第一篇:生物药剂学大纲
生物药剂学与药物动力学教学大纲
一、课程基本信息
课程名称:生物药剂学与药物动力学
Biopharmaceutics and Pharmacokinetics
课程号(代码):505015030
课程类别:专业课
学时:48学时学分:
3二、教学目的及要求
(一)教学目的生物药剂学与药物动力学是药学专业的一门主要专业课程。它是研究药物及其剂型在体内的吸收、分布、代谢、排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效间相互关系,并应用动力学原理与数学处理方法,定量描述药物在体内动态变化规律的学科。它的基本目的是:对体内过程进行定量描述,正确评价药剂质量,设计合理剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳治疗作用。
通过本课程的教与学,力求使理论与实际相结合,不仅培养学生具有生物药剂与药物动力学的基本理论、基本知识和基本技能,而且培养学生独立分析和解决问题的能力及严谨的科学作风。为从事药学及临床药学工作,保证药品质量,合理用药,充分发挥药效,降低毒副反应,以及研究探讨新剂型和新制剂,更好地为卫生保健事业服务打下良好的基础。
(二)基本要求
1基础理论与基本知识
(1)掌握生物药剂学和药物动力学及其相关定义,掌握药物通过生物膜的转运机制,掌握影响药物
体内过程的生理性因素、药物因素和制剂因素;
(2)掌握药动学相关模型及其基本计算;
(3)熟悉相关器官结构和功能,药物体内过程以及药物制剂产生不同药效,毒副反应及其作用快慢的主要原因;熟悉给药方案个体化和治疗药物监测的主要内容及其在临床药学中的应用。;
(4)了解药动学参数与药物体内过程的相互关系;
2基本技能
(1)掌握片剂溶出度测定的方法,掌握药物动力学参数及生物利用度的测定方法;
(2)熟悉测定方法的使用条件和注意事项;
(3)了解实验专用设备、器械及正确使用。
三、教学内容
第一章 生物药剂学概述3学时
要求:掌握生物药剂学的主要任务;熟悉生物药剂学与药学学科发展的关系。
主线:什么是生物药剂学;生物药剂学与药学生培养的关系;生物药剂学研究中的新技术新方法。
形式:讲授及讨论
第二章药物的吸收9学时
要求:掌握影响药物消化道吸收的生理性因素、药物因素和制剂因素;熟悉胃肠道的结构、功能及药物的吸收过程;熟悉口服药物制剂产生不同药效,毒副反应及其作用快慢的主要原因;了解运用消化道药物吸收特性,设计和开发新的药物制剂的可能性;了解生物膜的结构和掌握药物通过生物膜的转运机制。
掌握经非口服给药途径给药后,影响药物吸收的因素;熟悉非口服给药药物吸收过程;了解非口服给药药物吸收部位结构及生理特点。
第三章药物的分布2学时
要求:掌握药物分布过程及其影响因素;掌握表观分布容积的重要意义;熟悉淋巴系统的基本结构,熟悉药物从血液、组织间隙和消化道向淋巴系统的转运过程以及主要影响因素;了解脑内转运、胎盘内转运、红细胞内分布和脂肪组织内分布的主要影响因素。
第四章药物的代谢2学时
要求:掌握药物代谢的主要途径、部位与过程;熟悉主要药物代谢酶——混合功能氧化酶的性质和代谢条件;熟悉影响药物代谢的因素;了解运用药物代谢酶性质进行制剂设计的方法。
第五章药物的排泄2学时
要求:掌握药物肾排泄的三种机制,影响肾排泄的主要因素;掌握肾小球滤过的特点;掌握肾清除率的意义及对药物作用的影响;熟悉药物胆汁排泄过程及药物胆汁排泄的特点;熟悉肠肝循环概念及对药物作用的影响;了解药物排泄的其他途径。
第六章药物动力学概述3学时
要求:掌握药物动力学的定义和研究内容;掌握消除常数、半衰期、表观分布容积、清除率等的定义和意义;掌握房室模型等基本概念;了解药物浓度与药理效应之间的关系。
第七章一室模型药物动力学6学时
要求:掌握单室模型静脉注射、静脉滴注、血管外给药药物动力学参数的含义及利用血药浓度数据计算参数的方法;熟悉静脉注射给药后,利用尿药数据计算药物动力学参数的方法;熟悉Wagner-Nelson法求吸收速率常数;了解血药浓度与尿药浓度的相互关系。
第八章多室模型的药物动力学6学时
要求:掌握混杂参数、中央室、周边室及相关的定义、意义、计算;熟悉二室静脉注射给药的血药时关系、参数求算及相关计算;了解二室静脉滴注给药的血药时关系、参数求算及三种给药方案的设计;了解二室模型血管外给药的的血药时关系、参数求算及相关计算。
第九章多剂量给药3学时
要求:掌握多剂量函数和达稳态后的多剂量函数、多剂量稳态血药浓度、最大和最小稳态血药浓度、平均稳态血药浓度、波动百分率、坪幅、积蓄因子、积蓄程度、达坪分数、成倍原则的定义、意义及相关计算;熟悉一室和二室模型不同给药途径多剂量给药时,血药浓度、稳态血药浓度随时
间变化的规律及平均稳态血药浓度、最大稳态血药浓度、最小稳态血药浓度的计算;了解一室和二室模型不同给药途径多剂量给药时积蓄作用和波动变化的特点及相关的计算;了解多剂量给药时给药方案设计的一般方法、根据血药浓度调整给药剂量的方法、间歇性静脉滴注给药给药方案的确定。
第十章非线性药物动力学3学时
要求:掌握非线性动力学的特点、米氏方程及各项参数的意义;熟悉非线性动力学的识别方法和参数求算方法;了解非线性动力学产生的原因。
第十一章药物动力学研究中的统计矩分析3学时
要求:掌握统计矩、零阶矩、一阶矩、二阶矩的定义、意义及相关的计算;熟悉应用统计矩计算药动学参数的方法;了解统计矩处理药动学问题的方法和思路。
第十三章药物动力学研究进展6学时
要求:了解药动学在中药与天然药物研究中的应用,了解药物结构与药物体内吸收、分布、代谢和排泄之间的关系。
第十四章新药研发中的药物动力学研究6学时
要求:掌握生物利用度的概念、实验设计和结果处理方法;掌握生物等效性的概念和评价方法,了解生物等效性的统计分析方法;熟悉新药临产前及临床药动学研究的内容和方法;了解药动学在新药研发中的作用和意义。
五、教材
《生物药剂学与药物动力学》蒋新国主编,高教出版社2009年第1版
六、主要参考资料
1、《生物药剂学与药物动力学》 梁文权主编人民卫生出版社2007年8月第3版
2、《药物评价方法概论》 蒋学华主编四川大学出版社 2005年3月第1版;
3、《生物药剂学与药物动力学》 魏树礼主编北京医科大学,中国协和医科大学联合出版;
4、《Clinical Pharmacokinetics Malcolm Rowland》 Tomas N.Tozer LEA&FEBLGER
六、成绩评定
课程总成绩:期末考试(闭卷)成绩占40%,平时成绩占40%,期中考试(开卷)成绩占20%
四川大学华西药学院临床药学与药事管理学系
第二篇:生物药剂学
生物药剂学:是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
生物药剂学分类系统:根据药物的溶解度和膜渗透性,将药物分成溶解度大渗透性好、溶解度小渗透性好、溶解度大渗透性差和溶解度小渗透性差四类。
The rule of five(五规则)这些参数为:分子量大于500;氢键给体数大于5个;氢键受体数大于10;计算得到的logP值大于5.0。
药物的吸收:指药物从给药部位进入体循环的过程。
药物的分布:药物从给药部位吸收进入血液后,由循环系统运送至体内各脏器、组织、体液和细胞,这种药物在血液和组织之间的转运过程,称为~~。
表观分布容积:假设在药物充分分布的前提下,体内全部药物按血中同样浓度溶解时所需的体液总体积。用来描述药物在体内分布状况的重要参数,是将全血或血浆中的药物浓度与体内药量联系起来的比例常数,也是药物动力学的一个重要参数。
血脑屏障:主要由脑毛细血管的内皮细胞通过紧密连接形成,细胞间隙极少,形成了连续性无膜孔的毛细血管壁。毛细血管基膜外被一层神经胶质细胞包围,神经胶质细胞富有髓磷脂(脑磷脂),其主要成分是脂质。
所谓的EPR效应:在一些病理情况下,机体血管通透性发生改变,会明显影响微粒系统的分布。如肿瘤组织由于快速生长的需求,血管生成很快,导致新生血管外膜细胞缺乏、基底膜变形,因而纳米微粒能穿透肿瘤的毛细血管的鈥湻煜垛澖胫琢鲎橹琢鲎橹牧馨拖低郴亓鞑煌晟疲斐闪W釉谥琢霾课恍罨饩褪恰殖圃銮可负椭土粜вΑ
药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变,这就是~~。
排泄:指体内药物或其代谢物排出体外的过程,它与生物转化统称药物消除。
血浆清除率:指肾脏在单位时间内能将多少容量血浆中所含的某物质完全清除出去,这个被完全清楚了某物质的血浆容积就称为该物质的~~。
肠肝循环:指在胆汁中排出的药物或代谢物,在小肠中转运期间重新吸收而返回门静脉,并经肝脏重新进入全身循环,然后再分泌,直至最终从尿中排出的现象。
双峰现象:某些药物因肠肝循环可出现第二个血药浓度高峰,被称为~~。
首过效应:在吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原形药物量减少的现象,称为鈥湣潯
肝提取率:指药物通过肝脏从门脉血清除的分数,肝提取率介于0~1之间。
绝对生物利用度:是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药为参比制剂获得的药物吸收进入体循环的相对量。
药物治疗指数:是指最低中毒浓度(MTC)与产生治疗效应的最小有效血药浓度(MEC)的比值。
平均滞留时间:即一阶矩,可用下式定义:
生物药剂学与药物动力学复习题其中,生物药剂学与药物动力学复习题
表观分布容积:是体内药量与血药浓度相互关系的一个比例常数,用鈥淰鈥澅硎尽K梢陨柘胛迥诘囊┪锇笛ǘ确植际保枰逡旱睦砺廴莼
清除率:是单位时间从体内清楚的含药血浆体积或单位时间从体内消除的药物表观分布容积。
生物利用度:指制剂中药物被吸收进入体循环的速度和程度。它是衡量制剂疗效差异的重要指标,是新药开发与研究的基本内容。
隔室模型:是将身体视为一个系统,系统内部按动力学特点分为若干室。它是从实际数据中归纳出来的,从动力学上把机体分为几个药物鈥湸⒋婵忖潯V灰迥谀承┎课唤邮芤┪锛跋┪
锏乃俾食J嗨疲还苷庑┎课坏慕馄饰恢糜肷砉δ苋绾危伎晒槟晌桓龇渴摇
群体药物动力学:是利用稀疏数据研究群体的特征、变异和各种因素对药动学影响的药物动力学方法。
负荷剂量:在临床用药实践中,为尽快达到有效治疗目的,通常第1次给予一个较大的剂量,使血药浓度达到有效治疗浓度,之后再按给药周期给予维持剂量,使血药浓度维持在有效治疗浓度范围。这个首次给予的较大剂量称为~~
生物等效性:指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无法统计差异。
细胞膜主要由膜脂、蛋白质和少量糖类组成。膜脂主要包括磷脂、糖脂和胆固醇三种类型。胆固醇的功能是提高脂质分子层的稳定性,调节双分子流动性,降低水溶性物质的渗透性。人的体液是有细胞内液、细胞外液和血浆三部分组成。
药物-蛋白质结合中起主要作用的是:白蛋白。
肾的基本解剖单位是肾单位。肾单位由肾小球、近曲肾小管、髓袢和远曲小管及集合管。直肠药物吸收的主要途径:一条是通过直肠上静脉,经门静脉至肝脏;另一条是通过直肠中、下静脉、肛管静脉,进入下腔静脉,直接进入体循环。
最佳给药距离:栓剂距肛门口2cm
肺部给药的吸收特点:巨大的肺泡表面积、丰富的毛细血管和极小的转运距离,决定了肺部给药的迅速吸收,而且吸收后的药物直接进入血液循环,无肝脏首过作用。
生物利用度的研究方法主要有血药浓度法、尿药浓度法和药理效应法等。
评价药物制剂生物等效性时,评价AUC、Cmax是否等效可采用双单侧t检验和置信区间分析的方法,Tmax可采用 Wilcoxon检验。
临床给药方案的调整主要是调整 给药间隔和给药剂量,对于治疗窗很窄的药物,临床多采用 静脉滴注 的给药方案,以减少血药浓度的波动性。
在统计距中, VSS可以定义为MRT和Cl的乘积;静脉滴注的MRT与静脉注射的MRT之间的关系为MRTinf = MRTiv + T/2。
药物产生非线性动力学的原因主要与酶和载体的容量限制有关,非线性药动学可用米氏方程来表示,其中Km的含义是消除速度为最大理论速度一半时的药物浓度。
生物药剂学研究的剂型因素主要包括:
⑴药物的某些化学性质:如同一药物的不同盐、酯、络合物或前体药物,即药物的化学形式,药物的化学稳定性等。
⑵药物的某些物理性质:如粒子大小、晶型、晶癖、溶解度、溶出速度等。
⑶药物的剂型及用药方法。
⑷制剂处方中所用的辅料的性质与用量。
⑸处方中药物的配伍及相互作用。
⑹制剂的工艺过程、操作条件及贮存条件等。
生物膜的性质:⑴膜的流动性,⑵膜结构的不对称性,⑶膜的结构的半透性。
被动转运的特点是:
⑴药物从高浓度侧向低浓度的顺浓度梯度转运;
⑵不需要载体,膜对药物无特殊选择性;
⑶不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;
⑷不存在转运饱和现象和同类竞争抑制现象。
主动转运的特点有:
⑴逆浓度梯度转运;
⑵需要消耗机体能量,能量来源主要由细胞代谢产生的ATP提供;
⑶需要载体参与,载体物质通常与药物有高度的选择性;
⑷主动转运的速率及转运量与载体的量及其活性有关,当药物浓度较低时,载体的量及活性相对较高,药物转运速度快,当药物浓度较高时,载体趋于饱和,药物转运速度减慢,甚至转运饱和;
⑸结构类似物能产生竞争性抑制作用,相似物竞争载体结合位点,影响药物的转运和吸收;⑹受代谢抑制剂的影响;
⑺有结构特异性和部位特异性。
鼻黏膜给药的优点:⑴血流丰富,吸收快;⑵避开肝首过效应,胃肠道作用;⑶可与静脉注射相媲美;⑷给药方便。
影响鼻黏膜吸收的剂型因素:⑴药物脂溶性和解离度;⑵药物的相对分子质量和粒度大小;⑶吸收促进剂;⑷蛋白与多肽类药物的吸收
为什么需要研究药物的分布?
⑴组织分布于药效:药物体内分布和药效密切相关,药物分布达到作用部位的速度越快,奇效就越越快,药物和作用部位的亲和力越强,药效就越强越持久。在靶部位的有效药物浓度主要与受体结合有关。
⑵组织分布与化学结构:药物的化学结构和其体内分布密切相关。化学结构类似的药物往往由于某些功能基团略有变化,可导致脂溶性、空间立体构型以及受体亲和力的变化,最终使药物在体内的分布发生明显改变。
⑶药物的体内分布与蓄积:当长期连续用药时,在体内的某些组织中的药物浓度有逐渐升高,这种现象称为蓄积。临床上有时有目的地利用药物的蓄积现象,使体内逐渐达到有效浓度,再长期维持用药。
药物与蛋白结合对药效的影响:
药物与血浆蛋白结合成为结合型药物,暂时失去药理活性,并鈥湸⒋驸澯谘褐校鸬揭┛獾淖饔谩6杂谝┪镒饔眉捌湮质奔涑ざ逃兄匾庖澹话愕鞍捉岷下矢叩囊┪锾迥谙饔梦质奔涑ぁ 药物代谢的临床意义:⑴代谢使药物失去活性;⑵代谢使药物活性降低;⑶代谢使药物活性增强;⑷代谢使药理作用激活;⑸代谢产生毒性代谢物。
提高药物脑内分布的方法
⑴颈动脉灌注高渗甘露醇溶液,使血脑屏障暂时打开,增加药物入脑。
⑵对药物结构进行改造,引入亲脂性基团,制成前药,增加化合物脂溶性。
⑶使用PACA、PLA、PLGA等高分子材料,将药物装载制成纳米粒,提高药物的脑内分布。⑷利用脑毛细血管内皮细胞上存在的特异性载体,载体转运同样受到化合物结构的限制,通常药物结构必须和载体的底物非常相似才有效。
⑸通过鼻腔途径给药,可以使药物绕过血脑屏障,直接进入脑组织。
根据物理化学原理的微粒给药系统设计:
⑴磁性微粒的设计;⑵热敏微粒的设计;⑶pH敏感性微粒的设计。
药物代谢所设计的化学反应通常可分为两大类:
⑴第一相反应:包括氧化、还原和水解三种,通常是脂溶性药物通过反应生成极性基团。⑵第二相反应:即结合反应,通常是药物或第一相反应生产的代谢产物结构中的极性基团与机体内源性物质反应生成结合物。
影响药物代谢的因素:
⑴给药途径对药物代谢的影响;
⑵给药剂量和剂型对药物代谢的影响;
⑶药物的光学异构特性对药物代谢的影响;
⑷酶抑制和诱导作用对药物代谢的影响;
⑸生理因素对药物代谢的影响。
药物的肾排泄:⑴肾小球滤过;⑵肾小管重吸收;⑶肾小管主动分泌;⑷肾清除率。影响肾小球滤过的因素:
滤过膜的有效面积和通透性在某些病理情况下,滤过膜上带负电荷的糖蛋白减少或消失,滤过膜的通透性增加,尿中可出现蛋白质,即蛋白尿。甚至出现血细胞,即血尿。若某些炎症使滤过膜有效面积减少,则出现少尿。
有效滤过压的变化
⑴肾小球毛细血管血压主要取决于全身动脉血压的高低和出、入球小动脉的口径。若动脉血压在10.7-24.0kPa(80-180mmHg)范围内变动时,通过肾血流量自身调节,肾小球毛细血管压变化不大,有效滤过压变化也不大;但当超出自身调节范围,如大出血性休克,全身动脉血压低于10.7kPa时,有效滤过压降低,可出现少尿或无尿。
⑵血浆胶体渗透压当静脉内大量输入晶体物质液体,可稀释血液,特别是相对的使胶体渗透压下降;则均可使有效滤过压增加,使肾小球滤过率增加,尿量增加。
⑶囊内压一般情况下变化不大。但当肿瘤或结石,压迫或引起尿路阻塞时,囊内压升高,使有效滤过压降低,尿量减少。
肾小球血浆流量此因素主要靠入肾的小动脉和微动脉的舒缩来调节血浆流量。小动脉的舒缩主要靠神经调节。交感神经兴奋时,肾小动脉收缩,口径缩小,血浆流量减少,滤过作用减弱,尿量减少。
尿量对药物重吸收的影响:尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多。
在大量失血或出汗的情况下,对尿量的影响?
若大量出汗时,因水份丢失多,而使血浆晶体渗透压升高,可使晶体渗透压感受器兴奋;若大量失血,可使血容量下降,容量感受器抑制。这两种刺激均可使下丘脑、神经垂体兴奋,反射性的引起ADH合成、释放增多,远曲小管、集合管对水的通透性和重吸收增加,引起尿量减少。
请用统计矩原理设计一实验评价口服溶液剂和口服片剂对药物吸收有何不同。
⑴采用双周期的交叉试验设计。将同一组受试者采取交叉给药的方案。
⑵在第一周期受试者空腹给予某一药物的片剂,在一定时间点取血并测定血药浓度,求得片剂给药后的AUMC和AUC,进一步计算片剂给药后的MRT。
⑶在第二周期受试者给予某一药物的溶液剂,在一定时间点取血并测定血药浓度,求得溶液剂给药的AUMC和AUC,进一步计算溶液剂给药后的MRT。
⑷采用下式就可以评价口服溶液剂和口服片剂对药物的吸收的影响。
MDT=MAT片-MAT溶液=(MRT片-MRTiv)-(MRT溶液-MRTiv)=MRT片-MRT溶液 判定隔室模型有哪些方法?
采用以下判据综合判断。①一般先以lgC对t作图进行初步判断,如静脉注射给药后,lgC-t图形为一直线,则可能是单室模型;如不是直线,则可能属于多室模型。②选择残差平方和(SUM)与权重残差平方和(Re)最小的模型。③选择拟合度(r2)较大的模型。④选择AIC判据较小的模型。⑤F检验,若F计算值大于F界值,则说明模型2优于模型1。为什么对于非线性动力学的药物,临床剂量调整时必须密切监测血药浓度?试用公式证说明。
米氏消除方程:-dC/dt = VmC/(km + C),整理以后得:Cdt =-(km + C)/Vm dC 将上式从t = 0到t = 鈭灱浠郑∵t = 0时,C = C0,t = 鈭炇保珻 = 0,鈭 鈭鈭0 Cdt =-鈭0C0 km/Vm dCC2/2Vm|0C0
鈭 AUC = 鈭鈭0Cdt = km/Vm[-01/Vm[0-C02/2] = kmC0 /Vm + C02/2Vm =
C0/Vm(km+C0/2)
当km 》C0/2时: AUC = km/Vm C0 = km/Vm路X0/V = X0/kV。
此时计算公式的形式与线性动力学一样,且AUC与X0成正比。
在一般情况下,由AUC = C0(km + C0/2)/Vm,当C0 增加一倍,即C02 = 2C01时,AUC2/AUC1 = C02(km + C02/2)/Vm /C01(km + C01/2)/Vm = 2×(km + C02/2)/(km + C01/2),∵(km + C02/2)>(km + C01/2),鈭 AUC2 > 2AUC1,即C0增加一倍时,AUC的增加不止一倍。
而当C0/2 》km时: AUC = C02/2Vm = X02/2VmV。
即AUC与剂量的平方成正比,所以剂量稍有增加,AUC就有明显增大。因此对于非线性消除药物,剂量的增加必须慎重。
试述口服给药二室模型药物的血药浓度-时间曲线的特征。
血药浓度-时间曲线图分为三个时相:①吸收相,给药后药物浓度持续上升,达到峰值浓度,在这一阶段,药物吸收为主要过程;②分布相,吸收至一定程度后,以药物从中央室向周边室的分布为主要过程,药物浓度下降较快;③消除相,吸收过程基本完成,中央室与周边室的分布趋于平衡,体内过程以消除为主,药物浓度逐渐地衰减。
第三篇:生物药剂学总结
名解
1、生物药剂学(biopharmaceutics):是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,及机体生物因素和药物疗效之间相互关系的科学。
2、吸收(absorption)/药物的吸收(absorption of drug):药物从用药部位进入体循环的过程。
3、分布(distribution):药物进入体循环后向各组织器官或者体液转运的过程。
4、代谢(metabolism)/生物转化(biotransformation):药物吸收过程或进入体循环后,受肠道菌或体内酶系统的作用,结构发生转变的过程。
5、排泄(escretion):药物或其代谢产物排出体外的过程。
6、药物转运(transport):药物的吸收、分布、排泄过程统称为转运。
7、处臵(disposition):分布、代谢和排泄过程统称为处臵。
8、消除(elimination):代谢与排泄过程药物被清除合称为消除。
9、膜转运(membrance transport):物质通过生物膜(或细胞膜)的现象称为膜转运。
10、被动转运(passive transport):是指存在于膜两侧的药物顺浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。
11、膜孔转运(membrance pore transport):药物通过含水小孔转运的过程。
12、载体媒介转运(carrier-mediated transport):借助生物膜上的载体蛋白作用,是药物透过生物膜而被吸收的过程成为载体媒介转运。
13、促进扩散(facilitated diffusion)/易化扩散:是指某些物质在细胞膜载体的帮助下,由膜高浓度侧向低浓度侧扩散的过程。
14、主动转运(active transport):借助载体或酶促系统的作用,药物从膜低浓度侧向高浓度侧的转运称为主动转运。
15、膜动转运(membrance mobile transport):是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程。
16、吞噬作用(phagocytosis):膜动转运中摄取的物质为大分子或颗粒状物称为吞噬作用。
17、胃空速率(gastric emptying rate):用来描述胃排空快慢的物理量。
18、肝首过效应(liver first pass effect): 药物进入体循环前的降解或失活称为“肝首过代谢”或肝首过效应。
19、溶出速率(dissolution rate):是指一定溶出条件下,单位时间药物溶解的量。20、注射给药(parenteral drug delivery):注射给药或称注射给药法是指将无菌药液注入体内,达到预防和治疗疾病的目的。
21、肺部给药(pulmonary drug delivery)/眼部给药(ophthalmic drug delivery)
思考题
一、生物药剂学研究内容和目的是什么? 内容:(1)研究药物的理化性质与体内转运的关系;
(2)研究剂型、制剂处方和制剂工艺对药物体内过程的影响;
(3)根据机体的生理功能设计缓控释制剂;
(4)研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础;
(5)研究新的给药途径与给药方法;
(6)研究中药制剂的溶出度和生物利用度;
(7)研究生物药剂学的研究方法。
目的:正确评价药剂质量,设计合理的剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳的治疗作用。
二、生物药剂学与制剂质量和临床用药的关系(同上目的)
生物药剂学为正确评价制剂质量和指导临床合理用药提供科学依据。生物药剂学与制剂质量的关系:质量评价,处方筛选
生物药剂学与临床用药的关系:合理用药,保证药效,安全。
三、何为吸收?
吸收是指药物从给药部位进入体循环的过程。
四、试述生物膜的组成、结构、功能及其模式对药物吸收的关系。组成:生物膜由膜脂、蛋白质和少量糖类组成。膜脂主要包括磷脂、糖脂和胆固醇三种类型。
结构:液体镶嵌模型。流动的脂质双分子层构成细胞膜的连续主体,蛋白质分子以不同的方式和不同的深度嵌入磷脂双分子层中。
功能:使活细胞与周围环境间有选择地进行物质交换。
对吸收的关系:大部分药物透过细胞膜的方式为被动扩散。小分子水溶性物质通过微孔途径吸收,大分子通过类脂途径吸收。
五、人体哪些部位给药兼有局部及全身两种作用? 口服给药:靶向制剂(局部),普通制剂(全身)肌肉/皮下注射:局麻药(局部),皮试(局部),青霉素G(全身)口腔粘膜给药:溃疡膜(局部),舌下片(全身)皮肤给药:皮炎平(局部),肛泰(全身)肺部给药:地塞米松(局部),全麻药(全身)直肠与阴道给药:甘油栓(局部),阿司匹林栓(全身)眼部给药及鼻粘膜给药一般用于局部,极少用于全身。
六、各举例说明之。药物以何种方式和途径透过下列部位生物膜(胃肠道、口腔、鼻腔、皮肤、眼角膜)胃肠道:细胞通道转运、细胞旁路通道转运;
口腔:以被动扩散为主,低分子量的水溶性药物主要通过细胞间通道穿过口腔粘膜,一些脂溶性药物也能经细胞间透过黏膜吸收;
鼻腔:经细胞的脂质通道和细胞间的水性孔道; 皮肤:被动扩散;
眼角膜:角膜渗透和结膜渗透。
七、影响为肠道吸收的主要因素。
(一)生理因素:
1、消化系统因素:
(1)胃肠液的成分与性质;(2)胃排空和胃空速率;(3)肠内运行;(4)食物的影响;(5)胃肠道代谢作用的影响;
2、循环系统因素
(1)胃肠道血流速度;(2)肝首过效应;(3)淋巴循环;
3、疾病因素
(二)物理化学因素
1、解离度与脂溶性;
2、溶出速率;
3、药物在胃肠道中的稳定性;
(三)剂型因素
1、制剂处方;
2、制备工艺。
八、药物转运机制中以被动转运为重要,何故?
1、药物从高浓度侧向低浓度侧的顺浓度梯度转运;
2、不需要载体,膜对药物无特殊选择性;
3、不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;
4、不存在转运饱和现象和同类竞争抑制现象。
九、何类药物在小肠转运过程中出现饱和现象,及部位特征,使此类药物在服用中应注意什么? 主动转运的药物会出现饱和现象,部位特征为小肠上端。
服用此类亚欧应注意饭后服用,一次剂量不宜过多,经吸收部位是速度应慢,不宜制成缓释制剂。例如:维生素B2和胆酸。十、一般药物以何种形式透过生物膜,进入血浆后主要以何种方式起作用?、一般药物以脂溶性较高的未解离型透过细胞膜,进入血浆后主要以游离型起作用。
十一、药物油/水分配系数值不宜过大对吸收的意义何在?试举胃肠道与皮肤吸收为例。
通常药物的油水分配系数大,说明该药物的脂溶性较好,吸收率也大,但油水分配系数与药物的吸收率不成简单的比例关系。因为溶于脂质膜的药物对体液的亲和性很弱,难以从类脂膜中游离入水溶性体液中,使药物吸收率下降。胃肠道:脂溶性太强的药物可因难以从类脂膜中游离入水溶性体液中,使药物吸收率下降,而且药物不可能在水溶性的胃液中溶解,故无法吸收。
皮肤:脂溶性强的药物容易透过角质层屏障,但脂溶性太强的药物难以透过亲水性的活性表皮和真皮层。
十二、影响胃排空速率的因素有哪些?哪些药物饱腹服用吸收反而好?
影响因素:
1、食物理化性质;2胃内容物粘度、渗透压;
3、食物的组成;
4、药物的影响;
5、其他因素。
一些在特定部位吸收的药物,胃空速率大反而吸收不好,如维生素B2在十二指肠主动吸收。还有某些对胃有刺激性的药物及在胃中吸收较多的药物。
十三、药物的溶出速率对吸收有何意义?有哪些影响溶出速率的因素?
意义:对难溶性药物而言,药物从固体制剂中溶出的速度很慢,尽管崩解分散过程很快,其吸收过程往往受到药物溶出速度的限制,溶出是难溶性药物吸收的限速过程。在这种情况下,药物在胃肠道内的溶出速度直接影响药物的起效时间、药效强度和作用持续时间。
影响因素:药物的溶解度;粒子大小;多晶型;溶剂化物。
十四、对溶解缓慢或难溶性药物为增加其吸收,可采用减小粒径(微粉化)的方法,但不适合于那些性质的药物?
1、引起胃部刺激的药物;
2、突释引起中毒的药物(及治疗窗窄);
3、药效剧烈的药物;
4、粉碎或研磨使晶型改变的药物;
6、粉碎后易吸水、氧化等性质不稳定的药物。
十五、药物的首过效应发生在体内哪些主要部位?何故?各举一例说明之,有何克服法?
首过效应发生在肝脏、胃肠道。因为药物在进入全身循环前,首先在胃肠道和肝脏进行代谢。胃肠道中胃酸,各种消化酶和肠道中菌群产生的酶对药物的代谢反应,会导致部分药物在肠道中代谢失活。进一步吸收入体内的药物经门静脉系统进入肝脏,部分药物又被肝脏药酶转化与组织成分结合,或随胆汁排出,是进入体循环的原型药物更加减少。
胰岛素经胃肠道会被水解,故制成注射剂;硝酸甘油的肝首过效应极强,故舌下含服。克服:制成药物的衍生物或前体药物,提高药物稳定性。
利用制剂包衣技术也是防止药物胃酸中不稳定的有效措施。
改变给药途径,以避免首过效应,例如直肠给药等。
十六、何类药物选择淋巴系统吸收?药物淋巴转运有何特点及缺点? 大分子及不溶性颗粒。
特点:单向循环,大分子的脂溶性的药物可被吸收,不受肝首过效应的影响,通透性大。缺点:淋巴管内淋巴液流速慢,吸收慢
十七、影响肌注吸收的主要因素有哪些?肌肉注射可能有哪些副作用?
影响因素:
1、生理因素:血流速度越快洗手越快;
2、药物的理化性质:油水分配系数适当,分子量小;
3、剂型因素:水溶液>水混悬液>油溶液>O/W型乳剂>W/O型乳剂>油混悬液;
十八、有哪些因素影响药物的透皮吸收?角质层水合作用,吸收促进剂及表面活性剂增加药物吸收的方法,机制如何?
影响因素:
1、生理因素;
2、剂型因素:(1)药物的理化性质;(2)给药系统性质;
3、透皮吸收促进剂
4、离子导入技术 角质层水化能够改变皮肤的渗透性。当皮肤覆盖塑料膜或具有封闭作用的软膏后,水分和汗液在皮肤内积蓄,是角质层水化。细胞自身发生膨胀,结构的致密程度降低,药物渗透性增加,水溶性药物的促渗作用较脂溶性药物显著。皮肤水化对药物经皮吸收的影响与水化的程度和药物的性质有关。
透皮吸收促进剂的作用机制可能是作用于角质层的脂质双分子层,干扰脂质分子的有序排列,增加脂质的流动性,有助于药物分子的扩散。有些促进剂能溶解角质层的类脂,影响药物在皮肤的分配,或促进皮肤的水化而提高药物的透皮速率。
十九、对眼部药物吸收,粘度的作用是什么?
增加水溶液粘度,可以延长保留时间,减少流失,有利于药物与角膜接触,有利于药物透过。
二十、药物在肺泡部位吸收的速效性有哪些特征?(肺部是血液与气体进行交换的部位,肺泡是半球状囊泡,成薄膜束状,由单层扁平上皮细胞构成,厚度仅0.1~0.5μm,细胞间隙存在致密的毛细血管。肺泡腔至毛细血管腔间的距离仅约1μm,是气体交换和药物洗手的良好场所。)巨大的肺泡表面积、丰富的毛细血管和极小的转运距离,决定了肺部给药的迅速吸收,而且吸收后的药物直接进入血液循环,无肝脏首过效应。二
十一、何为分布?
药物进入体循环后向各组织器官或者体液转运的过程。二
十二、表观分布容积表示什么?其上限值为何不能固定?
表观分布容积表示假设在药物充分分布的前提下,体内药物按血中同样浓度溶解时所需的体液总体积。如果药物基本上不与血浆蛋白或组织相结合,则他们的表观分布容积接近于其真实的分布容积,并且不超过总体液。但这种理想状态几乎不存在,大多数药物与血浆蛋白和组织蛋白,或者于两者都有显著结合。导致表观分布容积具有不同的量值。所以没有上限。二
十三、影响分布的因素有哪些?
(一)血液循忧患与血管通透性的影响:
1、血液循环的影响(越快越好);
2、血管通透性的影响(分子量越小越好);
(二)药物与血浆代白结合率的影响:
1、蛋白结合影响体内分布;
2、蛋白结合影响药效;
(三)药物理化性质的影响
(四)药物与组织亲和力的影响
(五)药物相互作用的影响
二十四、影响药物向中枢神经系统转运的因素有哪些?
1、体内循环和血管通透性;
2、药物与血浆蛋白结合的能力;
3、药物的理化性质与透过生物膜的能力;
4、药物与组织的亲和力;
5、药物相互作用。
二十五、为什么说药物的蛋白结合是药物储存的一种形式?
药物与血浆蛋白结合是一种可逆过程,有饱和现象,血浆中药物的游离型和结合型之间保持着动态平衡关系。当游离型药物随着转运和消除使其浓度降低时,一部分结合性药物就转变成游离型药物,使血浆及作用部位在一定时间内保持一定的浓度。从这个意义上来说,药物与蛋白结合也是药物储存的一种形式。二
十六、为什么说药物的蛋白结合能影响药物的分布、转运速度以及作用强度等方面?
进入血液中的药物,一部分与血浆蛋白结合成为结合型药物,一部分在血液中呈非结合的游离型状态存在。通常只有游离型药物才能透过毛细血管向各组织器官分布,因此药物的血浆蛋白结合是影响体内分布的重要因素。
因为血管外体液中蛋白质浓度比血浆低,所以药物在血浆中的总浓度一般比淋巴液、脑脊液、关节腔液以及其他血管外体液的药物浓度高,血管外体液中的药物浓度与血浆中游离型浓度相似。因此药物的血浆蛋白结合是影响转运速度的重要因素。
药物效应的强度与持续时间取决于药物能否分布到作用靶并在受体周围维持一定的有效浓度。一般地,药物与血浆蛋白结合成为复合体后不能跨膜转运,药物的分布、代谢、排泄以及与相应受体结合继而发生药理效应都以游离形式进行,因此血中游离药物浓度的变化是影响药效的重要因素。且当应用蛋白结合率高的药物后,由于给药剂量增大时蛋白出现饱和或者同时服用另一种蛋白结合能力更强的药物后,由于竞争作用将其中一个蛋白结合能力较弱的药物臵换下来,这样都能够随着蛋白结合率下降导致药物体内分布急剧变动,从而引起药理作用显著增强。
第四篇:药剂学 生物药剂学下
《药剂学》
第三节 药物的非胃肠道吸收
一、注射部位吸收
位周围一般有丰富的血液和淋巴循环。药物吸收路径短,影响因素少,故一般注射给药吸收速度快,生物利用度比较高。
肌内注射后药物先经结缔组织扩散,再经毛细血管和淋巴进入血液循环。药物以扩散和滤过两种方式转运,通过生物膜速度快。脂溶性药物可扩散通过毛细血管内皮吸收,水溶性药物主要通过毛细血管壁上的细孔进入血管。一般吸收程度与静注相当,但少数药物吸收不比口服好。如难溶性药物采用非水溶剂,药物混悬液等。注射后在局部组织形成贮库,缓慢释放,可发挥长效作用。
皮下与皮内注射时由于皮下组织血管少,血流速度低,药物吸收较肌内注射慢,甚至比口服慢。故需延长药物作用时间时可采用皮下注射。皮内注射吸收更差,只适用于诊断与过敏试验。动脉内给药可使药物靶向特殊组织或器官。腹腔注射后药物经门静脉首先进入肝脏,可能影响药物的生物利用度。鞘内注射可克服血脑屏障,使药物向脑内分布。
血管外注射药物的吸收受药物理化性质、制剂处方组成以及机体的生理因素影响,主要影响药物的被局部热敷、运动等可使血流加快,能促进药物的吸收。
难溶性药物的溶解度影响药物吸收,如混悬型注射液中药物溶解度可能是药物吸收的限速因素,非水溶剂注射液遇水性组织液析出沉淀时,药物溶解度是影响药物吸收的主要因素。体液中蛋白质等大分子可与某些药物结合,结合物不能透过生物膜,可能影响药物吸收。混悬液>油溶液>O/W乳剂>W/O乳剂>油混悬液。
二、肺部吸收
肺由气管、支气管、末端细支气管、呼吸细支气管、肺泡管和肺泡组成。正常人肺部总表面积约100~200m,与小肠的有效表面积很接近。肺泡呈薄膜束状,由单层上皮细胞构成,细胞间隙存在致密的毛细血管,并与某些血管紧密相连,从肺泡表面至毛细血管间的距离仅约1μm,是气体交换和药物吸收的良好场所。巨大的肺泡表面积、丰富的毛细血管和极小的转运距离,决定了肺部给药的迅速吸收。而且吸收后的药物直接进入血液循环,不受肝脏首过效应影响。
气雾剂或吸入剂给药时,药物粒子大小影响药物到达的部位,大于10μm的粒子沉积于气管中,2~1Oμm的粒子到达支气管与细支气管,2~3μm的粒子可到达肺部,太小的粒子可随呼吸排出,不能停留在肺部。
三、鼻黏膜吸收
鼻黏膜给药被认为是较理想的取代注射给药的全身给药途径.其优点有:①鼻黏膜内的丰富血管和鼻黏膜的高度渗透性有利于全身吸收;②可避开肝脏的首过作用、消化酶的代谢和药物在胃肠液中的降解;③吸收程度和速度有时可与静脉注射相当;④鼻腔内给药方便易行。激素类,多肽类和疫苗类药物已有鼻黏膜吸收制剂上市。
可溶性药物以溶液剂或气雾剂给药吸收良好.不溶性药物的粒子大小与其在鼻腔中的分布位置密切相关,大于50μm的粒子一进入鼻腔即沉积,不能达到鼻黏膜主要吸收部位,小于2μm的粒子又可能被气流2第1页
带入肺部。研究表明气雾剂中约有60%粒径范围为2~20μm的粒子可分布在鼻腔吸收部位的前部,并能进一步被气流,纤毛或膜扩散作用引入吸收部位,药物在转运过程中被鼻黏膜吸收。
四、口腔黏膜吸收
口腔内不同部位的黏膜结构、厚度和血液供应均不同。口腔黏膜表面覆盖着复层鳞状上皮,依其结构可分为三种不同类型的黏膜:①咀嚼黏膜覆盖在硬腭和齿龈表面。黏膜表面为与皮肤结构类似的角质化上皮,通过胶原样组织与下层结构紧密相连;②内衬黏膜覆盖在除舌背部以外的口腔组织表面,不同区域上皮厚度有明显差别。黏膜上皮未角质化,上皮2014年执业药师考试全套课件讲义加QQ480190997下为疏松的结缔组织,渗透性能较强;③特性黏膜具有咀嚼黏膜和内衬黏膜的共同特性,表面既有角质化上皮也有未角质化上皮,分布于舌背部。
口腔中咀嚼黏膜约占25%,特性黏膜约占15%,内衬黏膜约占60%。流经口腔黏膜的血液经舌静脉,面静脉和后腭静脉进入颈内静脉,可绕过肝脏的首过作用。
硬腭黏膜。另外,唾液的冲洗作用可能影响药物吸收,口腔中的酶、pH和渗透压也会影响药物吸收。
五、阴道黏膜吸收
药物通过阴道黏膜以被动扩散透过细胞膜的脂质通道为主,同时阴道吸收也可通过含水的微孔通道。与鼻腔、直肠黏膜比较、药物从阴道吸收速度较慢,时滞较长。原因主要是阴道上皮具有多层细胞,形成了吸收屏障。一般药物很难从阴道吸收发挥全身作用。激素类药物能有效地通过阴道黏膜吸收,经阴道给药能够避免口服给药造成的肝脏首过作用和胃肠道副作用。
第四节 药物的分布、代谢和排泄
一、药物的分布
药物的分布是指药物从给药部位吸收进入血液后,由循环系统运送至体内各脏器组织(包括靶组织)中的过程。
(一)表观分布容积
表观分布容积是药动学的一个重要参数,是将全血或血浆中的药物浓度与体内药量联系起来的比例常数。它是指在药物充分分布的假设前提下,体内全部药物按血中同样浓度溶解时所需的体液总容积。其单位通常以
大多数药物由于本身理化性质及其与机体组织的亲和力差别,在体内的分布大致分三种情况:
(1)组织中的药物浓度与血液中的药物浓度几乎相等的药物,即在各组织内均匀分布的药物。如安替比林均匀分布在全身体液,其表观分布容积等于36L。
(2)组织中的药物浓度比血液中的药物浓度低,则V将比该药实际分布容积小。水溶性药物或与血浆蛋白结合率高的药物,例如水杨酸、青霉素、磺胺等有机酸类药物,主要存在于血液中,不易进入细胞内或脂肪组织中,故它们的V值通常较小,大约为0.15~0.30L/kg。
(3)组织中的药物浓度高于血液中的药物浓度,则V将比该药实际分布容积大。脂溶性药物易被细胞或脂肪组织摄取,血浆浓度较2014年执业药师考试全套课件讲义加QQ480190997低,但是V值常超过体液总量,如地高辛的表观分布容积为600L。一般表观分布容积大药物,从体内排出较慢,比那些不能分布到深部组织中去的药物药效要强,毒性要大。
(三)淋巴系统转运
血液循环与淋巴循环共同构成体循环,由于血流速度比淋巴流速快200~500倍,故药物主要通过血液
循环转运。但药物的淋巴系统转运,在以下情况也是十分重要的:①某些特定物质如脂肪,蛋白质等大分子物质转运必须依赖淋巴系统;②传染病,炎症,癌转移等使淋巴系统成为靶组织时,必须使药物向淋巴系统转运;③淋巴循环可使药物不通过肝脏从而避免首过作用。
(四)血脑屏障与胎盘屏障
脑和脊髓毛细血管的内皮细胞被一层致密的神经胶质细胞包围,形成了连续性无膜孔的毛细血管壁。神经胶质细胞富有髓磷脂(脑磷脂),脑血管的这种结构形成了较厚的脂质屏障,能够有效地阻挡水溶性和极性药物透入脑组织,脑组织这种对外来物质有选择地摄取的能力称为血脑屏障,血脑屏障的功用在于保护中枢神经系统使其具有更加稳定的化学环境。
在母体循环系统与胎儿循环系统之间,存在着胎盘屏障。大部分药物以被动转运通过胎盘。非解离型药物脂溶性越大,越易透过。分子量600以下的药物,容易透过胎盘,分子量1000以上的水溶性药物,已
二、药物的代谢
(一)药物代谢与药理作用的关系
药物代谢是指药物被机体吸收后,在体内酶以及体液环境作用下发生的化学结构的转化,又称为生物转化。药物代谢是伴随着药物的吸收、分布、排泄的同时发生的。药物的代谢产物通常比原形药物的极性大,更有利于药物向体外的排泄,但是也有一些药物代谢产物的极性降低。药物在体内的代谢与其药理作用密切相关,主要表现在以下三个方面。
(1)代谢使药物失去活性或活性降低:代谢可以使药物作用钝化,即由活性药物变为无活性的代谢物,使药物失去治疗活性;代谢物活性明显下降,但仍具有一定的药理作用。如局麻药普鲁卡因,在体内被水解后,迅速失去活性;氯丙嗪的2014年执业药师考试全套课件讲义加QQ480190997代谢产物去甲氯丙嗪,其药理活性比氯丙嗪差。
(2)代谢使药物活性增强或使药理作用激活:有些药物的代谢产物比其原药的药理作用更强,如解热镇痛药非那西丁在体内转化为对乙酰氨基酚,其解热镇痛作用比非那西丁明显增强;还有一些药物本身没有药理活性,通过在体内代谢后产生有活性的代谢产物,即所谓的“前体药物”,如左旋多巴在脑内经酶解脱羧后生成多巴胺,而发挥治疗作用。
(3)代谢产生毒性代谢物:有些药物经代谢后可产生毒性物质,如异烟肼在体内的代谢物乙酰肼可引起肝脏的损害。
应该指出,并非所有药物进入体内后全部都经过代谢,有些药物在体内基本不代谢,主要以原形从尿中排出,大部分药物部分发生代谢。如氨基糖苷类抗生素在体内约90%以原形药物经肾排泄,肝代谢的比例很少。
(二)药物代谢酶和代谢部位
绝大多数药物在体内的代谢反应是在细胞内特异酶的催化作用下发生的,这些药物代谢酶主要位于细胞的内质网、线粒体、胞液、溶酶体以及核膜和胞浆膜中。通常把药物代谢酶分为微粒体酶系和非微粒体酶系两大类,微粒体酶系主要存在于肝脏的内质网膜,后者在肝脏、血液及其他组织中均有存在。
药物代谢的主要部位是肝脏,肝脏具有高血流量,并含有大部分药物代谢酶,是最重要的代谢器官。口服制剂在吸收过程和吸收后进入肝转运至体循环过程中,部分药物被代谢,使进入体循环的原形药物量脏,在肝细胞内,有的药物随胆汁排出,有的药物被酶转化为代谢产物。
这种在肝细胞内随胆汁排出和由药酶转化成代谢产物的药物比例称肝提取率,它是指药物通过肝脏由门静脉血清除的分数,肝提取率介于0~1之间。肝提取率0.5表示从门静脉进入肝后有一半量被清除,其余通过肝进入大循环。
除肝以外最常见的代谢部位是胃肠道,小肠黏膜上很多药物代谢酶均有较高的表达水平,肠道菌丛产生的酶类也对药物代谢起作用,因此肠道代谢也是影响口服药物生物利用度及其个体差异的主要因素之一。
(三)代谢反应的类型
即药物及代谢物的极性官能团与内源性的葡萄糖醛酸、硫酸、甘氨酸等结合生成结合物,进一步增加了药物的极性和水溶性,使其更容易排泄。
(四)影响药物代谢的因素
1.给药途径对药物代谢的影响 由于肝脏和胃肠道存在有众多的药物代谢酶,口服药物的“首过效应”明显,而其他给药途径可完全或部分避免首过效应。
2.给药剂量对药2014年执业药师考试全套课件讲义加QQ480190997物代谢的影响 由于药物代谢酶的量是有限的,当给药剂量增加到一定程度,达到药物代谢酶的最大代谢能力时,代谢反应会出现饱和现象,须引起重视。
3.剂型对药物代谢的影响 剂型对代谢也有一定影响。口服不同剂型(溶液剂、混悬剂、颗粒剂)的水杨酰胺后,发生硫酸结合反应的程度不同。服用颗粒剂后,硫酸结合物尿中排泄量最多,混悬剂次之,溶液剂最少。这是由于混悬剂和溶液剂口服后,大量药物迅速到达胃肠吸收表面,很容易出现吸收部位药物代谢酶的饱和现象;而颗粒剂中的药物需要溶出后逐渐到达吸收表面,因而不易出现硫酸结合反应饱和的现象,最终导致尿中硫酸结合物排泄量较高。
4.药物的光学异构特性对药物代谢的影响 许多药物存在光学异构现象,不同的异构体具有不同的药理活性和副作用,主要原因认为是体内的酶具有立体选择性,因此不同的异构体显示出明显的代谢差异。
5.酶抑制和酶诱导作用对药物代谢的影响 许多药物能对药物代谢酶产生抑制作用,从而使其他药物代谢减慢,导致药理活性及不良反应增加,这种现象称为酶抑制作用。还有些药物重复应用或在体内停留较长时间后,可促进酶的合成、抑制酶的降解,使酶活性或量增加,促进自身或其他合用药物的代谢,这种现象称为酶诱导作用。
6.生理因素对药物代谢的影响 年人对药物的代谢能力常常明显低于成年人,特别是胎儿及新生儿的药物代谢酶活性低,甚至缺乏某些酶,所以胎儿、新生儿用药时,容易产生毒性。药物在老年人体内的代谢表现为速度减慢,耐受性减弱。一般
7.饮食对药物代谢的影响 饮食对药物代谢的影响主要取决于饮食中的糖、蛋白质、脂肪、微量元素和维生素等营养成分。
三、药物的排泄
排泄是指体内原型药物或其代谢物排出体外的过程。肾是药物排泄的主要器官,其次是胆汁排泄。还可经乳汁、唾液、呼气、汗腺等排泄,但排泄量很少。
(一)肾脏排泄
肾脏是人体排2014年执业药师考试全套课件讲义加QQ480190997泄药物及其代谢物的最重要器官。药物的肾排泄是指肾小球滤过、肾小管分泌和肾小管重吸收的总和。
(二)影响肾排泄的因素
1.血浆蛋白结合率 药物与血浆蛋白结合后,不能经肾小球滤过,只有未结合型药物才可以从肾小球滤过。
2.尿液pH与尿量
加;弱碱性药物则相反。
当尿量增加时,药物在尿液中的浓度下降,重吸收减少;而尿量减少时,药物浓度增大,重吸收量也增多。
3.合并用药 合并用药可能影响尿液的pH,也可能竞争肾小管的主动分泌过程,故而会影响药物的肾排泄。
4.药物性质 药物的脂溶性大小直接影响在肾小管的重吸收;弱酸、弱碱性药物的pKa与药物的解离程度有关,因而会影响肾排泄。
5.肾脏疾病 肾小球肾炎会使肾小球滤过率明显下降;肾功能不全时,肾小管主动分泌和重吸收功能都显著下降。
(三)胆汁排泄
除肾脏排泄外,原形药物及其代谢物也可能由胆汁排泄。一般说来,当药物分子上存在极性强的基团时,经胆汁排泄的量较多;2014年执业药师考试全套课件讲义加QQ480190997在人体,分子量在300~500排泄的药物,随着投药量的增大,血药浓度上升,达到饱和现象后,血液中药物的消除时间随着投药量的增加而延长。
第五篇:生物药剂学复习小结
一、名词解释
1.生物药剂学是研究药物及其剂型在体内的吸收、分布、代谢、排泄的过程,阐明药物的剂型因素、机体因素和药物疗效之间相互关系的科学
2.剂型因素不仅指片剂、注射剂、胶囊剂、软膏剂、栓剂、气雾剂等药剂中的剂型概念,而且包括药物的某些化学性质、药物的化学形式、药物的化学稳定性、药物的某些物理性质和药物的剂型、用药方法等
3.生物因素主要包括种族差异、性别差异、年龄差异、生理和病理条件的差异及遗传因素
4.转运指药物的吸收、分布和排泄过程
5.处置指分布、代谢和排泄过程
6.消除指代谢和排泄过程
7.吸收指药物从用药部位进入体循环的过程
8.被动扩散指脂溶性药物从高浓度一方透过生物膜向低浓度一方扩散、渗透的过程
9.主动转运指借助载体或酶促系统的作用,药物从膜的低浓度侧向高浓度侧转运的过程
10.胞饮:摄取的药物为溶解物或液体成为饱饮
11.吞噬作用:摄取的物质为大分子或颗粒状物成为吞噬
12.pH-分配学说:药物的吸收取决于解离状况(随pH值而变)以及油/水分配系数(衡量脂溶性程度)的学说。
13.分布指药物从给药部位吸收进入血液后,由循环系统运送至体内各脏器组织官的过程
14.血脑屏障:血液与脑组织之间存在屏障,这种脑组织对外来物质有选择地摄取地能力
15.胎盘屏障:在胎儿毛细血管与母体之间,存在厚约3.5μm的屏障层称为胎盘屏障
16.代谢指药物在体内发生化学结构改变而药理活性发生相应变化的过程
17.首过效应指药物在吸收过程中,在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象
18.药酶:参与药物代谢的酶称为药物代谢酶或药酶
19.肝提取率:肝的首过效应导致进入大循环的药物明显减少,其减少的比例可用肝提取率来描述。
20.肝清除率:单位时间内肝脏清除药物的总量与血浆浓度的比值。用ml/min或l/h表示
21.药物对代谢的双相作用:随着时间的推移,药物往往呈现抑制和诱导的两种作用,这种现象称为药物对代谢的双相作用
22.排泄指体内药物以原形或代谢物的形式通过排泄器官排出体外的过程
23.肾小球滤过率(GFR)指单位时间内肾脏形成的原尿量
24.肠肝循环指在胆汁中排泄的药物或其代谢物在小肠中移动期间重新被吸收返回肝门静脉血的现象
25.联合用药:治疗疾病有时需要两种或两种以上的药物同时或先后使用称为联合用药
26.药物相互作用指病人同时或在一定时间内先后应用两种或两种以上药物所产生的复合效应。
27.累积作用指联合使用的效果为分别使用的效果之和
28.协同作用指联合使用的效果大于单一药物的使用效果
29.拮抗作用指联合使用的效果小于单一药物的使用效果
30.竞争性拮抗作用指联合使用的效果小于单一药物的使用效果
31.非竞争性拮抗作用:拮抗剂不和激动剂竞争同一受体
32.药物动力学亦称药动学,系应用动力学原理与数学模式,定量地描述与概括药物通过各种途径进入体内的吸收、分布、代谢和排泄,即ADME过程的“量时”变化或“血药浓度经时”变化的动态规律的一门科学
33.单室模型指药物进入体内以后,能迅速向各个组织器官分布,以致药物能很快在血液与各组织脏器之间达到动态平衡。
34.双室模型指药物进入体内后,能很快进入机体的某些部位,但对另一些部位,需要一段时间才能完成分布。
35.生物半衰期指药物在体内的量或血药浓度消除一半所需要的时间
36.表观分布容积指体内药物量与血药浓度间相互关系的一个比例常数
37.清除率指单位时间从体内消除的含药血浆体积或单位时间从体内消除的药物表观分布容积
38.药峰时间指用药以后,血药浓度达到峰值所需的时间
39.药峰浓度又称峰值,即用药后所能达到的最高血药浓度
40.单室模型药物指药物进入机体后在体内的分布符合单室模型的药物
41.坪浓度指经静脉滴注后,血管内血药浓度在一定时间内始终保持着一个恒定的浓度值,此值称稳态血药浓度即坪浓度
42.达坪分数指静滴给药时,任何时间的血药浓度与坪浓度之间的比值
43.临床最佳给药方案指根据每一个病人的具体病情,设计的以最优良的药物制剂、最佳的给药途径、最适宜的给药剂量和给药间隔,使药物治疗达到即安全又有效、即经济又副作用小的符合用药目的和要求的给药方案。
44.个体化给药指根据每个患者的具体病情和对药物治疗的反应结果制定的给药实施方案
45.治疗药物监测指在药代动力学原理的指导下,应用现代先进的分析技术,测定血液中或其他体液中药物浓度,用于药物治疗的指导与评价
46.生物利用度指制剂中药物被吸收进入体循环的速度与程度(数量),通常比较的是AUC
47.生物利用的程度指与标准制剂比较,供试制剂被吸收的药物总量的相对比值
48.生物利用的速度指与标准制剂比较,药物从供试制剂中被吸收的速度的相对比值
49.生物等效性指药物制剂临床疗效、不良反应与毒性的一致性,是药物制剂的内在质量。
50.绝对生物利用度指吸收进入体循环的药量占总给药剂量的分数
51.相对生物利用度指同一受试者不同时期服用两种制剂后,受试制剂的AUC与标准参比制剂的AUC比值
二、问答题
1.研究生物药剂学的目的答:正确评价药剂质量;设计合理的剂型、处方、生产工艺;为临床合理用药提供科学依据; 使药物发挥最佳的治疗作用。
2.生物药剂学的研究内容
答:a.固体药物的溶出速率、生物利用度;b.根据机体的生理功能设计缓控释制剂;c.研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础;d.新的给药途径、给药方法;e.研究中药制剂的的溶出度、生物利用度;f.研究生物药剂学的研究方法。
3.生物药剂学和其它学科的关系
答:(1)生物药剂学涉及到的知识面很广,它与生物化学、药理学、物理药学、药物动力学、药物治疗学等有密切关系,并相互渗透、相互补充;
(2)生物药剂学作为药剂学的一个分支,着重研究的是给药后药物在体内的过程,它与药理学、生物化学在研究重点上有所区别。它既不像药理学那样主要研究药物对机体某些部位的作用方式和机制,也不像生物化学那样把药物如何参加机体复杂的生化过程作为中心内容;(3)生物药剂学测出的任何指标不能单独用来判断某药在临床上“有效”,还是“无效”
4.胃肠道的药物吸收机理
答:被动扩散(单纯扩散和膜孔转运);载体转运(主动,易化);胞饮和吞噬;离子对转运
药物可以以一种形式运转也可以多种形式运转。大多数以单纯扩散的被动吸收形式为主
4.主动与被动吸收的区别
特点主动被动
扩散方向低浓度计到高浓度 高浓度到低浓度
载体需要不需要
能量需要不需要
饱和和竞争现象有无
结构和部位特异性有无
6.肠胃道的解剖生理(药物吸收相关的结构特点)
答:胃粘膜上缺少绒毛,且停留时间较短,不是药物主要的吸收部位。
小肠在构造上最大的特征是有绒毛,绒毛在小肠表面的环状皱壁上,还有很多微绒毛在绒毛上,因此增加了吸收总面积。小肠是药物的主要吸收部位,也是药物主动转运吸收的特异性部位。结肠:多肽类药物的口服吸收部位;直肠:栓剂、灌肠剂用药部位,无首过效应
7.影响药物吸收的因素
答:(1)影响药物吸收的生理因素:胃肠液的成分与性质;胃排空速率(指单位时间内胃内容物的排出量,胃排空速率快,到达小肠部位所需要的时间短,有利于药物在小肠中吸收);肠内运动;循环状况;药物在胃肠的代谢;疾病因素
(2)影响药物吸收的药物理化性质:解离度和脂溶性;溶出速率
(3)影响药物吸收的剂型因素: 溶液剂>混悬液>散剂>胶囊剂>片剂>包衣片剂
8.影响药物体内分布的因素
答:血液循环状况;生物膜的透过性;药物与血浆蛋白的结合;药物的理化性质与通过生物膜的能力;药物与组织的亲和力;药物的相互作用对分布的影响
9.淋巴系统运转的意义
答:体内的部分物质(如蛋白质、脂肪等大分子物质)转运必须依靠淋巴循环;淋巴循环中的药物可以避免首过效应;在传染病、炎症、癌转移等使淋巴系统或其外围产生病灶时,药物的淋巴循环有利于疾病的治疗;淋巴液的组成与组织间液相似,可以由药物向淋巴液的转运特性推测其向组织转运的特性
10.药物代谢与药理活性的关系
答:代谢使药物失去活性;代谢使药物减低活性;代谢使药物活性增强;代谢使药理作用激活;代谢产生毒性代谢物
11.影响药物代谢的因素
答:(1)性别:雌雄大鼠对某种药物的反应往在有显著差异;
(2)年龄:临床上经常出现药物对新生儿和乳幼儿的药效和副作用比成年人大;
(3)个体差异:人种及同种人中的不同的个体差异对药物的反应常常有显著的差异,这种差异大多数,情况由于药物代谢酶活性差异引起的;
(4)饮食:饮食对药物代谢的影响主要来自糖、蛋白质、维生素和金属元素等;
(5)疾病:许多疾病会对药物代谢产生影响,如肝硬化、糖尿病等;
(6)药物的光学异构特性对药物代谢的影响;
(7)给药途径对代谢的影响:给药途径对药物代谢的影响主要与是否有首过效应有关;
(8)给药剂量对代谢的影响:机体内代谢几乎多由酶反应进行,因此机体对药物的代谢能力主要取决于体内各种药物代谢的活力和数量。
12.其它部位的药物吸收特点和影响其它部位的药物吸收的因素
答:
(一)静脉注射的特点:药物直接进入血液循环,无吸收过程,作用迅速,生物利用度
100%。肌内注射的特点:有吸收过程(药物→结缔组织→毛细血管及淋巴管→体循环);注射剂量小;水溶液、油溶液、混悬液、中药注射液均可作为肌内注射
(1)生理因素
a.注射部位血流状态的影响:三角肌>大腿外侧肌>臀大肌。
b.淋巴液的流速影响水溶性大分子药物或油溶媒注射液药物的吸收。
c.促进吸收因素:按摩,热敷,运动
(2)药物理化性质
a.分子量大的药物,可以以淋巴系统为主要吸收途径
b.难溶性药物的溶解度可能是吸收的限速因素 如混悬剂
c.非水溶媒注射液的溶媒被吸收或有沉淀时,药物的溶解度是影响吸收的主要因素
d.药物与体液蛋白相结合 当结合物的解离速率<药物扩散透膜速率时,蛋白结合影响吸收
(3)剂型因素:药物从制剂中的释放速率是药物吸收的限速因素。
a.溶液型注射液 渗透压:低渗溶液比高渗溶液易于吸收
b.难溶性药物:非水溶媒注射剂,混合溶媒注射剂,药物的溶解度和溶出可能是吸收的限速因素。溶出速度:水溶液>水混悬液>油溶液>水包油乳剂>油包水乳剂>油混悬液
(二)肺部的药物吸收特征:吸收速度快,没有首过效应
(1)生理因素
①纤毛运动 气管到支气管上皮细胞主要由纤毛细胞组成,纤毛节律性运动能将异物带至咽部。纤毛运动弱,使粒子停留时间延长
②呼吸道直径;③病人的使用方法;④呼吸的深浅
粘液层的存在对难溶性药物的吸收,电荷、酶亦可能影响。
(2)理化性质
呼吸道上皮细胞为类脂膜,药物从肺部吸收以被动扩散为主。
①脂溶性;②分子量;③粒子大小:可影响粒子到达的部位
(3)制剂因素
①装置的结构影响气雾粒子的大小和性质
②初速度 影响停留部位 ;③药物的分散状态 溶液型吸收好于混悬型、乳剂型
(三)口腔和舌下的药物吸收
特点:药物通过口腔粘膜吸收,后经过颅内静脉进入全身循环,避免肝首过作用;
(1)生理因素:角质上皮:吸收的主要屏障;口腔粘膜的渗透性: 舌下粘膜>颊粘膜>牙龈和腭粘膜;味觉;唾液的冲洗作用,缩短吸收时间;酶,口腔损伤与炎症,渗透压
(2)剂型因素
a.舌下用药要求溶出速度快,剂量小,作用强。如:软胶囊、喷雾剂
b.颊粘膜用药受唾液的冲洗作用小,一般制成生物黏附帖片。
c.透皮促进剂: 金属离子螯合剂,脂肪酸,胆酸盐。
d.药物在口腔的渗透能力与药物本身的脂溶性、解离度和分子量相关,故受PH的影响。但是水溶性的药物不受PH的影响,而受分子量大小的影响,〈75易吸收。〉2000吸收下降。
(四)直肠给药
特点:血流较充分,但吸收面积小,直肠液少,因此药物吸收慢,不是药物吸收的主要部位。
(1)生理因素:栓剂用药部位;脂溶性药物易透膜吸收;直肠液无缓冲能力 直肠部位的pH由溶解的药物决定;粪便的存在可影响药物的扩散及与直肠粘膜的接触
(2)剂型因素:a.药物的脂溶性和解离度 遵循PH-分配学说;b.药物的溶解度和粒度; c.基质的影响
(3)吸收促进剂:直肠吸收差的药物如抗生素和多肽或蛋白质药物可适当加入吸收促进剂,种类有非离子表面活性剂、脂肪类、羧酸类、胆酸盐、氨基酸类、环糊精及其衍生物
(五)眼部给药
特点:局部作用如缩瞳,散瞳,降低眼压
影响眼部吸收的因素:角膜的通透性;角膜前影响因素(眼用制剂角膜前流失是影响其生物利用度的重要因素);渗透促进剂的影响;给药方法的影响
13.药物代谢对指导临床用药意义
14.肾脏排泄药物的机理
答:肾脏排泄药物的机理包括:肾小球滤过、肾小管分泌、肾小管重吸收
a.肾小球滤过循环血液经过肾小球毛细血管时,血浆中水和小分子物质滤过进入囊腔形成原尿的过程,特点:通透性高、滤过面积大、滤过速度快、量多 ;
b.肾小管重吸收:肾小管重吸收主要发生在近曲小管区,重吸收有主动转运和被动扩散两种机制,药物重吸收以被动扩散居多;
c.肾小管分泌:分泌过程是主动转运机制,需要载体的参与,需要能量
15.影响药物由肾排泄的因素
答:(1)影响肾小球滤过的因素
肾小球毛细血管壁的通透性:分子量<2000g/mol的小分子药物容易通过,蛋白未结合药物易通过;肾小球的有效滤过压
(2)影响肾小管重吸收的因素:药物脂溶性,尿中pH值和药物的pKa值,尿量;
16.胆汁排泄的机制及影响因素
答:药物向胆汁转运机制可分为被动扩散和主动转运(主要过程)。
影响因素:a.胆汁流量:苯巴比妥具有促进胆汁分泌的作用;
b.分子量:分子量小于300趋向尿中排泄,大于300则在胆汁中排泄;
c.种族差异:分子量大于300的药物存在种族差异;d.肠肝循环
17.药物相互作用的机制
答:(1)疗效减弱的作用机制
a.理化拮抗作用:药物的相互作用由于化学反应形成复合物或物理作用产生的b.转运过程的蛋白质结合作用:药物与血清蛋白的结合是可逆的过程,当第二个药物竞争同一位点时会将第一种药物置换下来,加速其代谢和排泄
c.酶促作用:一些药物可促进药物代谢的酶的合成,从而使药物的代谢加快,疗效减低 d.受体位置上的拮抗作用:
e.肾清除作用:肾小球的滤过作用会因不同药物的同用而发生干扰和变化,另外肾小管的重吸收会受到尿PH的影响,肾小管的分泌存在酸、碱的竞争机制,两种以上的酸、碱药物同时存在会影响肾小管的分泌。
(2)药物活性增强的作用机制
a.相加或协同作用
b.转运过程的蛋白质结合作用:同上
c.酶抑作用:一些药物可抑制药物代谢的酶的合成,从而使药物的代谢减慢,使药物维持高的血药浓度和持久的活性。
d.生化作用: 一种药物的存在可改变另一种药物的作用机制
e.肾清除作用:尿PH的变化能减低药物的肾清除率
18.药物在不同体内过程的相互作用特点
答:(1)药物在胃肠道内的相互作用
a.药物相互作用可以影响药物吸收的速率和血药浓度b.口服给药是最常用的给药途径,由于药物的理化性质不同,吸收局部环境变化等因素均可以产生药物之间的相互作用。
(2)药物在分布过程中的相互作用:主要表现在药物与血浆蛋白结合的竞争
(3)药物在代谢过程中的相互作用
在药物相互作用中,一种药物可以影响另一种药物的代谢,使后者的血药浓度或药理活性增高或降低。这种药物相互作用的发生,主要是药物对生物转化酶系统诱导和抑制的结果,即药物的酶诱导作用和酶抑制作用。
(4)药物在受点和肾上腺能神经末梢的相互作用
a.药物在受点的相互作用:受体是存在于细胞膜、细胞浆或细胞核上的大分子化合物,能与特异性配体结合并产生效应
b.肾上腺能神经末梢的相互作用:一般说来,氨基酸类是递质;乙酰胆碱和单胺类既是递质,又是调质,主要视作用于何处的受体而定;而肽类少数是递质,多数是调质或神经激素。
(5)药物在排泄过程中的相互作用
a.在肾小球滤过上的相互作用:游离型及低分子量的药物可以通过肾小球滤过进入肾小管腔中,但与血浆蛋白结合的药物不能通过肾小球滤过,仍存留在血液中
b.肾小管分泌过程中的相互作用:是一主动转运过程,需要特殊的转运载体,即酸性药物载体和碱性药物载体。
c.药物在肾小管重吸收时的相互作用:主要是被动吸收,因此药物的解离度对其有重要影响。
19.如何根据药物相互作用来指导临床用药
20.药物动力学的研究内容
答:建立药物动力学模型;探讨药物动力学参数与药物效应间关系;探讨药物结构与药物动力学规律的关系,开发新型给药系统;以药物动力学观点和方法进行药物质量的认识与评价; 应用药物动力学方法与药物动力学参数进行临床药物治疗方案的制定等
21.药物动力学研究的意义
22.应用尿药浓度法的前提条件:必须有较多的原形药物从尿中排出;药物的肾排泄过程属一级过程。尿排泄数据处理方法一般有两种:速度法和亏量法
23.尿药速度法与亏量法的比较
答:速度法亏量法
(1)集尿时间较短(3~4个t ½)较长(7个t ½)
(2)尿样丢失的影响小大
(3)数据点散乱规则
(4)参数准确度误差较大较准确
24.静注负荷剂量的原因
答: 静滴之初,C距Css的差距很大.如果t1/2>0.5h,则达95%Css需要2.16h以上。达稳态的时间很长(7个半衰期)。如快速静注一个负荷剂量 ,可使C迅速达到或接近95%或99%,再以静脉滴注来维持该浓度。负荷剂量亦称为首剂量
25.哪些药物和患者(或情况)需要个体化的给药方案
答:①治疗指数小的药物;②治疗剂量下出现非线性药物动力学特征的药物;③中毒症状与疾病症状不易区分的药物;④生理活性很强、而患者体内过程个体差异较大的情况;⑤患者的病生理状态影响药物体内过程的情况等
26.生物利用度研究的主要参数:①血药浓度-时间曲线下面积;②达峰时间③峰浓度 生物利用度研究方法:血药浓度法、尿药浓度法、药理效应法