第一篇:2007-2013年广东省高考真题《推理与证明》文科
倾心教学2007年文科2007-2013年广东省高考真题《推理与证明》文科
第10题.图3是某汽车维修公司的维修点环形分布图公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()
A.18B.17
C.16D.15
【答案】C
2008年文科
2009年文科
第10题.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()
A.20.6B.21C.22D.23
【答案】B,由题意知,所有可能路线有6种:
①ABCDE,②ABDCE,③ACBDE,④ACDBE,⑤ADBCE,⑥ADCBE,其中,路线③ACBDE的距离最短,最短路线距离等于496221.
第10题.在集合{a,b,c,d}上定义两种运算和如下:
那么d(ac)()
A.aB.bC.cD.d
【答案】A
2011年文科
第10题.设f(x),g(x),h(x)是R上的任意实值函数.如下定义两个函数fgx和fgx;对任意xR,fgxfg(x);fgxfxg(x).则下列等式恒成立的是()
A.fghxfhgh(x)B.fghxfhgh(x)C.fghxfhgh(x)D.fghxfhgh(x)
【答案】B,由题知fgx表示两个函数复合,fgx表示两个函数相乘,故
对A:左=fghx=f(g(x))h(x),右=fhgh(x)=(f(x)h(x))(g(x)h(x))=(f(g(x)h(x))h(g(x)h(x))),显然不等,对B:左=((fg)h)(x)=f(h(x))g(h(x)),右=((fh)(gh))(x)=(fh)(x)(gh)(x)=f(h(x))g(h(x)),显然正确,对C:左=((fg)h)(x)=f(g(h(x))),右=((fh)(gh))(x)=f(h(g(h(x)))),显然不等,对D:左=((fg)h)(x)=f(x)g(x)h(x),右=((fh)(gh))(x)=f(x)g(x)h(x),显然不等.
第10题.对任意两个非零的平面向量和,定义;若两个非零的平面向量a,b满足,a
n与b的夹角(,),且ab,ba都在集合nZ}中,则ab()422
(A)1(B)1(C)(D)2
【答案】A
2013年文科
第二篇:2012年高考真题文科数学15:推理与证明
2012高考试题分类汇编:推理和证明
1.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射
3角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为
(A)8(B)6(C)4(D)3
【答案】B
2.【2012高考上海文18】若Snsin
中,正数的个数是()
A、16B、72C、86D、100
【答案】C
3.【2012高考江西文5】观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为
A.76B.80C.86D.92
【答案】B
4.【2012高考陕西文12】观察下列不等式 7sin2n...sin(nN),则在S1,S2,...,S10077
13 222
115123,233
11151222 23431
……
照此规律,第五个不等式为....
【答案】11111111.22324252626
高考湖南文16】对于
05.【2012nN,将n表示为11nak2kak1k2a2a1k时ai1,,当i2当0ik1时ai为0或1,定义bn如下:在n的上述表示中,当a0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.-1-
(1)b2+b4+b6+b8=__;
(2)记cm为数列{bn}中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是___.【答案】(1)3;(2)2.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力.需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.6.【2012高考湖北文17】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(Ⅰ)b2012是数列{an}中的第______项;
(Ⅱ)b2k-1=______。(用k表示)
【答案】(Ⅰ)5030;(Ⅱ)5k5k1 2
7.【2102高考北京文20】(本小题共13分)
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);记k(A)为|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
对如下数表A,求k(A)的值
设数表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值。
【答案】
8.【2102高考福建文20】20.(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-sin2(-25°)cos255°
Ⅰ 试从上述五个式子中选择一个,求出这个常数
Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
【答案
】
第三篇:文科推理与证明
文科推理与证明(一)合情推理与演绎推理
1.了解合情 推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3.了解合情推理和演绎推理之间的联系和差异。(二)直接证明与间接证明
1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.了解间接证明的一种基本方法──反证法;了解反证 法的思考过程、特点。(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。第1课时 合情推理与演绎推理
1.推理一般包括合情推理和演绎推理;2.合情推理包括 和;归纳推理:从个别事实中推演出 ,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比 推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也 或 ,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是 ,按照严格的逻辑法则得到的 推理过程;三段论常用格式为:①M是P,② ,③S是P;其中①是 ,它提供了一个个一般性原理;②是 ,它指出了一个个特殊对象;③是 ,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座 —逻辑、推理与证明、复数、框图 一.课标要求: 1.常用逻辑用语(1)命题及其关系
① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词
通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。(3)全称量词与存在量词
① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;② 能正确地对含有一个量词的命题进行否定。2.推理与证明
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明 ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;②介绍计算机在自动推理领域和数学证明中的作用;3.数系的扩充与复数的引入
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;(2)理解复数的基本概念以及复数相等的充要条件;(3)了解复数的代数表示法及其几何意义;(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。4.框图(1)流程图
①通过具体实例,进一步认识程序框图;②通过具体实例,了解工序流程图(即统筹图);③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;(2)结构图
①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。二.命题走向 常用逻辑用语
本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。
预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。
第四篇:文科推理与证明
文科推理与证明
(一)合情推理与演绎推理
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
3.了解合情推理和演绎推理之间的联系和差异。
(二)直接证明与间接证明
1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。
2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。
第1课时合情推理与演绎推理
1.推理一般包括合情推理和演绎推理;
2.合情推理包括和;
归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是p,②,③S是p;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座
—逻辑、推理与证明、复数、框图
一.课标要求:
1.常用逻辑用语
(1)命题及其关系
①了解命题的逆命题、否命题与逆否命题;②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;
(2)简单的逻辑联结词
通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。
(3)全称量词与存在量词
①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;
②能正确地对含有一个量词的命题进行否定。
2.推理与证明
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;
(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;
②介绍计算机在自动推理领域和数学证明中的作用;
3.数系的扩充与复数的引入
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;
(2)理解复数的基本概念以及复数相等的充要条件;
(3)了解复数的代数表示法及其几何意义;
(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。
4.框图
(1)流程图
①通过具体实例,进一步认识程序框图;
②通过具体实例,了解工序流程图(即统筹图);
③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;
(2)结构图
①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;
②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。
二.命题走向
常用逻辑用语
本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。
预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。
推理证明
本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势
第五篇:2012年高考真题——文科数学(解析版)15:推理与证明
2012高考试题分类汇编:15:推理和证明
1.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射
3角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为
(A)8(B)6(C)4(D)3
【答案】B
【解析】结合已知中的点E,F的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA点时,需要碰撞6次即可.2.【2012高考上海文18】若Snsin
中,正数的个数是()
A、16B、72C、86D、100
【答案】C
【解析】由题意可知,S13S14=S27S28=S41S42=…=S97S98=0,共14个,其余均为正数,故共有100-14=86个正数。
3.【2012高考江西文5】观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为
A.76B.80C.86D.92
【答案】B
【解析】个数为首项为4,公差为4的等差数列,所以an44(n1)4n,a2080,选
B.4.【2012高考陕西文12】观察下列不等式 7sin2n...sin(nN),则在S1,S2,...,S10077
113 222
1115,22333
11151222 2343
……
照此规律,第五个不等式为....
【答案】1
【解析】通过观察易知第五个不等式为1
5.【2012高考湖南文11111112222.22345661111111.2232425262616】对于
0nN,将n表示为11nak2kak1k2a2a1k时ai1,,当i2当0ik1时ai为0或1,定义bn如下:在n的上述表示中,当a0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;
(2)记cm为数列{bn}中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是___.【答案】(1)3;(2)2.【解析】(1)观察知1a020,a01,b11;2121020,a11,a00,b21; 一次类推3121120,b30;4122021020,b41;
5122021120,b50;6122121020,b60,b71,b81,b2+b4+b6+b8=3;(2)由(1)知cm的最大值为2.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力.需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.6.【2012高考湖北文17】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(Ⅰ)b2012是数列{an}中的第______项;
(Ⅱ)b2k-1=______。(用k表示)
5k5k1 【答案】(Ⅰ)5030;(Ⅱ)2
【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为ann(n1),写出其若干2
项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故b1a4,b2a5,b3a9,b4a10,b5a14,b6a15.从而由上述规律可猜想:b2ka5k5k(5k1)(k为正整数),2
(5k1)(5k11)5k(5k1)b2k1a5k1,22
故b2012a21006a51006a5030,即b2012是数列{an}中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.7.【2102高考北京文20】(本小题共13分)
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);记k(A)为|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
对如下数表A,求k(A)的值
设数表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值。
【答案】
8.【2102高考福建文20】20.(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-sin2(-25°)cos255°
Ⅰ 试从上述五个式子中选择一个,求出这个常数
Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
【答案
】