利用信号集中监测系统分析信号设备故障隐患(样例5)

时间:2019-05-15 02:49:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用信号集中监测系统分析信号设备故障隐患》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用信号集中监测系统分析信号设备故障隐患》。

第一篇:利用信号集中监测系统分析信号设备故障隐患

利用信号集中监测系统分析信号设备故障隐患

摘 要:铁路信号集中监测系统目前在铁路有着广泛的应用,它已经成为每个站必须配备的辅助信号设备,由于其技术的逐步成熟,行业标准的逐步完善,是一套电务职工日常维修设备的必要辅助系统。

关键词:信号集中监测;隐患排查;故障分析

中图分类号:TN911 文献标识码:A

铁路电务信号集中监测系统是电务部门运用越来越广泛的一个设备维护辅助系统。随着铁路维修制度的逐步改变,设备维修只能在天窗点内进行,由于维修天窗点时间的不足、日常又不能进行开盖检查设备,所以很难保证设备的良好运行。近年来随着系统中设备监测项目的逐步增加,通过运用系统实时监测的特点,可以发现大量的信号设备安全隐患,为信号设备实现状态维修提供了可靠的数据依据。信号工可以利用监测系统提前发现设备问题,做到有针对性地重点检修设备,最大化地利用有限的天窗时间。下面通过现场的实际运用分析来讲解一下系统的多方面运用方法。

一、利用监测系统发现道岔设备安全隐患

目前的信号集中监测系统对道岔设备主要采集的数据有动作电流数值、动作功率数值、定位表示交流电压数值、反位表示交流电压数值、定位表示直流电压数值和反位表示直流电压数值。通过各种数据的横向对比,可以发现道岔不同部位发生的不同问题。利用道岔动作电流曲线发现配线错误问题

2015年曹妃甸西站因站改需要对站内电缆进行割接,割接电缆后,施工人员对各类设备进行了单项连锁试验,连锁关系全部正确。但在电缆割接后,职工日常巡视微机监测发现11#、13#道岔动作电流曲线偶尔发生异常。通过对所有道岔曲线进行对比综合分析后,发现只有11#、13#道岔同时扳动时、两组道岔的电流曲线均异常。

车间人员查看电缆割接前道岔的电流曲线,11#、13#道岔同时扳动时,各相电流曲线均正常,动作电流在1A左右。查看电缆割接后道岔的电流曲线,发现4月27日18点04分35秒扳动13#道岔,A相电流超标、动作电流在4A左右、持续时间约26秒;B相电流升高、动作电流在1.5A左右;C相电流升高、动作电流在1.2A左右。4月27日18点04分43秒扳动11#道岔,A相电流降低、动作电流在0.5A左右;B相电流升高、动作电流在1.5A左右;C相电流超标、动作电流在3.7A左右、持续时间约26秒。由于两组道岔的控制电缆在同一根电缆中,初步分析怀疑电缆是否有接地短路点。由于道岔站场位置离机械室比较远,道岔的控制电缆采用的是双芯并用,车间利用天窗点对两组道岔的控制电缆进行了绝缘对地摇测,未发现有电缆绝缘不良问题。车间又分别对两组道岔电缆甩线进行通断核对试验,发现11#道岔的X5与13#道岔的X1有一芯电缆交叉上错。对错误配线进行倒接后,再同时操纵两组道岔,道岔的动作电流曲线恢复正常。利用道岔表示电压曲线发现设备性能不良问题

2016年2月18日涿鹿车间通过微机监测发现涿鹿站5#道岔定、反位直流表示电压由21V降为约16V。对道岔的表示电路进行分析认为定反位表示电路的公共部分存在问题,公共部分中怀疑点最大的就是表示二极管性能不良,天窗点中对5#道岔的表示二极管进行更换后表示电压全部恢复正常。对更换下的表示二极管进行测试发现表示二极管两个并联使用的陶瓷电阻有一个存在内部断线问题。

总之,我们日常通过分析道岔的各种监测曲线,可以发现不同类型的设备安全隐患。通过动作功率曲线可以发现道岔解锁困难、中途转换卡阻、尖轨入槽困难、道岔表示缺口不适等问题。当道岔扳动时,动作功率曲线升高后一直不回落,可以判断为道岔解锁困难,道岔无法进行转换,通过现场查找杆件是否有卡阻进行处理。当道岔扳动转换途中,动作功率曲线有突然的升高或者小毛刺等现象时,可以判断为转换途中有卡阻的地方,一般情况是滑床板缺油或者杆件在转换途中有异物磨卡。当道岔在即将转换到位时,动作功率曲线有突然的升高现象,可以判断为尖轨入槽不顺,一般情况是基本轨有肥边或者尖轨有吊板问题,此种情况需及时联系工务部门进行病害整治,才能彻底解决此类问题。利用道岔表示电压曲线可以发现表示二极管性能不良、道岔动静接点虚接、表示回路电缆虚接等问题。当道岔表示电压曲线下降了一定数值后保持平稳,可以判定为道岔表示二极管性能不良,及时进行更换即可解决此类问题。当道岔表示电压曲线存在细微波动时,可以判断为表示接点虚接或者回路中有电缆虚接部位,此类问题需要进行现场检查,逐步进行排除处理。

二、利用监测系统发现ZPW-2000A轨道电路设备安全隐患

目前的信号集中监测系统对ZPW-2000A轨道电路设备主要采集的数据有功出电压、功出电流、主轨入电压、主轨出电压、小轨入电压、小轨出电压、送端分线盘电压、受端分线盘电压。可以通过各项数值的综合分析判断为室内、室外设备问题。利用受端电压发现室外设备短路问题

2015年3月30日大同南区间0144G主轨出电压波动达60MV~70MV,通过查看送端分线盘电压、受端分线盘电压判断为室外问题,首先怀疑是轨道区段内的补偿电容有性能不良的,或者是送受端调谐线存在虚接问题。车间人员到达现场对调谐线及补偿电容进行了细致的检查,没有发现明显的问题。继而车间重新对线路进行了检查,发现线路外侧有工务部门新卸的一小段钢轨,钢轨正好放在了几根地锚拉杆上部,经过初步分析是新卸的备轨短路地锚拉杆,形成第三轨道通路,造成了轨道区段的电压波动,如图1所示。

分析原因:ZPW-2000A轨道区段中有均匀分布的补偿电容,对轨道上传输的轨道电压起到补偿作用,以便实现轨道信号的长距离传输。如图所示新卸的钢轨放在了线路的外侧,刚好放在了地锚拉杆绝缘与钢轨的中间,中间这一部分拉杆是没有绝缘性能的,当新轨分别与第一个和第三个地锚拉杆短路时,相当于形成了第三条轨道通路,中间会有3个补偿电容被短路掉,不再起到补偿作用。由于短路点没有形成死短路,所以在监测系统中主轨出电压表现为波动的形态。此种设备隐患很容易同调谐线虚接、补偿电容虚接问题混淆,需要现场进行实地检查判断。利用各项监测数据快速判断故障点

2016年4月6日,铁炉村中继站至下庄区间2960G红光带,由于大秦线上有很多长大区间,交通不便,所以当区间发生设备故障时,首先需要通过监测系统的各项参数值判断区分室内外问题。这样可以压缩很大一部分故障处理时间,减少故障给行车带来的损失。上述故障发生时,通过微机监测查看2960G分为3个轨道区段,2960AG功出电流正常、主轨出电压正常;2960BG、2960CG的功出电流为零、主轨出电压为零;可以判断问题在2960AG处。进一步查找分析,2960AG处在区间分界处,它的主轨接收设备在下庄站,它的小轨接收设备在铁炉村中继站,通过查看中继站2960AG的小轨出电压是正常的,可以判定为小轨站联条件没有送出的问题。车间人员分别赶到下庄和铁炉村中继站机械室查找,发现是站联电缆的问题,找到提前核对好的备用电缆进行倒接,倒接后故障恢复。

我们日常利用信号集中监测系统可以对电源屏、信号机、轨道电路、道岔等信号设备进行实时监控,动态的发现设备使用情况,对于一些无法人工发现的设备隐患,可以通过监测系统进行综合分析判断。同时可以为电务人员提供大数据支持,电务人员利用监测系统对信号设备电气特性进行日、月、年的动态分析,通过分析设备使用状态做到有针对性的周期维护,减少了一大部分设备故障。作为铁路信号系统的新设备新技术,熟练使用信号集中监测系统是每一名电务人员必备的业务知识,合格的信号工必须能够利用监测系统发现设备安全隐患和快速判断设备故障部位。

参考文献

[1]李萍.铁路信号集中监测系统[M].北京:中国铁道出版社,2012.[2]张胜平.铁路信号集中监测系统原理及应用[M].北京:西南交通大学出版社,2013.[3]中华人民共和国铁道部运输局.铁路信号集中监测系统技术条件[Z].2010.

第二篇:信号设备故障案例

信 号 设 备 故 障 案 例

为了提高信号维修人员处理设备故障的业务技能,缩短故障延时,减少对运输正常秩序的干扰,我们收集编写了《信号设备故障案例》手册,供信号技术管理和维修人员学习参考。这是首次将一些典型故障案例收集汇编成册,希各单位在日常维护和故障处理过程中,注意收集资料,踊跃提供典型案例,以便今后定期汇编。

1、某站15#为单动液压提速道岔。操纵动作正常,定位表示正常,反位无表示

原因分析:

A、首先,来回扳动试验观察。发现芯轨小表示正常,尖轨反位小表示无,判定是尖轨表示电路故障;

B、用MF14型万用表在分线盘对尖轨的X1、X3、X5线测量交直流电压,发现X1、X3和X3、X5间交流电压为110V,高于正常值(60V),而无直流电压,基本判断为室外经二极管的表示电路开路;

C、到室外继续查找,此时应注意15#道岔为定位2、4闭合。先在尖轨XB1箱合内测1、2号端子电压,有100V左右交流电压,继续量7、12号端子电压,仍为100V交流电压,说明ZYJ转辙机内表示电路无故障,再到SH6转换锁闭器的HZ24电缆合处量7、12端子电压,发现交直流电压为0,可判断XB1至HZ24的电缆断线,此时可借用临时线或备用芯线来判断是那根芯线断线。经确认XB1箱12号至HZ24的12号端子的电缆芯线断线,更换备用芯线恢复。

提示:故障修复后,应及时修复故障电缆,确保备用电缆完好。

2、某站10/12#道岔定位无表示

原因分析:分线盘测试有交流110V左右电压而无直流电压,判断为室外开路故障,室外检查后发现故障为12#-B机TS-1接点受潮结冰,接触不良,更换接点恢复。提示:转辙机内部应保持干燥,否则,设备内部潮湿,冬季天气寒冷,极易造成转辙机内部接点结冰接触不良。

3、某站1/3#道岔操定位后无表示

原因分析:电务人员接到通知后到机械室,观察继电器状态,3#道岔芯轨B机无表示,分线盘上测量有交流但无直流电压,另一人立即赶到3#B机,在HZ-24内测试有电压,经检查,机内TS-1-11#接点接触不良(银接点脱落)。更换后恢复正常。

4、某站14#道岔(为内锁闭道岔)操反位不到底

原因分析:观察控制台电流表显示2.5A,室外检查道岔已密贴,转辙机速动爪已落下,经检查自动开闭器检查柱与柱孔卡死(缺油)。动接点因检查柱卡死而未能转换,造成道岔到位后电机空转。检查柱注油后恢复。

5、某站18/22#复式交分道岔操纵不到位

原因分析:观察控制台电流表显示2.5A,判断为室外机械故障。经检查道岔不密贴,电机空转,尖轨根部活接头处抗劲大轨缝顶死,道岔操不到底,造成道岔无表示。松动尖轨根部螺栓后,故障现象消失。

6、某站1/3#道岔反位至定位操不动

原因分析:同时按下控制台总定和1/3#道岔按钮,道岔反位表示灯不灭,检查室内1DQJ不动作,3DG SJ落下,说明原进路未解锁,但由于光管表示灯坏,白光带不亮,看不出未解锁,造成道岔操不动。由于处理过程忙乱,导致故障延时过长。用人工解锁办法使3DG解锁,道岔操纵正常。

7、某站444/446#道岔(为内锁闭道岔)转换不到位

原因分析:来回操纵该道岔,确认定、反位均无法转换到位,控制台电流表有较大电流,室内分线盘测试X1-X4、X2-X4有直流200V左右电压,X5-X4、X6-X4无直流电压输出,判断为A机动作,B机不动作(双机牵引AT型道岔),检查发现2DQJF接点在四开状态,第2组接点支架断开,继电器接点架与衔铁销子折断,更换2DQJF继电器恢复正常。

8、某站2#道岔发生挤岔事故

原因分析:发生挤岔事故后,检查轨面锈蚀严重,且有一层氧化层,现场测试2DG受电端BZ4二次侧有交流电压15V、楼内分线盘有交流13.5V电压,用0.06Ω分路线短路(轨面未打磨),BZ4二次侧有9V左右电压,轨面打磨后,测试BZ4二次侧有2V电压,判断2DG轨道电路存在分路不良现象,为“压不死”区段。

提示:

(1)发生挤岔事故后工区监测设备不能用,不能提供有效的数据;(2)轨道电路存在分路不良现象,由于车务方面未登记,电务也未作为压不死区段管理。

9、某站13/15#道岔不能定位

原因分析:操纵道岔(ZD6转辙机)后,控制台电流表显示1A左右电流,定、反位均无表示,室外检查发现转辙机转动正常,道岔不动作,打开防尘罩发现密贴调整杆与动作杆连接的鸭嘴处老伤断裂,造成道岔无法动作,更换后恢复。

提示:分流、提速后对道岔杆件、角钢的老伤裂纹检查要重视、要仔细,防止机械联锁失效。

10、某站22DG红光带(设备为25HZ相敏轨道电路)

原因分析:在分线盘测量发现送端电压正常为220V,而受端电压只有7V左右,甩开分线盘受端端子,电压明显升高,判断为室外半短路或半开路。在测量受端扼流变压器时,发现电压有波动,经仔细检查,最终发现受端扼流变压器线圈的中心引出线到中心连接铁的固定螺丝松动,造成了轨道电路半开路,使送到室内的电压下降。

提示:该站是电气化改造工程中新开通的车站,工区值班人员对25H相敏轨道电路不熟悉,造成故障处理延时过长。室外送、受端之间的连接线、导接线松动也可能出现上述情况。

11、某站3DG红光带(设备为25HZ和ZPW-2000叠加轨道电路)原因分析:值班人员接通知后,用MF14型电表进行测量发现,送受电端都有电压,分别为220V和100V左右,当时判断为室内器材不良,经更换室内多样器材后,发现故障仍旧存在。后经段技术人员指导查找,用频率表进行测量,发现所测到受端电压为移频1700HZ的电压,而25HZ的电压为0。后到室外进行测量,发现在受端变压器箱内经过隔离器WGL-T后,电压无输出,初步判断为室外该隔离器坏,经调换隔离器后,轨道电路工作正常。

12、某区间为ZPW-2000设备,8630G﹑8644G同时红光带

原因分析:楼内测试8630G的JS轨出1与轨出2电压无电压,分线盘接收端电压几乎为零,甩开分线盘端子,测试电压无变化,说明故障在室外,依据电缆配线图由接收向发送端逐点测量查找,查到区间电缆合F-35HF4发现9#端子电缆芯线断线,该端子电缆为8630G的JS用,当电缆断线时, 其两个区段8630G主轨和8644G小轨的接收都受到影响,故造成两个区段同时红光带。

13、甲站至乙站区间电路为ZPW-2000设备,下行倒改方向后,列车反向运行,从甲站8609G至乙站下行区间全部红光带

原因分析:因为反方向时,从电路上设计为占用8609G,则8609G至乙站下行区间所有区段红光带,从现象可知必是8609G轨道继电器落下,首先判断轨出1与轨出2电压,经查轨出1正常而轨出2电压偏低,约为60~80mv。8609G的小轨受雨天道床漏泄影响,其小轨轨出较低,造成8609G红光带,从而导致乙站方向8621G红光带,8621G红光带导致8633G红光带,以此类推,直至影响甲站至乙站反向区间所有区段红光带。

14、某站微机联锁设备、智能电源屏、25HZ轨道电路开通不久,下行端道岔区段轨道电路全部红光带

原因分析:

A、按经验此类故障点绝大部分是电源屏内轨道电路有一束电源断电或断路器跳闸,就先检查了PZWJ-40/380/25信号智能电源屏内轨道电路

1、轨道电路2的220V电压、局部电源

1、局部电源2的110V电压均正常,观察所有的二元二位继电器均在吸起状态。

B、检查时发现微机联锁机第213#采集板上所有轨道电路采集红灯常亮(实际上由于所有DGJF在落下,采集板采集到DGJF的下接点是正常的),以为是微机联锁的故障,先是换采集板、又是换CPU主板,再是进行A机、B机倒换,时间过去了2小时30分钟故障依然存在。C、最后仔细翻阅了图纸发现显示器红光带的接通条件用的是轨道复示继电器接点(二元二位继电器的第一组上接点为轨道复示继电器JWXC-340提供励磁条件),再检查轨道复示继电器发现全部在落下状态。测试零层(轨道架)的D4-1KZ电源端子没有24伏电压,发现该端子焊片线头没有夹紧接触不好,造成打火后烧断

15、某站为微机联锁设备,在办理T748次Ⅱ道通过时,ⅡAG发生红光带

原因分析:经微机监测回放,发现该区段电压正常,但联锁机信号校核错误:校核提示同为“0”,即继电器上下接点都不接触。由于联锁机A、B机采自继电器的不同接点并且采集线独立,电线路混线及同时断线的可能性不大,判断认为继电器不良,更换继电器后仔细查找发现ⅡAGF继电器内部不良(内有脱落的断头簧片)。

16、某区间为18信息移频自动闭塞,当区间信号机出现灯光转换的时候,会出现瞬间闪红灯,其中T2077信号机在灯光变换时,偶尔使D1G出现2秒钟红光带

原因分析:根据电路分析:可能为D1G接收盒驱动的GJ(UJ)、GJ(LJ)在转换的瞬间,由于这两个继电器为JWXC-1000型,没有缓放时间,瞬间造成GJF(LUJ)(JWXC-1700)落下,从而导致 D1G的GJF落下,GJF落下使1LQF落下,使D1G出现2秒钟红光带;当LUJ吸起后,GJF吸起,1LQJ吸起,D1G红光带消失,电路恢复正常;针对上述分析,上级批准后,在接收盒驱动的GJ(UJ)、GJ(LJ)的1、4线圈两端并接电容,使其具有一定的缓放时间,解决了该问题。

17、某站214 DG等五个区段雨天出现红光带

原因分析:用万用表在分线盘受端端子测量,214DG等五个区段受端无电压,再测量送端电压发现轨道220V电源保险熔断,更换后又断,判断为室外短路故障。经查找发现,214DG送端变压器箱内送端电缆图实不符,各多出一芯电缆,原因是送电端电缆一头拆除埋在地下,另一头还接在箱盒端子上,拆除的电缆未甩尽,下雨后造成电源接地并混线。提示:工程施工完毕,配线一定要二头都拆除彻底,电源要甩净。日常测试不能流于形式,测试结果要认真分析。

18、甲站上行离去区段全部红光带

原因分析:乙站(在甲站上行离去端邻站)QZ2架SQF1A断路器跳起,当时甲站(乙站)S1LQ(S1JG)、S2LQ(S2JG)、S3LQ(S3JG)同时出红,乙站工区将QZ2架SQF1A断路器合上后以为处理完了,不知道甲站S1LQG也出红,甲站也误认为故障在本站(甲站与乙站间上下行各有二个信号点),等甲站找到故障点0922G的小轨电压没有后再通知乙站,乙站再去检查才发现QZ3架SQF1A断路器也跳起了,从而导致故障延时较长。

提示:区间点电源不在同一架,故障反映在本站,原因在邻站是经常发生的故障,因此对此类故障要按图分析查找,双方配合以免造成故障延时过长。对需邻站提供条件电源的设备应列表,做到心中有数。

19、某站下行三离去(1761G)出现红光带

原因分析:经观察由对方站供电的站联继电器全部落下,初步判断为邻站站联电源未送出,分线盘测量该端子无电,确定为邻站站联电源存在故障,通知邻站测试分线盘电源端子无电压送出,邻站ZG1-42/0.5整流器(35架1层)1A的熔断器遭雷击打坏,造成站间联系电路无电出现红光带,更换后恢复。

提示:与上例故障原因类似 20、某站全站轨道电路红光带

原因分析:雷击后,全站轨道电路红光带,经查找为电源屏(闸刀屏,88年上道)RD4(30A)瓷保险被暴雨雷击熔断,造成电源屏GJZ220无输出,全站轨道电路红光带,更换保险后恢复。但28022次出站后发车进路不能解锁,28024次到达后接车进路也不能解锁,经查无KZ-GDJ解锁电源,进一步查找发现:轨道监督继电器(GDJ:JZXC-20000)也被雷击击坏,造成KZ-GDJ解锁电源无输出,从而接、发车进路不能解锁,更换继电器后恢复。

21、某区间为ZPW-2000设备,甲站X1JG(2037G)红光带,同时造成乙站2049点(为X1JG前方一个信号点)通过信号机点红灯 原因分析:经对甲站2037点的发送盘、接收衰耗盘测试(发送盘电压正常, 接收衰耗盘轨入846.8mv,轨出1-663.1mv,轨出2-49.9mv,正常应为110mv左右),通过测试发现接收衰耗盘轨出2电压不正常,导致X1JG(2037G)红光带,同时造成乙站2049G的XGJ不能吸起,T2049通过信号机点红灯,更换甲站2037衰耗盘恢复。

22、某站T0788通过信号机跳红灯时好时坏

原因分析:经对接收衰耗盘测试,发现小轨参数有变化(轨出2:70mV,标准110-130mV),调整至120mV后恢复正常。

提示:要重视小轨电特性测试,发现不良,要分析原因,及时调整,雨天调整后还要注意晴天残压测试。

23、某站2168G红光带时好时坏。

原因分析:室内测试发送端电压正常,受端电压轨出1为160mV, 轨出2为70mV(未故障时轨出1为350mV, 轨出2为90mV),但一时找不到故障点,将主要设备更换一遍,故障未恢复。在故障查找过程中发现本区段一端T2154点信号机往T2168点方向第13个接头处水泥枕前后轨面电压变化较大1.5→0.9V,拆卸水泥枕扣件(水泥枕为一星期前工务换轨同步换上)后,故障消失,受端电压正常,测试接受衰耗盘轨出1为660mV, 轨出2为120mV。

提示:确认送端电压正常后,应等距离逐段测试轨面电压,观察其变化情况。对换下的水泥枕督促工务采取措施,防止又用到其他区段。

24、某区间为ZPW-2000设备,B2G红光带

原因分析:经测B2G轨出1与轨出2电压偏低,从分线盘上测得发送端电压正常,而接收端电压偏低,所以能确定为室外传输回路衰耗过大,从接收端轨面向发送端测电压,测到发送端第三个补偿电容时,发现电容前后电压无变化,经查是补偿电容接触不良。

提示:ZPW-2000区段发送端第二或第三个补偿电容开路会直接造成红光带故障,站内股道补偿电容开路,易造成机车信号掉码,在日常维修工作中要引起特别注意。

25、某区间为ZPW-2000设备,某站下行三接近(X3JG)红光带 原因分析:从室内测试轨出1电压170MV,去室外查找,在发送端第5只补偿电容附近轨面电压明显下降,甩开电容后红光带消失, 室内测试轨出电压上升到350MV,因此可判断为电容半短路所致。

26、某区间为ZPW-2000设备,某站上行三接近(S3JG)、上行二接近(S2JG)同时出现红光带

原因分析:测试S3JG和S2JG的发送盘功出电压分别为130V左右,但测试S3JG接收衰耗盘时发现轨入轨出无电压,再从分线盘测试也无电压,可以判断故障在室外,经查找为区间电缆合F12HF4--上行三接近(S3JG)接收端扼流箱间一根4芯电缆中的两芯混线,造成S3JG无电压,导致S3JG和S2JG同时红光带。

27、某站为电化区段的25HZ轨道电路,SBJG发生红光带

故障现象:经检查发现是SBJG受端l0A保险熔断。更换后,当有列车通过时,保险明显弯曲变形,列车再次通过时,保险烧断。

在查找故障过程中发现,当有电力机车从邻站开出时,SBJG两根钢轨的电流发生很大变化,一侧的电流一直保持在15A,另一侧钢轨的电流随着列车运行的不断接近,电流由20A逐渐增大到85A,SBJG受电端一次侧电压由20V增大到270V,保险开始变黑弯曲,继电器室内该继电器响声异常。

原因分析:为保证相邻两线间的轨距,工务部门在上下行线的两条内轨间加装了绝缘轨距杆,因长期受列车顺向冲击力的影响而发生磨损,当磨损到一定程度时,磨损和过流造成轨距杆短路,牵引大电流将绝缘击穿。当有车从忻口站开出压入SAJG,回流沿着虚线所示方向一部分走上行线,一部分进入下行线SBJG,由于回流的单边增大,造成SBJG受端扼流变压器单边输出高电位,冲击保险,造成保险熔断。

提示:将该轨距杆拆除,工务采取其它方法保持轨距。因此,不能只停留在检测站内轨距杆,要加强对区间及所有可能造成回流不畅或不平衡的处所进行检查、测试。

28、某站SB信号机无法开放 原因分析:工区人员试验SB向正、侧线的进站信号均不能开放,但引导信号能开放,在开放信号的过程中测得分线盘端子有电压,但信号机无电压,利用引导信号回线代LUH线信号可开放,初步判断LUH线断线,进一步查找,测得室外第一方向盒至SB绿黄回线LUH电缆断线,更换备用芯线设备恢复正常。

29、某站SⅡ、S4出发信号不能开放

原因分析:通过排列进路观察继电器动作情况,皆为11线LXJ前电路动作正常,分析造成SⅡ、S4LXJ不吸起故障原因应在11线后的同一点,经测试查找为11线上的下行总辅助按钮(XZFA)第二组接点接触不良,调整恢复。

30、某站上行出站信号绿黄灯信号开放,前行列车出清S3LQG区段,时有发生S3LQG红光带保留,出站信号绿黄灯不能变为绿灯显示(进路白光带正常)

原因分析:出站信号绿黄灯不能变为绿灯显示,观察继电器动作情况,由于列车出清三离去区段,S3LQJ不能吸起所致,测试S3LQJ电压只有8V左右,对照原理图查找,发现电化局在施工时配线错误,与原理图不符,原理图标明复示继电器线圈并联后二台串联使用,实际运用有三台复示继电器,施工人员简单地将每台复示继电器线圈并联后三台串联使用,造成继电器端电压低,有时导致S3LQJ不能可靠吸起(临界状态)。

31、某站XⅠ出站信号跳起

原因分析: 2526次原计划进Ⅱ道,临时改进4道,取消上行Ⅱ道接车进路,在最后一个区段没有解锁时就几乎同时按压SLA和X4LA,在进路没有排出的情况下又按压SLA,造成接车进路变成X4发车进路,但信号不能开放(2526次在区间里,方向电路不能倒过来),后又盲目取消上行接车进路取消不掉(应取消X4发车进路,恰巧X4A内表示灯不亮看不出始端为X4),接着故障解锁,误把下行I道发车进路上的6-10DG解锁掉,使XI信号跳起。

32、甲站SF开放信号,1346次机车接不到码造成停车。原因分析:因上行端邻站(乙站)设备为已开通新设备,而甲站还是老设备,乙站施工计划中明确反向机车信号停用到甲站开通止。恰巧甲乙站间上行线电化封锁施工,1346次从乙站下行线反向运行接受不到机车信号,而值班员又忘发命令,造成1346次机外停车。

33、某区间为ZPW-2000设备,下行三接近X3JG发送盒进行N+1发送试验时,发现N+1发送LU码时无低频信息。

原因分析:

(1)在N+1转换后,发其他码时正常,说明转换的共用电路正常;(2)HU、HB、UU、UUS、U码低频试验,电路正常,而LU码低频电路在HU、HB、UU、UUS、U码电路的后面,因此可判断故障点在U码至LU码编码电路之间,此部分电路接LXJ2F、LUXJF的第二组前接点和TXJF的第二组后接点,用MF14电表借KF电源测量,发现LUXJF的第二组前接点不好。更换LUXJF继电器,故障消除。

34、某站为微机联锁设备,机车出清6/8#道岔渡线时,8-12DG、6DG轨道区段不能正常解锁

原因分析:机车由Ⅱ道往下行线调车,机车出清6/8#道岔渡线时,8-12DG、6DG轨道区段不能正常解锁。电务值班人员到行车室,确认轨道区段白光带保留,但电务和车务值班人员不会解锁,错误使用进路解锁解锁不了,后等段去人采用了区段故障解锁才处理好,造成延时过长,影响很大。

提示:要掌握计算机联锁设备的几种常用解锁方法。

35、某站微机联锁联机同步片刻后就脱机,连续几次联机后都出现上述情况,当时B机为工作机,A机为备机;维修机中提示为主机同步通信窗口内无备机呼叫。

原因分析:接到故障通知后,领工区人员立即赶到现场,认真了解情况后,仔细观察A机柜面板上的表示灯,各种表示灯显示正常(当时正在联机状态),同时进行各部数据的测试;总线5V电源为4.93V、驱动12V电源为11.76V、采集12V电源为11.93V。上述电源数值为正常状态。为了能观察到故障时表示灯的显示情况,决定把注意力都集中到联锁A机的面板上,最后终于发现为A机瞬间“死机” 造成备机脱机。

造成脱机的主要原因有:

1、电源电压不稳;

2、通信有强的干扰;

3、STD层板块不好。

针对上述分析,首先重新启动A机,然后联机,但在同步片刻后联锁A机又脱机;最后更换了CPU板,机器再重新联机,同步后还是脱机;测试发现总线 5V电源偶尔瞬间降至4.70V后,又升至4.93V,当低于4.70V时,机器便死机,于是判断为总线5V电源盒不好,更换其电源盒后,再测试电源稳定为4.96V,联机待同步后,A机再没有脱机,微机恢复正常使用。

36、某站S进站信号开放后,列车占用ⅡBG后,ⅡBG白光带灭灯,同时下行3道列车正常信号发车,出站后进路不能解锁,且控制台沪端上下行道岔全部无表示

原因分析:经查,当上行进路内方ⅡBG有车占用时,11架控制电源24V降至5V,DBJF落下,但道岔总表示和分表示继电器仍吸起。原因是11架另层控制电源KF双熔丝不良,因全站道岔表示复示继电器和轨道复示继电器在11架上,故造成进路不解锁和道岔无表示,更换后恢复正常(该双熔丝为SR2-A型)。

37、某站为计算机联锁设备,SⅡ出站信号跳红灯

原因分析:通过观察,造成SⅡLXJ落下条件的所有继电器状态未变化。进一步检查发现SⅡZXJ33接点去微机的配线(SⅡLXJ取样用)在接口架D3--18端子处焊头碰外壳,产生SⅡZXJ落下的错误信息,造成微机误判SⅡZXJ↓,导致SⅡLXJ↓信号关闭。

38、某站下行进站信号不能开放

原因分析:某站在试验引导总锁闭,按钮复原后,进站信号不能开放,经试验整个咽喉道岔不能扳动。查找测试KZ-YZSJ-H电源没有,故障原因是接口架3排1架D7-14端子(KZ-YZSJ-H电源)接触不良。

39、某站控制台表示灯无显示 原因分析:车站值班员在排列进路按压始端按钮后,控制台表示 灯灭灯。值班人员检查测试电源屏供电正常,电源已送出,打开控制台门测试发现JF24(5A)保险熔断,保险合不上。经检查发现,下行接车按钮的表示灯泡(HJ-4型)在按钮内发生转动造成短路所致

40、某站站电化施工开通后,上行正线发车进路司机反映道岔区段掉码。

原因分析:经分析掉码区段为1DG,首先,检查QMJ动作正常后,调高了入口电流,但问题未解决。测试发生端闭环监测低频电压正常,于是把精力集中在配线检查核对上,经查QMJ内部配线正确,核对侧面配线时发现1DG和9DG侧面外部配线(G1-8组合)交叉,后将组合侧面配线02-

7、8与03-

7、8互换,通过测试和添乘检查,设备正常。

第三篇:利用微机监测设备分析、处理信号设备疑难故障实例

利用微机监测设备分析、处理信号设备疑难故障实例

一、道岔故障

1、某站,上行进站、下行出站信号机经常莫明其妙关闭,由于故障发生在瞬间,难以判断故障范围。利用微机监测设备,查询非正常关闭信号报警信息,首先获得上行进站、下行出站信号机非正常关闭信号的时刻,再用微机监测设备提供的“站场回放”功能查询,发现是该站6/8号道岔多次瞬间失去表示,而且与列车经过有关,这样就把故障范围缩小到道岔表示单元电路的室外部分了。经故障处理人员到现场检查,系该道岔X1、X3线在箱合蛇管处磨损造成断续混线所致。

2、某站值班员汇报5/7#道岔反位操纵不到位。值班员同时反映出现了故障电流,但是,故障处理人员到场进行单机试验,转辙机电气特性均达标。通过微机监测模拟量曲线显示功能,再现当时的5/7#道岔动作电流和道岔启动电源电压曲线综合分析得知: 5/7#均为四线制双机牵引道岔,单机试验时故障电流达标,而双机同时出现故障电流时因电缆线路压降增大,导致故障电流减少从而使得道岔密贴不了。

3、12#道岔扳不动故障,通过微机监测道岔动作曲线显示功能,再现当时的道岔动作电流曲线,原因是故障电流小。可是,维修工区说当天作过道岔检修,故障电流为何仍偏小?查阅当天的道岔12#ADQJ的动作记录,证实计表人未操纵过道岔,亦未做任何试验,确认是一起漏检漏修造成的故障

二、轨道电路故障

1、自闭轨道电路“闪红轨”曾使某段自闭设备故障率居高不下,无微监设备前无法弄清真实情况,也就很难找到闪红的主要原因。某站在2001年的18天内“闪红轨”达42次,影响行车2次,闪红时间均是3~4秒。通过微监的模拟量曲线功能观察自闭电子盒功出、滤入电压变化曲线及测试波形,发现了该段普遍存在的模拟电缆造成阻抗失配的问题。(有关文章详见18信息有绝缘自动闭塞轨道电路模拟电缆盒内移应注意的两个问题)

四、信号电源屏故障1、2002年3月3日,某段维修中心检查微机监测报警信息,发现某站有大量控制电源超标报警信息,再使用微机监测远程实时测量功能,测得控制电源电压21V,立即通知信号工区检查,原来是控制电源电容脱焊,控制电源上并联的甲电池组也过放,引起得地控制电源电压过低。信号工立即处理,防止了必将发生的信号故障的发生。

五、控制台、人解盘故障

1、某站在进行跨越正线长调车时,进路上的咽喉道岔轨道道路不能正常解锁,采取区段人工解锁措施也不能奏效,导致两趟旅客列车分别机外停车和站内正线停车的一般事故,信号工区到场后,汇报故障原因不明。局中心通过微机监测设备提供的“站场回放”功能查询当时的车站作业情况,跨越正线长调车时,车列冒进了区间,是造成咽喉道岔轨道道路不能正常解锁的直接原因,回放信息也证实值班员采取区段人工解锁措施(ZRJD亮,相应的人工解锁盘按钮按下)。要求该段派出技术人员现场查证不能人工解锁的真实原因,经查,系用于区段人工解锁的按钮接点接触不良所致,信号维修人员为推卸检修不良的责任,谎报故障原因不明。

六、电缆故障

1、某信号工区,在一次“天窗修”前,用微机监测系统调阅有关设备测试数据,发现大部分信号电缆对地绝缘有为零的记录,便利用“天窗修”机会积极查找设备隐患点,最后查明原因是1DG送端变压器箱内电缆中的一芯接地,经轨道电路交流127V、220V电源造成大部分信号电缆对地绝缘有为零,换上备用芯后,隐患排除。

七、联锁电路故障

1、某站多次反映单机通过,出站列车进路最后一个区段不能正常解锁。通过使用微机监测的历史开关量查询功能,检查电路的动作时序,系18信息自动闭塞分区轨道电路占用响应时间超标造成的不解锁。(有关文章详见《向18信息移频自动闭塞区间发短列车时进路末岔轨道电路不能正常解锁的原因分析》)

十一、车站值班员操作错误故障1、2002年1月20日某站,检查运统46电务检修作业登记消记信息发现,25天内值班员登记轨道电路不解锁达48条,到底存在什么问题?经微机监测再现,因闭塞分区占用响应时间超标造成的不解锁6次,其余均是车站调车人员和调机作业没有按照6502操作办法进行导致的不解锁。我们把信息通报运输人员,使其明了不解锁原因,使用人员知道了原因,也就知道怎样操作。

2、2002年1月20日凌晨,路局调度所通知:“某站进站信号发生故障,造成某次通过列车晚点”。经调用微机监测记录数据进行数据回放,该次列车进入接近区段已达十余分钟后值班员才办理通过进路,在此之前,一直没有办理通过进路的操作。我们将此情况上报路局,经路局追查,造成通过列车晚点的真正原因是:凌晨值班员、助理值班员均打瞌睡,没有及时办理进路所致,值班员为推卸责任,谎报调度所:“信号开放不了”。以往,此类情况发生后,信号人员累死累活永远也查不清楚、说不清楚,心里不但没底,还要背隐瞒故障原因的“黑锅”。

十二、其他疑难故障1、2002年1月2日,彬江站K779道口发生火车与汽车相撞事故,事故调查过程中道口工称:道口信号常报警,无法使用而关闭了道口信号设备。通过彬江站微机监测设备再现,确认道口信号此时运用正常。通过再现也证实道口信号电路确实存在误报的隐患,可以说:如果没有微机设备,电务难脱干系、必背黑锅,同时,隐患也找不出来。既不利于使事故责任者接受惩罚,对铁路运输而言也解决不了存在的隐患。

2、一段时间反映管内道口信号故障率较高。我们统计所有道口信号发生故障信息,同时根据故障登记的时间再现相邻站微机监测信息。发现了大部分人都忽视了的站外调车、电力停电、列车停时过长,轨道车在道口信号接近控制点来回运动等造成道口信号频繁“误”报警的情况。不仅查清了问题,为路局制定道口信号使用办法也提供了有力的依据。

第四篇:信号覆盖故障处理

京信通信系统(广州)有限公司广东分公司

直放站及室内分布系统信号覆盖故障现象、产生原因及处理方

目录

一、无信号

二、覆盖区信号质差

三、上行干扰

四、掉话

五、有信号却不能打电话

一、无信号

故障现象:信号场强低于通话要求(要求:室内≥-90dBm,室外≥-85dBm)造成移动手机用户无法正常通话。分为覆盖区无信号和非覆盖区无信号。

产生原因及相应处理方法:

(一)、覆盖区无信号

1、直放站不工作(如停电、设备硬件故障),导致无信号输出。可通过直放站监控中心(当前移动直放站监控中心联系电话:***,罗鑫。厂家监控中心联系电话另附)远程查询设备的运行情况,包括状态信息和参数信息中的下行输入、输出功率电平值等。若查实为直放站设备故障所致,请致电各设备厂家协助处理。

2、直放站设备增益不足,导致输出信号变弱。当前直放站设备下行输入功率电平值(由监控中心可查询到)较站点开通时下行输入功率电平值(可查设计或竣工文件)无较大变化(±5dB内);当前直放站设备下行输出功率电平值(由监控中心可查询到)较站点开通时下行输出功率电平值(可查设计或竣工文件)变化较大(±5dB以上)。可判断为直放站设备增益下降,可通过降低直放站设备的下行衰减值来增大输出功率电平值。否则请致电相应设备厂家更换设备模块。准确

京信通信系统(广州)有限公司广东分公司 的测量方法要用到频谱仪,此处不作讲解。附:一般情况下直放站主机的下行输入功率电平值为-45dBm~-60dBm,根据不同的主机和不同覆盖要求,下行输出功率电平值为10dBm~48dBm不等。干放的下行输入功率电平值为-10dBm~10dBm,根据不同的干机和不同覆盖要求,下行输出功率电平值为10dBm~48dBm不等。

3、信源小区调整。如扩容、频率改变、基站天线方向及下倾角。基站小区的天线调整直接影响该小区内的直放站接收信号。表现为:施主天线处信号变弱或变强、施天线处通话质差等。处理方法为:调整施主天线方向或位置、增主机输入端增加衰减器等。扩容和改频较易发现,一为比较前次测试数据,二为咨询基站监控中心(24小时值班电话:***)。受影响较大的设备为选频直放站和移频直放站。取得相应数据后致电直放站监控中心作相应修改即可。若设备已不符合新的电磁环境要求,请致电设备厂家。

4、天馈系统故障,导致部份甚至所有覆盖区无信号。检查方法为:

一、目测,察看外露部份的天馈系统有无弯曲变形或断裂、接头是否松动、器件是否有进水或损坏现象。

(二)、非覆盖区无信号

经查实为非覆盖区无信号,请提次申请,作天线调整或增加覆盖。(注:原为覆盖区,但由于新建筑物的遮挡,导致无信号,处理方法同此)

二、覆盖区信号质差

故障现象:覆盖区移动手机信号场强正常,但通话不清晰或无法打电话,CQT测试显示通话质量等级高、单通、上线困难、掉线等。测试方法:直放站主机停机测试:在施主天线的位置进行测试。

1、如果测试结果合格(95%以上3级以下干扰),证明故障原因由后级引起(设备原因导致质差)。查主机模块、干放、测试VSWR等。

2、如果测试结果不合格,那么是前级引起(即信源质差):观察比较TA值,(TA值≤2,郊区可适当放宽)调整施主天线的方向或位置

京信通信系统(广州)有限公司广东分公司

重新选择施主小区;停闭施主小区的跳频观察质差的频率,提议网优修改相应的频率。

产生原因及相应处理方法:

1、信源小区调整。其测试和处理方法同上。(较常出现,须重视)

2、设备的上下行增益不平衡。此类故障表现为上线困难、掉线、单通较多。具体表现为:

一、上行信号过强,天线底下手机上线困难,远处上线正常。

二、上行信号过弱,覆盖区边沿处上线困难、掉线。处理方法为现场通知监控中心作相应调整并测试。通过调整上行衰减值仍无未能改善,估计上行模块有故障,请通知相应厂家处理。

3、同邻频干扰。表现为通话质差严重、切换频繁甚至电话无法拨出去。测试和比较相邻小区,找出相同或相邻频点(关掉基站跳频,用TCH测试查出受干扰的频率),配合网优修改适用频点,作改后测试。若是选频直放站或移频直放站,需同步修改频点。

4、小区相邻关系:邻区关系直接影响进出覆盖区切换。常见现象,如进出电梯时通话断线、单通、信号场强快速下降等。遇到这种情况,须咨询网优人员,由他们提供处理方案,或者增加天线过渡。

5、饱和或自激。表现为覆盖区信号很强,但通知有强烈的杂音或声音严重变调。处理方法为降低主机增益,增加隔离度(如移动施主天线增加施主天线和用户天线间的距离,借助建筑物遮挡或增加隔离网等)。

6、模块故障。判断现象为施主小区信号正常,但覆盖区信号通话过程中,占用一个或若干TCH时信号强度下降幅度较大。断定为模块故障后通知直放站厂家前往检测和维修。

7、高层通话质差。由于楼层高,电磁环境中的信号频率变得更加复杂,很可能受到

京信通信系统(广州)有限公司广东分公司

不同方向的多个小区的频率干扰,通话质量得不到保障。解决办法分两类站点: 1)、微蜂窝信号源:

拼场强:在质差的区域增加天线。

关跳频判断受干扰的频率,修改微蜂窝受干扰的频率。2)、直放站信号源:

拼场强:在质差的区域增加天线。

关施主小区跳频判断受干扰的频率,修改施主受干扰的频率。

三、上行干扰

故障现象:BSC统计中的RLCRP指令的ICMB测试结果。一般为2—5级干扰而且20%以上的TUR受干扰。产生原因及相应处理方法:

1、设备下行输入功率电平值过强。下行输入功率电平值超过设备所允许的范围,会导致信号波形畸变,造成对基站的干扰。处理方法为增加衰减器、调整施主天线或更换相关器件等。

2、设备上行输出底噪声过强。简单的计算公式为:

上行输出噪声电平值≤-120dBm+基站输出功率电平值-直放站下行接收功率电平值

若超出范围,调整设备上行衰减值即可。同一个小区带有多个直放站出现干扰的情况较难处理,必须更改部份站点的信源小区。如改为光纤直放站或移频直放站等。

3、移频或光纤设备覆盖区与基站天线覆盖区有重叠。由于移频直放站和光纤直放站(主要是光纤路由走得太长的光纤直放站)放大后的信号时延与基站天线过来的信号TA值差值较大,两个不同TA值的相同信号,相互干扰,对基站影响比较

京信通信系统(广州)有限公司广东分公司

大。在建站或调整天线时候必须注意。

四、掉话

故障现象:分为覆盖区掉话和进出覆盖区进掉话。

1、覆盖区域可以正常呼叫,但进出覆盖区时发生掉话。1)、相邻关系没做。配合网优做好相邻关系。2)、如果已经有相邻关系,调整切换参数。

3)、调整切换参数还是不成功,在覆盖边缘区域增加覆盖天线。

2、覆盖区域掉话:

1)、主机饱和自激,更换器件。2)、弱信号掉话,增加天线。

3)、覆盖边缘掉话,调整主机(含干放)增益。

五、有信号却不能打电话

1、上下行不平衡引起: 确定覆盖系统是否有干放:

如果没有,直接查看主机的增益设置值是否合理

如果有,分清直接由主机负责覆盖的区域和由干放覆盖的区域,分析故障区域,判断是否由干放引起,如是,还要修改干放的增益设计

2、外部系统干扰:

其他运营商使用的频率太接近或其互调产物的干扰 外部系统的干扰:例如附近有高温烧焊等等

京信通信系统(广州)有限公司广东分公司

3、只是区域边缘存在的现象: 按照调整增益的办法解决。调整小区参数

第五篇:手机无信号故障分析

手机无信号故障分析

手机没信号1:手机没信号,打不了电话.先用手动搜网,看是否能收到网络(中国移动或中国联通),若收到就检查发射部分电路,若收不到就检查接收电路.手机没信号2:手机没信号:看开机电流,若电流跳动得很慢(约两秒以上),一般是射频电路问题,重点检查VCO,AFC,RI/Q等.手机没信号3:手机没信号:看开机电流,若电流不怎么跳动,重点检查接收部位的IQ信号是否正常.手机没信号4:手机没信号:看开机电流,若电流不跳动,重点检查CPU和软件.信号时有时无1:信号时有时无:看有信号时能否打电话,若能打一般是接收或发射性能不好,重点检查天线触点和天线开关。

信号时有时无2:信号时有时无:看有信号时能否打电话,若一打电话信号就掉下来,一般是发射部分有问题.重点检查功放、天线开关、VCO等.信号时有时无3:信号时有时无:看有信号时能否打电话,若不能打并且信号不会掉,在国产机或水货(韩国)机,很多是软件问题,但也有功放坏的,可以把功放拆下飞线试试.信号时有时无4:信号时有时无:水货(韩国)机和国产机就要看显示屏的反应,多数《呼叫失败》是发射部分或软件有问题,有可能就先重写码片部份资料再作下一步判断.

下载利用信号集中监测系统分析信号设备故障隐患(样例5)word格式文档
下载利用信号集中监测系统分析信号设备故障隐患(样例5).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    信号与系统分析课程考试大纲

    信号与系统分析考试大纲 一、 考试方式:闭卷笔试 二、 考试难度:基本题70分,中等题20分,提高题10分。 三、 考试题型: 选择题15分,填空题15分,作图题20分, 计算题50分。 作图题内容......

    信号与系统分析(作业四)-SEU

    1.设计低通数字滤波器,要求通带内频率低于0.2rad时,容许幅度误差在1dB之内;频率在0.3到之间的阻带衰减大于10dB;试采用巴特沃斯模拟滤波器进行设计,用脉冲响应不变法进行转换,采样......

    UPS故障报警信号整改方案

    UPS故障报警信号应接至电气值班室或控制室 存在的问题及整改方案 根据HSE运行质量评估标准(02修订版)的要求:UPS故障报警信号应接至电气值班室或控制室 。通过检查我厂UPS系统......

    信号与系统分析课程简介(大全五篇)

    《信号与系统分析》课程简介课程编号:06344006 课程名称:信号与系统分析(SignalandSystemsAnalysis) 学分:3 学时:48 (实验:6上机:0 ) 开课单位:(电气工程及自动化系) 课程负责人:汪小......

    移动电话信号覆盖设备安装合同

    移动电话信号覆盖设备安装合同 为解决甲方厂区主控楼室内移动电话信号覆盖问题,同时提高乙方的移动电话信号质量。根据《中华人民共和国合同法》及有关规定,就乙方在甲方厂区......

    信号设备结合部维护管理分界

    信号设备结合部维护管理分界 一、信号电源结合部分界(成铁总工〔2007〕381号) 1.信号机械室设备分界 以电源引入到信号机械室第一配电盘(简称G2盘)的电源上桩头为分界点,分界点(不......

    信号设备电气特性管理浅谈

    摘 要: 电气特性管理是铁路信号设备质量管理的一个重要组成部分,是安全生产的一项基础性工作。通过掌握设备的电气特性,才能使我们掌握信号设备的总体情况,从而为安全生产提供可......

    造纸机械监测教学实验造纸机械状态信号采集与系统分析实验报告(精选合集)

    造纸机械状态信号采集与系统分析 实验报告 实验名称:造纸机械状态信号采集与系统分析 学生姓名:班级: 学号: 实验时间:2015 年 1月 15日 地 点:逸夫楼 7B429 指导老师:张 辉 1 《......