a不具备,但底数互为倒数的两个指数函数图像关于y轴对称。从形式上可变为y=ax与y=a-x

总结:两个函数y=f(x),y=f(-x)关于y轴对称。

6、交点:(1)与y轴交于一点(0,1)(2)与x轴无交点(x轴为其渐近线)

7、当x>0时,y>1;当x<0时,00时, 01

8、y=a(a>0且a≠1)在第一象限图像“底大图高”(直线x=1辅助)

难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。为帮助学生记忆,教师用一句精彩的口诀结束性质的探究: 左右无限上冲天,永与横轴不沾边。大1增,小1减,图像恒过(0,1)点。xxx

(四)强化训练落实掌握

例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。

例2:比较下列各题中两值的大小(1)(4/3)-0.23 与(4/3)

-0.2

5;(2)(0.8)与(0.8)。

2.53方法指导:同底指数不同,构造指数函数,利用函数单调性

(3)与;(4)与

方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。(5)(3/4)与(5/6);(6)(-2.1)与(-2.2)

方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。

(7)(0.3)与(2.3);(8)1.7与0.9。

方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)〔(10/3)或(2.3)〕(2.3)。变式:已知下列不等式, 比较

(l)

(2)

(3)(4)

(且)的大小 :

32/3

32/3-32/3

0.3

3.12/32/3

3/7

3/7设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。

(五)归纳总结,拓展深化

请学生从知识和方法上谈谈对这一节课的认识与收获。

1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1 和1>a>0时函数图像的不同特征和性质是学好本节的关键。

2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。

(六)布置作业,延伸课堂 A类:(巩固型)面向全体同学

1、完成课本P93/习题3-1 A B类:(提高型)面向优秀学生

2、完成学案P1/题型1。

下载指数函数精讲word格式文档
下载指数函数精讲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    指数函数教案

    3.1.2指数函数的概念教学设计 一、教学目标: 知识与技能:理解指数函数的概念,能够判断指数函数。 过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到......

    指数函数说课稿

    指数函数说课稿 巨野县职业教育中心学校 徐龙勇 我说课的课题是:指数函数。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生......

    指数函数(一)解读

    指数函数(一) 教案 三原南郊中学 柏涛 教学目标: 知识与技能: 理解指数函数的概念和意义,掌握指数函数的图像和性质,并能自觉、灵活地应用其性质(单调性、底数变化图像的变化规律、......

    指数函数教案示例

    问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系. 由学生回答: . 在以上两个实例中......

    指数函数教学反思

    指数函数教学反思1.指数函数与对数函数这部分知识是高中所学的两个最基本的初等函数,相对于学生前面所学的一次函数,二次函数来说难度较大,不仅要求对函数的解析式要进行讨论,函......

    指数函数教案.doc

    一.思考题 1.学来回答其变化的过程和答案 2.通过ppt来讲解思考题 二、问题 1.直接说出指数函数 2.同学来思考问题2 3.给出指数函数的概念 三.例题 1.念下题目,叫学生思考几秒钟......

    指数函数教学反思

    指数函数教学反思 指数函数教学反思1 “指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这......

    指数函数习题精选

    习题精选 一、选择题 1.下列函数中指数函数的个数是 . ① ② ③ ④A.0个 B.1个 C.2个 D.3个 2.若 , ,则函数 的图象一定在 A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四......