第一篇:四年级奥数。生活中的数学(学生版)
生活中的数学
例1.有25人要到河的对岸去,河边只有一条小船,船上每次只能坐5人,小船至少要载几次,才能全部过河?、结论:划小船,要有人划,回来还要留1人在船上,划一次船载5人,只能把4人送到河对岸,有1人划回来,但是最后一趟就不需要再划回去。
练习1.有41人要过河,河边只有一条能坐6人的小船,至少要渡几次才能使大家全部过河?
练习2.有34人要过河,一条只能坐4人的小船,至少要渡几次才能让大家全部过河?
练习3.有21个小朋友要去小河对岸,只有一条小船,每次最多能坐6人。最少要几次,小朋友才能全部渡河?
例2.旅游团有30人要去机场乘飞机,团里有两种车,一种是面包车,每辆可乘9人;另一种是小轿车,每辆可乘4人。应怎样派车把这30人送到机场?哪一种派车方案比较合理?
结论:乘车时如果是几种车辆的组合,就要用凑数的方法,看用几辆大车和几辆小车把人一起运走比较合适,可以用列表格的方法将所有方案列举出来,相互比较,得出最优方案。
练习1.一个旅游团20人要过河,河边有大、小两种船,大船每条可坐9人,小船每条可坐4人,应怎样租船把这20人送过河?哪一种租船方案比较好?
练习2.有一架天平,3个砝码分别是1克,3克和6克的。如果只允许在天平的一端放砝码,最多可以量出多少种不同的重量?各是多少克?
练习3.学校食堂买白菜4筐,每筐有6棵,这些菜可供食堂用3天,平均每天用多少棵白菜?
例3.有一块蛋糕,要把它切成11块,至少要切几刀?
结论:要把一个正方形、长方形或圆分成几块,要求块数尽量多,就要使直线两两相交。如果把一块蛋糕切1刀,分成2块,切2刀,分成了4块(多2块),切3刀,分成了7块(多3块),切4刀,可分成11块(多4块)。
练习1。一个木工要把一块正方形木板切成16块,至少要切几刀?
练习2.一根电线把它对折,再对折后长4米,这根电线长多少米?
练习3.把一张白纸折三下,折痕最多能把白纸分成几块?
例4.一次篮球比赛共有10个小组参加,每个小组只要输一场,就被淘汰(不能再比了)。如果哪个小组一场都不输,那么就是这次比赛的冠军。要在10个小组中决出谁是冠军,一共要比赛多少场?
结论:体育比赛一般有两种,一种是淘汰赛产生一名冠军,比赛的次数比人数(或球队数)少1;如果是循环赛,每两个队都要赛一场,求赛几场,方法是:球队数×(球队数-1)÷2.练习1.学校进行羽毛球比赛,共有6人参加,比赛采用循环赛,即每个人都要与其他5名选手赛一场,一共要比赛多少场?
练习2.30名选手参加乒乓球比赛,采用淘汰制,最后产生1名冠军,一共要比几场?
练习3.同学们进行体操比赛,站成6行,每行8人,其中男生20人,剩下的是女生,女生有多少人?
习题检测
1.100名小选手参加象棋比赛,采用淘汰制,最后产生1名冠军,一共要比几场?
2.王刚和张雨共重60千克,两人体重都超过28千克,而且都是整千克数。王刚和张雨的体重各是多少千克?
3.王叔叔养了40只兔子,每4只兔子圈在一个笼子里养,每天给每个笼子里放2千克草,王叔叔每天要喂多少千克草?
4.有4支足球队,采用循环赛,也就是每两个队都要赛一场,最后根据各个队的成绩排出名次,这次比赛一共要赛几场?
5.把一盒蛋糕平均分给4个小朋友,每个小朋友吃掉2块蛋糕后,吃掉的总块数等于原来2个小朋友分得蛋糕的块数。这盒蛋糕被分成了多少块?
6.白纸上有一个正方形,老师要求用最少的直线将这个正方形分成尽量多的块数,如果只画5条直线,最多能分成多少块?只画9条直线呢?
第二篇:四年级奥数
一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?
(1)电视机厂接到一批生产任务,计划每天生产90太,可以按期完成。实际每天多生产5台,结果提前一天完成任务。这批电视机共有多少台?
(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前两天看完。这本故事书有多少页?
(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天完成。一共修了多少米?
有两盒图钉,甲盒有72只,乙盒有48只,从甲盒中拿出多少只放入乙盒,才使两盒中的图钉树相等?
(1)有2袋面粉,第一袋面粉有24千克,第二代面粉有18千克。从第一袋中取出几千克放入第二袋,才能使两袋中的面粉质量相等?
(2)有两盒图钉,甲盒有72只,乙盒有48只,每次从甲盒中拿4只放入乙盒,拿几次后才能使两盒图钉数目相等?
(3)有两袋糖,一袋68粒,另一袋28粒。每次从多的一袋中拿出6粒放入少的一袋里,粒几次才使两袋糖的数目同样多?
第三篇:四年级数学上册奥数题
四年级数学上册奥数题
1、某五个数的平均值为60,如果将其中一数改为80,这五个数的平均值为70,改的这个数应是多少? 2、30个同学平分一些练习本,后来又来了6人,大家重新分配,每人分得的练习本比原来少2本,这些练习本共有多少?
3、甲乙两位同学带着同样多的钱去买日记本,乙买了8本,剩下的钱全部借给了甲,刚好使甲买到了12本。回家后甲还给乙6元,问:日记本每本多少钱?
1、两个仓库共有10000千克大米,从每个仓库里取出同样多的大米,结果甲仓库里剩下3450千克,乙仓库里剩下4270千克,每个仓库原来有多少千克大米?
2、把一个减法算式的被减数、减数、差加起来和是180,已知减数比差大26,被减数、减数和差各是多少?
3、小明今年18岁,小强今年14岁,当两人岁数和是70岁时,两人各有多少岁?
1、小明在算有余数的除法时,把被除数237 错写成273。这样商比原来多3而余数正好相同。这道题的除数和余数各是多少?
2、学校图书馆有科技书和故事书320 本,其中故事书的本数是科技书的3 倍,故事书有多少本?
3、幼儿园小朋友分苹果,如果每人分4个,则多9个,如果每人分5个,则少6个,有多少个小朋友?多少个苹果?
1.在一个数的末尾添上一个“0 ”以后,得到的数比原来的数多36。原来的数是多少?
2.一个数乘8后比原数多了84,原来的数是多少?
第四篇:四年级奥数 鸡兔同笼
学科:奥数
教学内容:第14讲 鸡兔同笼问题
知识网络
鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。
在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。
重点·难点
运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。
学法指导
用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。
经典例题
[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?
思路剖析
鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。
解答
☆解法一:
设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)
兔脚与鸡脚的差4-2=2(只)
实际兔数为40÷2=20(只)
那么实际的鸡数:50-20=30(只)
答:有鸡30只,有兔20只。
☆解法二:
利用方程求解:
设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。
列方程为2×x+4×(5-x)=140
解方程2×x+200-4×x=140
2×x=60 x=30
50-x=50-30=20
则鸡有30只,兔有20只。
☆解法三:
(不拘于传统的解法,让我们的思维发散,更具有创造性。)
农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。
☆解法四:
兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。
☆解法五:
农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。
☆解法六:
我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。
[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?
思路剖析
利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。
解答
设全为2分的,则共值2×40=80(分)
与实际相比少125-80=45(分)
由于假设造成的差值5-2=3(分)
则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。
答:有5分硬币15枚,2分硬币25枚。
点津
由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。
[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?
思路剖析
假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:
32÷8=4(道)。
解答
20-(5×20-68)÷(5+3)
=20-32÷8=20-4
=16(道)
答:小贝贝做对了16道题。
点津
由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。
[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?
思路剖析
题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。
解答
[20×(112÷14)-112]÷(20-12)
=(160-112)÷8=48÷8
=6(天)
答:张宁植树这些天总共有6个雨天。
[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?
思路剖析
假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。
解答
(3×100-100)÷(3×3-1)
=(300-100)÷8=200÷8
=25(人)
100-25=75(人)
答:大和尚有25人,小和尚有75人。
点津
本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。
[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?
思路剖析
前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。
那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。
解答
(68-4×14)÷(7-4)
=(68-56)÷3=12÷3
=4(组)
那么3人组与5人组的组数(14-4)÷2=5(组)
答:学习小组中3人组和5人组各有5组,7人组有4组。
[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?
思路剖析
依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。
解答
(8×18-118)÷(8-6)
=(144-118)÷2=26÷2
=13(只)„„6腿虫数
(2×13-20)÷(2-1)
=(26-20)÷1
=6(只)„„1对翅膀虫数
13-6=7(只)„„2对翅膀虫数
答:蜻蜓有7只。
点津
恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。
发散思维训练
1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?
2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?
3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?
4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?
5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?
6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?
7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?
8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?
9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?
10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?
参考答案
发散思维训练
1.解:
由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。
答:鸵鸟有10只,大象有8头。
2.解:
假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。
那么实际的兔数是:180÷6=30(只)
鸡数为:180-30=150(只)
答:养的鸡为150只,兔为30只。
3.解:
假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。
那么实际的象棋数为60÷4=15(副)
跳棋数为20-15=5(副)
答:象棋有15副,跳棋有5副。
4.解:
由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:
20+10=30(只)。
答:原有鸡30只、兔20只。
5.解:
假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。
那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。
答:没跳够8个的次数为2次。
6.解:
猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。
由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。
假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。
答:有6人全猜对。
7.解:
假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)
答:大桶有20个,小桶有30个。
8.解:
假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。
根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。
答:他车出的正品是48个。
9.解:
假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。
答:考25题的次数是2次。
10.解:
尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。
答:九尾鸟有60只,九头鸟有50只。
第五篇:四年级奥数练习题
四年级练习题
班级:姓名:.今有鸡、兔同笼,上有三十五头,下有九十四脚,鸡、兔各几只?
2.冬冬的存钱罐里有一些硬币,他倒出来数了数,2角和5角硬币共36枚,共计99角。问这两种硬币各多少枚?
3.同学们参加数学竞赛,男生的平均分是60分,女生的平均分是70分,全体同学一共得了6300分,平均每人得了63分。参加数学竞赛的有多少名男生?多少名女生?
4.鹤壁市数学竞赛,共出15道题,每做对一道得8分,每做错一道扣4分。齐齐做了全题目共得72分,他做对几道题?
5.新学期开学了,学校安排学生宿舍。如果每间5人,则有14人没有床位;如果每间7人,则多6个床位。该校有宿舍多少间?共有多少名学生?
6.一棵石榴树上结有石榴,石榴数目减去6,乘以6,除以6,结果等于6.请你算一算,这棵石榴树上一共有多少个石榴?
7.实验小学进行团体体操表演,如果每行排8人,则多出17人,如果每行排10人,还多出5人,问排成多少行?有多少学生?
8.小朋友们分一堆苹果。先把一半分给年龄较小的,然后再把其余的一半加3人分给年龄较大的,最后还剩下5个苹果。问这堆苹果原来有多少个?
9.小敏用8元钱正好买了面值为20分和100分的邮票共16张,则20分的邮票有多少张?100分的邮票有多少张?
10.在一场NBA篮球赛中,巨星姚明开场后不久连连得分。已知他投中10个球(没有罚球),共得23分,问姚明投中多少个2分球?多少个3分球?
11.老师把练习本奖给三好学生,每人9本少15本;每人7本则少7本。这批三好学生有多少人?有多少本练习本?
12.师徒二人轮流加工一批零件,师傅每小时加工60个,徒弟每小时加工40个,他们一共加工了260个零件,平均每小时加工52个,求师、徒各加工了几小时?