第一篇:PCR检测的临床应用
[临床应用] 检验科基因诊断室近日引进了德国罗氏的全自动荧光定量分析仪(Lighter Cycler),并在近期内申请国家标准的PCR室。由于PCR技术具有高灵敏度、高特异性、快速简便及直接检测致病病原体或异常基因等特点,成为基因诊断在临床应用最为广泛的技术之一。
在90年代,PCR技术在我国临床诊断曾得到广泛应用,但由于PCR产品生产产家的良莠不齐,PCR技术本身的特点对于实验条件提出特殊的要求,造成各种假阴性或假阳性结果,反而给临床诊断带来困难和错误。目前荧光PCR的兴起以及标准试验室的认证为PCR的应用显示出更为光明的前景。
一、早期诊断:免疫学诊断主要是抗原抗体反应,应用于临床通常在体内产生抗体以后,许多病原体的抗体产生存在较长的“窗口期”,不利于对疾病的早期诊断;而PCR方法直接检测病原体的DNA/RNA,能大大缩短“窗口期”。以HCV为例,免疫学检测的“窗口期”平均长达70天,而荧光PCR可将“窗口期”缩短59天,显然有利于疾病的早期诊断。
二、药物疗效观察:对原体的药物治疗中,免疫学指标的变化通常比较滞后出现,且受个体差异影响较大,从而对临床判断难以及时提供直接证据;而荧光定量PCR检测可直接反映病原体滴度是否受药物治疗发生变化,从而为药物疗效观察提供直接依据,以供治疗方案参考;同时药物治疗中可能引起的基因变异等情况更依赖核酸检测提供直接证据。
三、病情判断和预后评价:评估受侵器官或组织的炎症发生程度以及是否发生病变;长时间机体病毒高水平的患者尤其是慢性病患者往往预后不好。因此对病原体的定量PCR检测对病情和预后评估均有参考意义。
四、加快疾病的诊断:许多病原体到目前为止仍旧依靠传统的细菌培养作为诊断手段,操作繁琐费时。以结核杆菌为例,传统培养法需要1-2个月,而荧光PCR可将检测时间缩短至半天,能更及时地为临床提供诊断依据。
五、疾病的发病监控:许多病原体可以感染人体后整合入细胞内成为整合型,而一旦机体免疫力下降等又重新进入活动期并引致发病,临床上希望通过检测病原体基因的数量变化并结合临床表现找出其活动以及是否引起发病的规律,荧光定量PCR可以为此提供直接证据。
六、遗传疾病的诊断:荧光PCR可实现对点突变、缺失突变、插入突变、多基因突变等的检测。对产前诊断具有其他方法不可比拟的优势,有利于优生优育,提高人口素质。
七、献血员的筛选:PCR的高灵敏度及其对窗口期的缩短使其在提高输血安全方面有重要作为,目前美国、日本以及欧洲均已采用PCR对献血员进行筛选。
八、肿瘤的诊断:荧光PCR可对原癌基因的突变和易位等作出检测;对原癌基因的mRNA进行定量分析;有利于肿瘤的早期诊断,甚至癌前诊断;探索癌变发生机理的研究提供参考;区别肿瘤的良性和恶性以及炎症反应。
目前,检验科已开展乙肝、丙肝病毒核酸的定量检测,以及结核杆菌、淋球菌、衣原体的检测,随着检验技术的不断提高,陆续将开展其它项目,也希望临床广为利用。
第二篇:pcr检测技术
《食品安全学》综述
PCR快速检测技术综述
1.前言
聚合酶链反应(Polymerase Chain Reaction,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,是肉眼能直接观察和判断;可从一根头发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研究和检测鉴定。过去几天几个星期才能做到的事情,用PCR几个小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。
该酶促反应最基本的3个环节是:[1]模板DNA的变性,即在94℃下模板双链DNA变为单链DNA;[2]引物与模板链的特异性复性;[3]引物链的延伸。
2.研究的目的与意义
聚合酶链反应(PCR)技术建立以来,定性技术不断改进和完善,可以达到检测单个靶序列的水平、但实际工作中常需要定量检测标本中核酸,而不是某一特定序列存在与否,借助PCR对基因快速、敏感、特异而准确定量成为目前分子生物学技术研究的热点之一。定量PCR旨在评估样品中靶分子数,此测定可以是绝对的,如每微克样本中靶DNA的分子数;也可以是相对定量,即与设定的内参照或外参照比较而言。鉴于PCR方法主要有5个,即对PCR产物的直接定量、极限稀释法、靶基因与参照基因的同步扩增、竞争性PCR和荧光定量PCR[1]。这几种放啊各有利弊,对其选择取决于靶基因的特性、对PCR产量的期望值、对准确度的要求、需要相对还是绝对定量。
人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。
1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。
但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。3.国内外研究现状
3.1.基础研究方面的应用
目前从事分子生物学的实验室和研究人员,几乎每天都在使用PCR,可以说几乎没有一个分子生物学家没有使用过PCR。因此,PCR与分子克隆一样是分子生物学实验室的常规方法,可用于达到以下目的:
[1] 扩增目的基因和鉴定重组子; [2]克隆基因;
[3]基因功能和表达调控的研究; [4]基因组测序; [5]制备单链模板; [6]致突变;
3.2.PCR在临床上的应用[2]
[1]在遗传学上的应用:人类的遗传性疾病是因为某一碱基序列发生了突变,使之缺失或形成某一限制性内切酶的识别位点,通过PCR结合限制片段长度多态性分析(PCR-RFLP),就可以从基因的水平对遗传性疾病进行分析。例如,血友病甲是一种常见的遗传性出血性疾病,患者体内缺乏凝血因子FVIII这是由于基因第14个外显子的第336位氨基酸的编码基因发生了突变,产生了一个新的PstI酶切点,因此可以使用PCR-RFLP对血友病进行诊断。PCR还可以用来检测遗传性耳聋和Leber遗传性视神经病。
[2]在肿瘤研究中的应用:PCR已日益广泛应用于肿瘤的病因与发病机理研究以及肿瘤诊断与治疗的研究中。例如,差异显示PCR技术能针对不同肿瘤寻找其特异而敏感的标志物,并用于肿瘤早期诊断、判断预后及疗效评估。另一方面,在使用普通放疗、化疗的同时可结合定量PCR技术检测微小残留病灶,以进一步改进治疗方案。此外,由于癌症的发生在一定意义上是单个细胞分子发生变化,因而可以使用单细胞PCR技术对癌症的发病机理进行研究。[3]在基因分型中的应用:当进行器官移植时并须先组织配型工作,此时常应用序列特异性寡核苷酸多态性PCR(PCR-sequence specific oilgonucleotide polymorphism,PCR-SSOP)对人类白细胞抗原(human leukocyte antigen,HLA)进行分型,使移植成功率大大提高。此外PCR-限制性片段长度多态性也可以用于对HLA的分型。3.3.在法医学中的应用[3]
例如:最早应用DNA限制性片段长度多态性结合PCR-RFLP来进行法医学个体识别和亲子鉴定。目前发现在真核生物基因组编码和非编码序列中的短串联重复序列的重复次数在个体间存在着差异,因此可以使用短串联重复PCR技术对其进行分析。使用PCR技术进行法医鉴定的优点是样品用量小并且适于对高度降解材料的检测。除刚才提到的之外,可变数目串联重复序列(variable number tandem repeat,VN-TR)PCR也可以用于法医学个体识别和亲子鉴定。所以,综上所述,PCR的确是一种分子生物学研究的基础技术。在它30多年的发展中衍生出了诸如PCR-RFLP、PCR-SSOP、VN-TR,以及免疫PCR、致突变PCR和定量PCR等十几种不同的技术方法。PCR技术可以为基因工程提供目的基因,并广泛地应用于个体识别、亲子鉴定、免疫配型、疾病诊断等方面。可以说,PCR已经渗透到了生命科学的各个领域。21世纪是生物工程的世纪。我相信,在今后的发展中PCR技术会不断地得到扩充和完善,PCR技术也将4.相关检测技术 4.1.技术原理
DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。实验中发现,DNA在高温下也能发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。4.2.工作原理
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍 4.3.工作步骤
标准的PCR过程分为三步:
1.DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA 2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
3.延伸(70℃-75℃):在Taq酶(在72℃左右最佳的活性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延伸,合成与模板互补的DNA链。每一循环经过变性、退火和延伸,DNA含量既增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度 5.研究方案
医学检验大致可分为形态学、生物化学、血清免疫学和分子生物学几大类,其分别代表几代实验诊断技术。60年代DNA双螺旋结构及半保留复制模式的出现,70年代基因重组及体外基因克隆技术、分子杂交技术的应用使分子生物学在疾病诊断中得到了长足的发展。特别是1985年Mullis发明了聚合酶链式反应(PCR)技术,使医学界真正兴起了基因诊断技术热,成为现代医学发展的又一里程碑。用于临床检验的PCR技术与经典的PCR反应在操作上稍有区别,有其自己的特色。一般在样品处理上,多采用非离子去污剂一次加热处理,这种方法对DNA纯化有限,但适应临床微量、快速的特点。另外PCR反应体系中各组成成份往往都预分装到反应管中,既减少操作者的工作强度而且也减少了污染的机会,具有极高的使用价值。本公司率先研制并推出单管单人份的PCR诊断试剂,具有开创性意义。这些改进都不影响PCR效果,同样表现出高特异性、高敏感性、简便快捷等PCR最优秀的特征,在常见传染病、性病、肿瘤、遗传病、寄生虫病、优生优育、法医学等广泛领域中有相当高的实际应用价值。5.1研究方法
① 早期诊断,因为PCR扩增极其敏感,理论上可检出100CID/ml乙肝病毒的患者血清,在感染潜伏期即可被PCR法检出。
② 对低持续感染乙肝病人的诊断,有些乙肝病人体内的病毒长期低复制感染,血清病毒浓度极低,一般酶标试剂无法检出,可以用PCR法检出。
③ 疗效跟踪及病程判断,因为PCR能半定量检测乙肝病毒基因,是病毒是否存在及其数量多少的最直接指标。在治疗过程中通过监测血清或白细胞中病毒基因存在与否及其动态变化即能准确地了解病情。丙型肝炎病毒在血清中的浓度很低,丙肝病毒的分离尚未成功。目前用于丙肝病毒检验的方法主要是ELISA法测定血清中的HCV抗体。由于HCV尚无法分离纯化,所以用于包被的抗原是人工合成肽或基因工程蛋白,这些人工抗原与天然病毒抗原有一定的区别,理论上是存在假阳性或假阴性。同时血清中抗体的出现及动态变化与病人病情无线性相关关系。RT-PCR技术使这些困难得到解决。HCV是RNA病毒,需先将病毒RNA逆转录为cDNA(RT)后再进行PCR扩增,这种技术称之为逆转录-PCR(RT-PCR)。PCR敏感性高可以检测出血清中低浓度的病毒,了解病毒在体内复制的动态状况。RNA纯化要求严格,是RT-PCR的技术关键,本公司目前使用的高效基因释放剂,联合特异性固相基因吸附乳胶颗粒,对样本中的RNA进行分离纯化,使这一问题得到解决。通常用于RNA→cDNA逆转录的酶大致可以分为二大类,即低温逆转录酶,如AMV/MLV逆转录酶,高温逆转录酶,如Tth酶。Tth酶在锰离子作用下,具有逆转录酶活性,Tth酶活性温度高,可以使核酸充分线性化,提高逆转录效率及特异性。Tth酶在镁离子的作用下,又具有DNA聚合酶活性,从而真正实现单管单酶单人份的扩增要求,这样就在不降低扩增敏感性的条件下,一步完成扩增,不仅简化操作,而且又减少污染,提高检测的准确性。国内本公司已采用这种技术推出单管单酶单人份的RT-PCR诊断试剂。丁型肝炎病毒是缺陷病毒,与乙型肝炎病毒协同感染。甲型肝炎病毒、戊型肝炎病毒主要存在于急性病人粪便样本中,戊型肝炎病毒也长期存在于血清中。在PCR检测时,需注意取材的合理性。在消化道传染性疾病中,另一类最重要的感染性疾病是幽门螺旋杆菌(HP)所引起的胃炎、胃溃疡等。HP可以经口-口途经传播并定位于胃粘膜上皮细胞,早期表现为浅表性胃炎,可发展成为胃溃疡。我国胃炎发病率之高估计比乙型肝炎更严重,对HP的检测应受到广大医务工作者的重视。对HP的检测可以用生化法测试尿素酶或用免疫法测试血清中对HP特异性抗体,也可对胃液、胃粘膜样本进行细菌培养及菌种鉴定。PCR法检测HP非常敏感且特异性高,有研究发现可以从病人的唾液或口腔含漱液中检出HP.PCR法避免了取胃液及胃粘膜,减少病人痛苦,5.2.技术路线
PCR技术
聚合酶链式反应技术(PCR)是一种选择性体外扩增DNA或RNA片段的方法。具有特异性强、敏感性高、快速、简便、可扩增RNA或cDNA、对起始材料质量要求低等优点。5.3.所用仪器与材料
引物: PCR产物的特异性主要取决于引物链的特异性。由于存在同源序列,随意设计的引物链,其PCR产物在电泳分析时可能出现多条链,因此在设计引物链时应充分考虑引物特异性。引物长度一般为15-30个碱基,G+C含量为40-60%,浓度0.1-1umol/L。TaqDNA聚合酶:浓度为1-4ul/100ul。TaqDNA聚合酶单位用量增长可能导致非特异DNA扩增。模板DNA:应避免混有任何蛋白酶、核酸酶、DNA聚合酶抑制剂及能结合DNA的蛋白酶。DNA摸板的制备方法有加热法、冻溶法、超声波粉碎法、碱变性法、SDS裂解法等多种。
4×dNTPs : dNTP储存液pH应为7.0,在反应体系中,4种dNTP的浓度应相同,每种dNTP的浓度以50-200 umol/L为宜。缓冲液及其他成份:PCR反应体系中,一般采用Tris-HCl缓冲液。适宜的Mg2+浓度为高于dNTP总浓度0.2-2.5 mmol/L。
6.研究内容
PCR技术的出现对法医学的发展也有不可低估的作用。在法医物证如血斑、毛发、组织碎片等的确证,DAN多态性分析远比血清学或等方法确实可靠。早期DNA多态性分析主要使用Southern印迹杂交的方法。1985年Jeffreys首先采用肌红基因第一个内含子中的串联重复序列作探针,从人的基因库中筛选出小卫量DNA,使用阿交法产生杂交图谱即DNA指纹。这一技术成功地应用于个人识别及亲子鉴定。这种方法仍受到样本量的限制,当样本DNA数量不足时或DAN严重降解则不能正常检出。且杂交技术常使用同位素杯记探针要求较镐的防护措施。PCR技术的出现,可以对极少量物证如一根毛发、一滴血液、极小精斑都可以进行分析。在人类基因组中有许多由10-15bp核心顺序构成的串联重复DNA序列,具有单位点特征的称为VNTR结构,多位点串联成为卫星DNA。6.1.检测对象
常见的传染性疾病有细菌、病毒、衣原体、支原体等,可引起消化、呼吸、循环、泌尿生殖等不同系统相应的病变。消化系统感染性疾病在我国具有代表性意义的有肝炎、胃炎及肠道感染性疾病。引起肝炎的病原体主要包括乙型肝炎病毒(乙肝)、丙型肝炎病毒(丙肝),其它还有甲型肝炎病毒(甲肝)、丁型肝炎病毒(丁肝)、戊型肝炎病毒(戊肝)、庚型肝炎病毒(庚肝)等。这几种肝炎病毒中只有乙型肝炎病毒是DNA病毒,其余均为RNA病毒。我国是乙肝高发区,乙肝病人为世界乙肝病人总数的50%。[4]乙肝病毒经血液传播,病毒主要在肝细胞中增殖,也可以长期存留在骨髓细胞或外周血白细胞中。通常用PCR法检测血清中的乙肝病毒。有报道用PCR法可以在泪液、乳汁、精液及血白细胞中检出乙肝病毒,这些发现提示其它传染途经存在的可能 6.2检测内容
PCR反应混合物经过循环扩增后,所需做的工作就是检测反应液中是否存在预期扩增产物及产物的特异性。目前已经发展了许多检测分析PCR扩增产物的方法。包括凝胶电泳、高压液相色谱、核酸探针杂交、探针捕获酶免疫分析、酶切图谱分析、单链构型多态性分析、核酸序列分析。
PCR技术类型[5]
免疫PCR技术 原位PCR技术 不对称PCR技术 巢式PCR技术 反向PCR技术 逆转录PCR技术
复合PCR技术
彩色PCR技术
抗原捕获PCR技术 增敏PCR技术
酶标PCR技术
二温式PCR技术
锚定PCR技术
定量PCR技术
毛细管PCR技术
多重PCR技术
巢式或套式PCR技术 7.预期目标PCR 技术在大肠杆菌O157: H7检测中
(1)简单PCR: Meng等以eae基因5′末端附近一段688bp DNA片段为基础设计了一对引物,扩增产物为633bp的DNA片段。其退火温度为60℃-63℃, 应用煮沸法与基因释放法,大肠杆菌O157: H7检出限分别为25与38CFU/ml,检测时间为3h。Thomas等用PCR扩增了slt基因片段。引物: 正链5′-(TTTACGATAGACTTCTCGAC)-3', 反链5′-(CACATATAAATTATTTCGCTC)-3’
其PCR产物由凝胶电泳测定,检测时间为ld。
徐建国等根据O157: H7 特有的hlyA、B基因序列设计了PCR引物,产物为338bp。
PCR技术在大肠杆菌O157: H7检测中(2)多重PCR:由于鉴定O157: H7血清型不能仅仅依靠简单PCR,近年来国外学者对多重PCR方法在大肠杆菌O157: H7的诊断价值方面进行了研究。Meng等同时扩增了eae 上游基因片段、sitⅠ基因片段、sit Ⅱ基因片段,其长度分别为633、210、484bp。此引物设计可有效区别O157: H7血清型与O55: H7、O55: NM。Fratamico等在一个单一反应中同时扩增了eae基因、slt Ⅰ、Ⅱ的保守序列及60MDa质粒保守序列,其产物分别为1087、227、224、166bp。严笠选用针对大肠杆菌O157: H7志贺样毒素Ⅰ、Ⅱ(SLT-Ⅰ、SLT-Ⅱ)和溶血素(Hly)基因的三对引物,在同一扩增体系中进行PCR,检测12株不同来源的O157: H7大肠杆菌及其它致病性大肠杆菌及沙门菌、志贺菌15株。结果复合PCR方法较单一PCR方法具有较高的特异性,12株O157: H7取得了稳定、可靠的阳性结果。能迅速、有效地与其它致病性大肠杆菌及沙门氏菌、志贺菌相鉴别。
PCR技术在大肠杆菌O157: H7检测中的应用(3)原位PCR: kurokawa等不用培养过程,直接用原位PCR技术结合落射显微镜,在单细胞水平快速检测O157: H7。
4.23SrRNA在大肠杆菌O157: H7分型、检测中
传统的细菌分类方法主要依赖于细菌的形态学、代谢产物、酶活性和表面抗原等特征。随着现代分子生物学理论和技术的迅速发展,微生物检测进入了基因时代,以核糖体核糖核酸序列为基础的分类方法为微生物的鉴别提供了新的分子生物学方法。[6]如16srRNA、23srRNA、16-23srRNA区间序列分析等等,它完全不同于传统方法,具有快速、简便、敏感和特异等优点。
参考文献
[1] 葛忠源;荧光定量PCR检测DPV弱毒免疫鸭消化道和呼吸道大肠杆菌、葡萄球菌、乳酸杆菌及其数量变化规律的研究[D];四川农业大学;2006年
[2] 徐焕宾,贲昆龙,曾涛,李劲光;检测HIV-1载量的荧光实时定量PCR技术的建立及其应用[J];中国病毒学;2001年02期
[3] 顾鸣,韩伟.复合PCR鉴定沙门菌的方法.中国卫生检验杂志[J],2003,13(2):154-157 [4] 冉陆.肠出血性大肠埃希菌(EHEC)流行趋势.中国食品卫生杂志[J],1999,3:31-35 [5] 石岚;实时定量PCR检测IgH基因重排的研究[D];昆明医学院;2004年 [6] 王颖.食品安全学技能训练.2010.10
第三篇:PCR技术在临床检验中的应用
PCR技术在临床检验中的应用
http://www.xiexiebang.com 生物技术支持
医学检验大致可分为形态学、生物化学、血清免疫学和分子生物学几大类,其分别代表几代实验诊断技术。60年代DNA双螺旋结构及半保留复制模式的出现,70年代基因重组及体外基因克隆技术、分子杂交技术的应用使分子生物学在疾病诊断中得到了长足的发展。特别是1985年Mullis发明了聚合酶链式反应(PCR)技术,使医学界真正兴起了基因诊断技术热,成为现代医学发展的又一里程碑。用于临床检验的PCR技术与经典的PCR反应在操作上稍有区别,有其自己的特色。一般在样品处理上,多采用非离子去污剂一次加热处理,这种方法对DNA纯化有限,但适应临床微量、快速的特点。另外PCR反应体系中各组成成份往往都预分装到反应管中,既减少操作者的工作强度而且也减少了污染的机会,具有极高的使用价值。本公司率先研制并推出单管单人份的PCR诊断试剂,具有开创性意义。这些改进都不影响PCR效果,同样表现出高特异性、高敏感性、简便快捷等PCR最优秀的特征,在常见传染病、性病、肿瘤、遗传病、寄生虫病、优生优育、法医学等广泛领域中有相当高的实际应用价值。
常见的传染性疾病有细菌、病毒、衣原体、支原体等,可引起消化、呼吸、循环、泌尿生殖等不同系统相应的病变。消化系统感染性疾病在我国具有代表性意义的有肝炎、胃炎及肠道感染性疾病。引起肝炎的病原体主要包括乙型肝炎病毒(乙肝)、丙型肝炎病毒(丙肝),其它还有甲型肝炎病毒(甲肝)、丁型肝炎病毒(丁肝)、戊型肝炎病毒(戊肝)、庚型肝炎病毒(庚肝)等。这几种肝炎病毒中只有乙型肝炎病毒是DNA病毒,其余均为RNA病毒。我国是乙肝高发区,乙肝病人为世界乙肝病人总数的50%。乙肝病毒经血液传播,病毒主要在肝细胞中增殖,也可以长期存留在骨髓细胞或外周血白细胞中。通常用PCR法检测血清中的乙肝病毒。有报道用PCR法可以在泪液、乳汁、精液及血白细胞中检出乙肝病毒,这些发现提示其它传染途经存在的可能。PCR法检测乙肝的优势表现在:①早期诊断,因为PCR扩增极其敏感,理论上可检出100CID/ml乙肝病毒的患者血清,在感染潜伏期即可被PCR法检出。②对低持续感染乙肝病人的诊断,有些乙肝病人体内的病毒长期低复制感染,血清病毒浓度极低,一般酶标试剂无法检出,可以用PCR法检出。③疗效跟踪及病程判断,因为PCR能半定量检测乙肝病毒基因,是病毒是否存在及其数量多少的最直接指标。在治疗过程中通过监测血清或白细胞中病毒基因存在与否及其动态变化即能准确地了解病情。丙型肝炎病毒在血清中的浓度很低,丙肝病毒的分离尚未成功。目前用于丙肝病毒检验的方法主要是ELISA法测定血清中的HCV抗体。由于HCV尚无法分离纯化,所以用于包被的抗原是人工合成肽或基因工程蛋白,这些人工抗原与天然病毒抗原有一定的区别,理论上是存在假阳性或假阴性。同时血清中抗体的出现及动态变化与病人病情无线性相关关系。RT-PCR技术使这些困难得到解决。HCV是RNA病毒,需先将病毒RNA逆转录为cDNA(RT)后再进行PCR扩增,这种技术称之为逆转录-PCR(RT-PCR)。PCR敏感性高可以检测出血清中低浓度的病毒,了解病毒在体内复制的动态状况。RNA纯化要求严格,是RT-PCR的技术关键,本公司目前使用的高效基因释放剂,联合特异性固相基因吸附乳胶颗粒,对样本中的RNA进行分离纯化,使这一问题得到解决。通常用于RNA→cDNA逆转录的酶大致可以分为二大类,即低温逆转录酶,如AMV/MLV逆转录酶,高温逆转录酶,如Tth酶。Tth酶在锰离子作用下,具有逆转录酶活性,Tth酶活性温度高,可以使核酸充分线性化,提高逆转录效率及特异性。Tth酶在镁离子的作用下,又具有DNA聚合酶活性,从而真正实现单管单酶单人份的扩增要求,这样就在不降低扩增敏感性的条件下,一步完成扩增,不仅简化操作,而且又减少污染,提高检测的准确性。国内本公司已采用这种技术推出单管单酶单人份的RT-PCR诊断试剂。丁型肝炎病毒是缺陷病毒,与乙型肝炎病毒协同感染。甲型肝炎病毒、戊型肝炎病毒主要存在于急性病人粪便样本中,戊型肝炎病毒也长期存在于血清中。在PCR检测时,需注意取材的合理性。在消化道传染性疾病中,另一类最重要的感染性疾病是幽门螺旋杆菌(HP)所引起的胃炎、胃溃疡等。HP可以经口-口途经传播并定位于胃粘膜上皮细胞,早期表现为浅表性胃炎,可发展成为胃溃疡。我国胃炎发病率之高估计比乙型肝炎更严重,对HP的检测应受到广大医务工作者的重视。对HP的检测可以用生化法测试尿素酶或用免疫法测试血清中对HP特异性抗体,也可对胃液、胃粘膜样本进行细菌培养及菌种鉴定。PCR法检测HP非常敏感且特异性高,有研究发现可以从病人的唾液或口腔含漱液中检出HP。PCR法避免了取胃液及胃粘膜,减少病人痛苦,是目前最理想的方法。
呼吸系统感染性疾病主要的有肺结核、非典型性肺炎等。结核杆菌感染曾给人类健康带来很大威胁,一度是较严重的致死性疾病之一。解放以后由于对结核病的预防的重视,特别是特效抗痨药物的出现,使结核病流行基本被控制。近来结核病有抬头的趋势,基原因可能有两方面,其一是耐药株的不断出现,其二是对结核预防重视不足。结核菌痰涂片镜检阳性率太低,酶标法又因抗原交叉反应易出现假阳性,结核检测的金标准是结核菌培养法。但培养法费时昂贵并且受到用药的影响,在实际应用中受到限制。PCR在结核菌检测方面有简便、敏感、特异的优点。一般认为样本中内要有100个左右的结核菌即可被检出。目前用于结核菌PCR诊断的试剂,其引物主要来源于以下基因片段36KD/65KD抗原蛋白基因;染色体重复插入序列IS986、IS960、IS6110、染色体质粒DNA PH7311、PMTB4、P36基因等。其中最常用的是染色体重复插入序列IS986或IS6110,1990年Hermans首先介绍并使用了IS986基因设计的引物扩增产物为245BP,研究表明这一基因对人型结核菌有特异性。而后Thierry又介绍了插入序列IS6110基因,并认为这一基因对人型结核菌具有比IS986更高的特异性及敏感性,最适合M.TB的检测。结核菌痰标本的PCR检测应注意以下几种常见的问题。其一,多条带。即扩增产物电泳后有三条或三条以上的萤光除最前面的引物以外有两条产物带,这与插入序列本身各片段长度有差异、结核菌在治疗过程中染色体畸变、断裂、缺欠及不等位交换有关。这种扩增结果的判断应特别注意,凡在阳性对照相应位置有明显条带的判阳性,否则应为阴性,或建议病人过一些时间后再复检一次;其二,结核痰样本PCR检测时,要使样本充分液化,否则痰液中的粘液成份将影响扩增效果,甚至会导致严重非特异性扩增,电泳结果呈雾状;基三,结核痰样本PCR检测结果可能表现为阳性、阴性交替出现,这与结核病灶的不规律排菌有关。
循环系统以肠道小RNA病毒感染最具代表意义,如柯萨奇病毒等。这些病毒经肠道粘膜、淋巴结进入血液,最终可定位于心肌细胞中导致心肌炎。目前对这些病毒的血液样本检测往往比较困难。PCR用于柯萨奇病毒检测时因其是RNA病毒所以应注意样本的保存。外在环境中存在大量RNA酶,病毒脱壳后RNA将被迅速降解。一般用于RNA检测的血清常温下不应超过24小时,4℃下可保存2天,-20℃下可以保存2月以下。
PCR检测在性传播性疾病(STD)的诊断中有较广泛的应用。经典的性传播疾病有梅毒、淋病、腹股沟淋巴肉芽肿、软锐湿疠、硬下疳等。而在现代STD中、解尿支原体及沙眼衣原体引起的非淋菌性尿道炎(NGU)可能更具有代表性意义。梅毒是由梅毒螺旋体感染布致,首先在局部形成硬软下疳,布后经血行播散到全身,最严重的是波及中枢神经系统。感染早期,梅毒螺旋体大量存在于硬下疳中,可以用生理盐水湿棉签擦去皮疹表面污物再用钝刀片轻轻刮去上皮及结痂,用洁净棉签取渗出液样本作PCR检测,其敏感性及特异性极高。二期梅毒皮疹中也存在梅毒螺体其取样方法同埂下疳,三期梅毒皮疹中一般无螺旋体存在,因此III病人及部分无皮疹的I、II期梅毒病人可以取EDTA抗凝全血检测。淋病是目前发病率最高的性传播性疾病之一,由淋病双球菌引起。淋病双球菌一般为胞内寄生,常见的感染部位为外生殖器、尿道粘膜最常见。在尿道及外生殖器分泌物中有许多非致病的双菌存在,对分泌物拭子进行涂片镜检时,常导致误诊。另外目前非淋球菌性尿道炎的发病率不断增加,鉴别诊断特要,培养法准确但费时且费用高,受用药的影响。PCR法简便、快捷、准确非常理想。常用的引物多采用外膜蛋白抗原基因、隐性质粒DNA或16s RNA基因。16s RNA基因设计的引物特异性高但其敏感性低;隐性质粒设计的引物敏感性高但偶尔出现多条带的扩增产物,判断结果时应以阳性对照为标准,凡在阳性对照相应部位有明显条带的为阳性,其余均为阴性。以往对沙眼衣原体及解脲支原体的检测主要靠培养法,费时且昂贵,简便快速的PCR检测对其有极高的使用价值。沙眼衣原体、解脲支原体样本来源主要是尿道及宫颈分泌物拭子,由于分泌物中有许多污物含有PCR扩增的抑制剂,因此每次采样时尽量避免采集过多脓性分泌物,如果宫颈分泌物太多可以先用湿棉签将表面的分泌物擦去,再用洁净的湿棉签轻压旋转采集宫颈脱落细胞送检,其准确性更高。PCR也可以用检测单纯疱疹病毒、EB病毒、乳头瘤病毒等。引物尖锐湿疣的病毒是人类乳头瘤(HPV),可致生殖系统感染的乳头瘤病毒主要是6、11、16、18、33型。新近研究结果表明,在乳头瘤病毒引起的良、恶性生殖器病变中,与血清型的关系并不密切,经常有交叉或多型民时感染。为简化操作,对其基因对比分析寻找共同序列设计的简并引物可以同时检出这几种型别的病毒既简化操作又减少费用是一种极理想的方法。
我国恶性肿瘤为人口死亡的第一位原因,其中以肺癌、胃癌及食管癌的发病率最高,占恶性肿瘤死亡总数的60%以上。引起肿瘤的原因非常复杂包括外界环境因素及遗传背景。外界因此可分为三大类即化学、物理及生物因素。肿瘤与遗传有关的证据越来越多,除已知的单基因遗传肿瘤如视网膜细胞瘤、肾母细胞瘤等以外,还在几乎所有的肿瘤细胞中观察到原癌基因的重排,这些基因的变化常导致细胞增殖调控失调终形成肿瘤。癌基因是指在自然或实验条件下具有潜在诱导细胞恶性转化的基因,它们是在研究逆转录病毒时发现的。目前已知的肿瘤基因有60多种,1969年Hubner根据Rous(1911)的实验,在小鸡肉瘤滤液中发现一种能诱导宿主细胞转化的RNA病毒性癌基因(Viral Oncogene)。后来又在其它哺乳动物基因中发现与病毒癌基因同源序列,这种正常的细胞基因表达产物与细胞生长、增殖、分化有关。但若被某种因素激活就会转化为有活力的癌基因,通常称之为原癌基因(Proto Oncogene)。为了与病毒癌基因区分,分别用V-Onc及C-Onc基因来代表。目前了解较多的癌基因(C-one)有scr基因族、ras基因族、mgc及myb基因族。原癌基因存在于正常细胞中,并表达生物功能,只有在原癌基因被激活后才能诱导细胞转化,可能的原癌基因活化机理有:①点突变,受到射线、化学因素、生物因素的诱导,这样微小的变化,就会活化癌基因,活化的基因产物仅有极微的结构差异,但在功能在却有很大的区别。②获得启动子,原癌基因从病毒基因中获得启动子而活化。③基因易位,内外界因素能导致染色体的某些基因易位、重排使原来无活性的原癌基因移至某些强的启动因子或增强子附近而被活化。④原癌基因的过量扩增,原癌基因产物一般与生长因子、生长因子受体、跨膜信息蛋白有关或功能相近,过度表达时,会因调控失常而引起细胞癌变。另一类与肿瘤相关的基因是抑癌基因如P53。抑癌基因较复杂,作用机理不太清楚。癌基因检测中常用的分子生物学技术有:杂交、DNA分子克隆、PCR扩增及序列分析。PCR扩增简便、快捷有较强的实用性,甚至可从病人体液样本中检测活化的癌基因而不需取活组织,对癌症的早期诊断有极重要的意义。Ras基因是1964年首次从大鼠肉瘤的急性逆转录病毒(Harver Murine Sarcoma and Kister Murine Sarcoma Virus)中分离出来取大鼠肉瘤(Rat Sarcoma)的字首命名。1982年首次在人膀胱细胞细胞癌中检出有转化能力的ras基因与Harver大鼠肉瘤病毒癌基因有同源性称C-H-ras基因,后从肺细胞癌中发现了与Kister大鼠肉瘤癌基因同源的C-K-ras基因,从神经母细胞中又发现了N-ras基因。Ras基因激活的最常见方式是点突变。人类原发肿瘤时点突变主要发生在密码子12、13、59、61位。激活后的ras基因不牟自行灭活,根据其点突变的情况可以基因诊断、疗效观察。用PCR扩增样本ras原癌基因,再使用杂交法、限制性内切酶消化或产物测序法检测基因的突变情况即可用诊断。P53是抑制癌基因的代表,位于17号染色体短臂上,其产物为53KD分子量的蛋白从此而得名,可分为突变型和野生型,前者为癌基因,后者为抗癌基因。1979年Cane发现了P53蛋白Eliyahu发现了p53基因有抑癌作用。P53突变后其产物突变蛋白稳定性增加,半衰期较野生型基因产物长,在细胞内堆积,可以用免疫组化法测出。PCR-RELP、PCR-SSCP则因方法简单、快速、特异性高,更具有实用价值。在SSCP分析中,单链DNA因碱基序列的变异,导致构型改变,在进行凝胶电泳时,其泳动速率发生改变,从布将变异的DNA与正常DNA区分开,统计表明100-300bp分子大小的ssDNA突变检出率可达97%,300-450bp标出率可达69%,因此大于400bp的片段多态性应采用其它方法检测。
遗传病是由于遗传基础异常而引起的疾病,人类遗传病约有3000多种,患者占总人口数的10%。遗传病大概可分为单基因、多基因及染色体遗传病。常用诊断方法有家系谱分析、染色体检查(特别是显带法)、生物化分析等。随分子生物学发展,基因诊断愈来愈表现出其优越性,PCR技术是基因诊断的主要技术之一,为快速、准确地检测人类遗传病开辟了一个新的途径,预计与遗传相关的疾病的检测有80%将在3-5年内被PCR法所取代。PCR在遗传病诊断应用中,可以利用引物直接扩增变化的基因产物,也可以结合应用限制内切酶,分子杂交及电泳图谱分析进行诊断。应用较为广泛的有PCR法检测中海贫血、苯丙酮尿症、血友病、脆性X综合症及性别鉴定等。地中海贫血(Thalassmia)是世界上最常见的单基因遗传病,不有同类型,以a地中海贫血及在中海贫血最常见。a珠蛋白基因位于11号染色体短臂上,a珠蛋白基因突变致血红蛋白的全成减少或缺失,表现溶血性贫血,肝脾肿大,在我国发病率为0.66%,贵州、四川等地高发可达2.2%。应用PCR技术可以直接检测突变的基因诊断此病。苯丙酮尿症(Phenylketouria,PKU)是一种常染色体隐性遗传病。病人肝脏苯丙氨酸羟化酶严重缺乏使苯丙氨酸不能转化为酷氨酸血症,出现脑组织损伤,智力障碍。此病患者出生时正常,出生后一经确诊立即停止母乳喂养,采用低苯丙氨酸饮食治疗8-10年不致影响患者智力,但低苯丙氨酸饮食代价之昂贵是一般家庭所不能承受的,关键在于避免患儿出生。因此本病的早期诊断有极其重要的意义。PCR结合斑点杂交能有效诊断PKU。遗传性疾病的基因变化很复杂,单基因固定位点变异布致病的情况很少,因此基因诊断过程中往往需要PCR技术与限制性内切酶、斑点杂交、聚丙烯酰胺胶电泳图谱分析及扩增产物序列分析结合,作综合判断。
优生学包括基础优生学、社会优生学、临床优生学及环境优生学。孕期检查及产前诊断是临床优生学的最重要内容之一。孕期检查除一般项目外还能及时了解孕妇是患有某些对胎儿发育有严重影响的疾病如风疹病毒感染、沙眼衣原体、解脲支原体、单纯疱疹病毒、巨细胞病毒、弓体感染等,及时发现及时治疗并采取有效措施预防发展成为宫内感染。PCR技术对这些病原体的检测简便而确实,另外利用PCR技术可以对地中海贫血、血友病、苯丙酮尿症、脆性X综合症等遗传性疾病进行宫内诊断。可见PCR在优生优育方面有很高的应用价值。
PCR技术的出现对法医学的发展也有不可低估的作用。在法医物证如血斑、毛发、组织碎片等的确证,DAN多态性分析远比血清学或等方法确实可靠。早期DNA多态性分析主要使用Southern印迹杂交的方法。1985年Jeffreys首先采用肌红基因第一个内含子中的串联重复序列作探针,从人的基因库中筛选出小卫量DNA,使用阿交法产生杂交图谱即DNA指纹。这一技术成功地应用于个人识别及亲子鉴定。这种方法仍受到样本量的限制,当样本DNA数量不足时或DAN严重降解则不能正常检出。且杂交技术常使用同位素杯记探针要求较镐的防护措施。PCR技术的出现,可以对极少量物证如一根毛发、一滴血液、极小精斑都可以进行分析。在人类基因组中有许多由10-15bp核心顺序构成的串联重复DNA序列,具有单位点特征的称为VNTR结构,多位点串联成为卫星DNA。由于VNTR在等位基因中的多态性便构成了遗传标记。使用PCR技术对其进行扩增结合对扩增产物凝胶电泳图谱分析即可进行个人识别及亲子鉴定。由2-6核苷组成的重复串联序列称为微卫星。在人类基因组中,微卫星更加丰富。微卫星的重复序列比VNTR短,扩增分型简便,易于自动化,在VNTR或微卫星不仅重复片段的数量不同而且重复片段的核苷酸也具有多态性。在VNTR或微卫星多态性分析时,如再结合碱基配对分析可以藜得更大量的信息,这一种更有希望的标志即MVR(Microsatllite Variant Repeats)。理论上其对嫌疑人的排除率为99.999%。PCR技术可以完成替代早期的Southern印迹法进行多态性分析而且操作简便,敏感性及准确性都有大幅度的提高。当然PCR技术在法医中的应用仍在起步阶段有许多技术问题等待解决,如样本中的抑制剂、检村中DNA的损报告伤、PCR扩增污染等。想念随着PCR技术的不断完善它将在法医学领域中有更加广泛的应用。
第四篇:荧光PCR检测原理
实时荧光定量PCR技术是指在PCR反应体系中加入荧光染料或荧光基团,利用荧光信号来实时监测整个PCR进程,最后通过标准曲线对未知模板浓度进行定量分析。其特点有:
(1)用产生荧光信号的指示剂显示扩增产物的量,进行实时动态连续的荧光监测,避免终点定量的不准确性,并且消除了标本和产物的污染,且无复杂的产物后续处理过程。
(2)荧光信号通过荧光染料嵌入双链DNA,或荧光探针特异结合木得检测物等方法获得,打打提高了检测的灵敏度、特异性和精确性。Real-time O-PCR可以应用于mRNA表达的研究、DNA拷贝数的检测、单核苷酸多态性的测定、细胞因子的表达分析、肿瘤耐药基因表达的研究以及病毒感染的定量监测。实时荧光定量PCR技术的基本原理
在PCR反应体系中加入荧光染料或荧光基团,这些荧光物质有其特定的波长。仪器可以自动检出,利用荧光信号积累,实时监测整个PCR进程,在PCR循环中,测量的信号将作为荧光阈值的坐标。并且引入一个——Ct值(Threshold cycle)概念,Ct值是指产生可被检测到得荧光信号所需的最小循环数,是在PCR循环过程中荧光信号由本底开始进入指数增长阶段的拐点所对应的循环次数。荧光阈值相当于基线荧光信号的平均信号标准偏差的10倍。一般认为在荧光阈值以上所测出的荧光信号是一个可信的信号,可以用于定义一个样本的Ct值。通常用不同浓度的标准样品的Ct值来产生标准曲线,然后计算相对方程式。
方程式的斜度可以用来检查PCR的效率,所有标准曲线的线性回归分析需要存在一个高相关系数(R²>0.99),这样才能认为实验的过程和数据是可信的,使用这个方程式计算出未知样本的初始模板量。实时荧光定量PCR仪都有软件,可以从标准曲线中自动地计算出未知样本的初始模板量。实时荧光定量PCR技术的应用 1.基因工程研究领域
① 基因表达研究:对β地中海贫血症患者β与γ珠蛋白mRNA水平进行检测,其结果特异性强、定量准确,为了解β地中海贫血的分子病理机制及其临床诊断提供了可靠的检测数据。
② 转基因研究:利用两种发光探针及适当的循环阈值,扩增一个转移后的基因和一个对照基因,以分析转基因老鼠接合性。该方法为45个转基因动物的同型结合及异质结合提供了明确的鉴定结果。通过实时定量PCR检测,同型结合的异质接合动物交配后其子代中转基因的传递情况符合孟德尔遗传规律。这项技术在转基因动物繁育及基因剂量功能效应实验中将有很大的用途。③ 单核苷酸多态性(SNP)及突变分析:实时荧光定量PCR一个诱人的应用前景是用于检测基于两条探针和基因组的不稳定性。基因突变基于两条探针,一条探针横跨突变点,另一条为锚定探针,与无突变位点的靶序列杂交。两条探针用两种不同的发光基团标记。如靶序列中无突变,探针杂交便完全配对,如有突变,则探针与靶序列不完全配对,会降低杂交体得稳定性,从而降低其熔解温度(Tm)。这样便可对突变和多态性进行分析。2.医学研究领域
① 病原体检测:由于实时荧光定量PCR方法可靠性和重复性好,并且操作简便、快速、结果判断客观,目前,人们用此方法对人类免疫缺陷病毒、肝炎病毒、结核杆菌、巨细胞病毒、EB病毒、流感病毒A、流感病毒B等病原体的检测。荧光定量PCR问世后的几年中,积累了大量有关病原体核酸量与感染性疾病发生、发展和预后之间关系的资料,这些研究资料不断丰富,将形成感染性疾病的临床分子诊断标准。
② 药物疗效考核:利用实时荧光定量PCR技术检测临床样品中与抗药性相关的基因的表达。结果证明,实时荧光定量PCR系统是定量检测抗药基因表达的可靠方法,应用这种技术可以预测化疗将引起的反应。
③ 肿瘤基因检测:肿瘤的本质是细胞内基因发生了变化,是一种多基因异常的疾病,这些异常变化用实时荧光定量PCR方法都可以检测出来。
目前用此方法进行过端粒酶hTERT基因、慢性粒细胞性白血病bcr/abl融合基因、肿瘤MDRI基因、白血病WTI基因、肿瘤ER基因、前列腺癌PSM基因、肿瘤相关的病毒基因等多种基因的表达检测。随着与肿瘤相关的新基因的不断发现。荧光定量PCR技术将会在肿瘤的研究中发挥更大的作用。3.其他领域
用实时荧光定量PCR方法对免疫组分进行分析是其应用的重要方面。
所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。检测方法
1.SYBRGreenⅠ法: 在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。SYBR定量PCR扩增荧光曲线图
PCR产物熔解曲线图(单一峰图表明PCR扩增产物的单一性)2.TaqMan探针法:
探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物的形成完全同步。服务流程
1.客户认真写好订单,提供待检基因相关信息; 2.签订技术服务合同,支付预付款(30-50%);
3.设计合成定量PCR引物(或客户提供文献引物委托本公司合成); 4.DNA/RNA的抽提、定量、RNA反转录;
5.PCR预实验,主要检测引物的特异性和扩增效率; 6.正式定量实验:对所有样品上机检测; 7.实验结果和数据分析,形成报告。收费标准
优惠包干价:120元/样/基因(SYBRgreenI法,相对定量)
(含RNA提取,反转录,引物合成费用,上机测试费用(3个重复);一个内参免费(内参3个重复)Ct值(Cycle threshold,循环阈值)的含义为:每个反应管内的荧光信号到达设定阈值时所经历的循环数
(如图1所示)。
1.荧光阈值(threshold)的设定
PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光阈值的缺省(默认)设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10*SDcycle 3-15 2.Ct值与起始模板的关系
每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,公式如下。Ct=-1/lg(1+Ex)*lgX0+lgN/lg(1+Ex)n为扩增反应的循环次数,X0为初始模板量,Ex为扩增效率,N为荧光扩增信号达到阈值强度时扩增产物的量。
起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。实时荧光定量PCR所使用的荧光物质可分为两种:荧光探针和荧光染料。现将其原理简述如下: 1.TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。而新型TaqMan-MGB探针使该技术既可进行基因定量分析,又可分析基因突变(SNP),有望成为基因诊断和个体化用药分析的首选技术平台。
2.SYBR荧光染料:在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料非特异性地掺入DNA双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。SYBR仅与双链DNA进行结合,因此可以通过溶解曲线,确定PCR反应是否特异。3.分子信标:是一种在5和3末端自身形成一个8个碱基左右的发夹结构的茎环双标记寡核苷酸探针,两端的核酸序列互补配对,导致荧光基团与淬灭基团紧紧靠近,不会产生荧光。PCR产物生成后,退火过程中,分子信标中间部分与特定DNA序列配对,荧光基因与淬灭基因分离产生荧光。1.传统定量PCR方法简介
1)内参照法:在不同的PCR反应管中加入已定量的内标和引物,内标用基因工程方法合成。上游引物用荧光标记,下游引物不标记。在模板扩增的同时,内标也被扩增。在PCR产物中,由于内标与靶模板的长度不同,二者的扩增产物可用电泳或高效液相分离开来,分别测定其荧光强度,以内标为对照定量待检测模板。2)竞争法:选择由突变克隆产生的含有一个新内切位点的外源竞争性模板。在同一反应管中,待测样品与竞争模板用同一对引物同时扩增(其中一个引物为荧光标记)。扩增后用内切酶消化PCR产物,竞争性模板的产物被酶解为两个片段,而待测模板不被酶切,可通过电泳或高效液相将两种产物分开,分别测定荧光强度,根据已知模板推测未知模板的起始拷贝数。
3)PCR-ELISA法:利用地高辛或生物素等标记引物,扩增产物被固相板上特异的探针所结合,再加入抗地高辛或生物素酶标抗体-辣根过氧化物酶结合物,最终酶使底物显色。常规的PCR-ELISA法只是定性实验,若加入内标,作出标准曲线,也可实现定量检测目的。2.内标在传统定量中的作用
由于传统定量方法都是终点检测,即PCR到达平台期后进行检测,而PCR经过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量。加入内标后,可部分消除终产物定量所造成的不准确性。但即使如此,传统的定量方法也都只能算作半定量、粗略定量的方法。3.内标对定量PCR的影响
若在待测样品中加入已知起始拷贝数的内标,则PCR反应变为双重PCR,双重PCR反应中存在两种模板之间的干扰和竞争,尤其当两种模板的起始拷贝数相差比较大时,这种竞争会表现得更为显著。但由于待测样品的起始拷贝数是未知的,所以无法加入合适数量的已知模板作为内标。也正是这个原因,传统定量方法虽然加入内标,但仍然只是一种半定量的方法。实时荧光定量PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。因此,实时荧光定量PCR无需内标是建立在两个基础之上的: 1)Ct值的重现性PCR循环在到达Ct值所在的循环数时,刚刚进入真正的指数扩增期(对数期),此时微小误差尚未放大,因此Ct值的重现性极好,即同一模板不同时间扩增或同一时间不同管内扩增,得到的Ct值是恒定的。
2)Ct值与起始模板的线性关系由于Ct值与起始模板的对数存在线性关系,可利用标准曲线对未知样品进行定量测定,因此,实时荧光定量PCR是一种采用外标准曲线定量的方法。
外标准曲线的定量方法相比内标法是一种准确的、值得信赖的科学方法。利用外标准曲线的实时荧光定量PCR是迄今为止定量最准确,重现性最好的定量方法,已得到全世界的公认,广泛用于基因表达研究、转基因研究,药物疗效考核、病原体检测等诸多领域。各级各类医疗机构、大学及研究所、CDC、检验检疫局、兽医站、食品企业及乳品厂等。
由于qPCR是实时定量检测致病病原体基因核酸,因此它比化学发光、时间分辨、蛋白芯片等免疫学方法更具独到优势。
第五篇:临床检验中PCR技术的应用
临床检验中PCR技术的应用
青海红十字医院检验科 杨军 检验士 关键词:pcr :pcr的应用
医学检验大致可分为形态学、生物化学、血清免疫学和分子生物学几大类,其分别代表几代实验诊断技术。60年代DNA双螺旋结构及半保留复制模式的出现,70年代基因重组及体外基因克隆技术、分子杂交技术的应用使分子生物学在疾病诊断中得到了长足的发展。特别是1985年Mullis发明了聚合酶链式反应(PCR)技术,使医学界真正兴起了基因诊断技术热,成为现代医学发展的又一里程碑。用于临床检验的PCR技术与经典的PCR反应在操作上稍有区别,有其自己的特色。一般在样品处理上,多采用非离子去污剂一次加热处理,这种方法对DNA纯化有限,但适应临床微量、快速的特点。另外PCR反应体系中各组成成份往往都预分装到反应管中,既减少操作者的工作强度而且也减少了污染的机会,具有极高的使用价值。
PCR检测的临床应用范围:用于疾病的早期诊断,疾病的鉴别诊断,疾病的病因确定,药物疗效的评价,治疗效果的评价,治愈标准的确定
通常用PCR法检测血清中的乙肝病毒。PCR法检测乙肝的优势表现在:
① 早期诊断,因为PCR扩增极其敏感,理论上可检出100CID/ml乙肝病毒的患者血清,在感染潜伏期即可被PCR法检出。
② 对低持续感染乙肝病人的诊断,有些乙肝病人体内的病毒长期低复制感染,血清病毒浓度极低,一般酶标试剂无法检出,可以用PCR法检出。③ 疗效跟踪及病程判断,因为PCR能半定量检测乙肝病毒基因,是病毒是否存在及其数量多少的最直接指标。在治疗过程中通过监测血清或白细胞中病毒基因存在与否及其动态变化即能准确地了解病情。丙型肝炎病毒在血清中的浓度很低,丙肝病毒的分离尚未成功。目前用于丙肝病毒检验的方法主要是ELISA法测定血清中的HCV抗体。由于HCV尚无法分离纯化,所以用于包被的抗原是人工合成肽或基因工程蛋白,这些人工抗原与天然病毒抗原有一定的区别,理论上是存在假阳性或假阴性。同时血清中抗体的出现及动态变化与病人病情无线性相关关系。RT-PCR技术使这些困难得到解决。HCV是RNA病毒,需先将病毒RNA逆转录为cDNA(RT)后再进行PCR扩增,这种技术称之为逆转录-PCR(RT-PCR)。
PCR检测在性传播性疾病(STD)的诊断中有较广泛的应用。经典的性传播疾病有梅毒、淋病、腹股沟淋巴肉芽肿、软锐湿疠、硬下疳等。而在现代STD中、解尿支原体及沙眼衣原体引起的非淋菌性尿道炎(NGU)可能更具有代表性意义。检测标本无特殊限制:
痰、尿、腹水、胸水、关节液、血、肺泡灌洗液、脑脊液、分泌物等均可送检PCR检测淋球菌。淋病的临床表现缺乏特异性,其确诊主要是进行实验室检查。传统的方法有涂片染色法,分离培养法和用来检测淋球菌抗原的EIA-Gonozyme系统法。近年来,荧光定量PCR诊断技术的应用,使淋病的快速诊断有重大突破。
循环系统以肠道小RNA病毒感染最具代表意义,如柯萨奇病毒等。这些病毒经肠道粘膜、淋巴结进入血液,最终可定位于心肌细胞中导致心肌炎。目前对这些病毒的血液样本检测往往比较困难。PCR用于柯萨奇病毒检测时因其是RNA病毒所以应注意样本的保存。外在环境中存在大量RNA酶,病毒脱壳后RNA将被迅速降解。一般用于RNA检测的血清常温下不应超过24小时,4℃下可保存2天,-20℃下可以保存2月以下
PCR敏感性高可以检测出血清中低浓度的病毒,了解病毒在体内复制的动态状况
(1)参考文献:《中国医学检验杂志》2001.11:13-14
(2)
姜怀春pcr技术研究新进展。重庆工商大学报,2005.22(4):232-235