第一篇:指数与指数幂的运算教案1解读
指数与指数幂的运算(一 课题:指数与指数幂的运算 课型:新授课
教学方法:讲授法与探究法 教学媒体选择:多媒体教学 教学目标: 1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算, 能够熟练的进行分数指数幂与根式的互化.2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想 方法,提高学生的知识迁移能力和主动参与能力.3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点: 根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.教学难点: n次方根的性质;分数指数幂的意义及分数指数幂的运算.教学流程图:
教学过程设计: 一.新课引入:(一本章知识结构介绍 本章知识结构的介绍 新课引入 探究根式的概念 探究n 次方根的性质 分数指数幂的意义和规定 例1加深对n 次方根的理解 指数幂运算规律的推广 课堂练习,小结及课后作业 基本初等函数 指数函数 对数函数 幂函数
指数函数及其性质 对数与对数运算 对数函数及其性质 指数与指数幂的运算(二问题引入
1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:
(1当生物死亡了5730年后,它体内的碳14含量P 的值为(2当生物死亡了5730×2年后,它体内的碳14含量P 的值为
(3 当生物死亡了6000年后,它体内的碳14含量P 的值为(4当生物死亡了10000年后,它体内的碳14含量P 的值为
2.回顾整数指数幂的运算性质 整数指数幂的运算性质:
3.思考:这些运算性质对分数指数幂是否适用呢? 1 2 2 12⎛⎫ ⎪⎝⎭60005730 12⎛⎫ ⎪
⎝⎭100005730 12⎛⎫ ⎪ ⎝
⎭
【师】这就是我们今天所要学习的内容《指数与指数幂的运算》 【板书】2.1.1 指数与指数幂的运算 二.根式的概念: 【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引 导学生总结n 次方根的概念..【板书】平方根,立方根,n 次方根的符号,并举一些简单的方根运 算,以便学生观察总结.【师】现在我们请同学来总结n 次方根的概念..1.根式的概念
【板书】概念
即 如果一个数的n 次方等于a(n >1,且n ∈N*,那么这个数叫做 a 的n 次方根.【师】通过刚才所举的例子不难看出n 的奇偶以及a 的正负都会影响 a 的n 次方根,下面我们来共同完成这样一个表格.【板书】表格 n n 是奇数 n 是偶数 a 的符号 a<0 a>0 a<0 a>0 a 的n 次方
根 无意义
【师】通过这个表格,我们知道负数没有偶次方根.那么0的n 次方根是什么? 【学生】0的n 次方根是0.【师】现在我们来对 这个符号作一说明.例1.求下列各式的值
【注】本题较为简单,由学生口答即可,此处过程省略.三.n 次方根的性质
【注】对于1提问学生a 的取值范围,让学生思考便能得出结论.【注】对于2,少举几个例子让学生观察,并起来说他们的结论.4(3(3;π-2(2(10;-2(4((.a b a b->33(8;-(1 根指数 被开方数 根式
1.n 次方根的性质 四.分数指数幂 例: 【师】 这两个根式可以写成分数指数幂的形式,是因为根指数能整除 被开方数的指数,那么请大家思考下面的问题.思考: 根指数不能整除被开方数的指数时还能写成分数指数幂的形式 吗? 【师】如果成立那么它的意义是什么,我们有这样的规定.(一)分数指数幂的意义: 1.我们规定正数的正分数指数幂的意义是: 2.我们规定正数的负分数指数幂的意义是:
3.0 的正分数指数幂等于 0,0 的负分数指数幂没有意义.(二)指数幂运算性质的推广: 五.例题 例 2.求值 例3.用分数指数幂的形式表示下列各式(其中a>0)例4.计算下列各式(式中字母都是正数)【注】 此处例 2 让学生上黑板做,例 3 待学生完成后老师在黑板板 演,例 4 让学生黑板上做,然后纠正错误.六.课堂小结 1.根式的定义; 2.n 次方根的性质;
3.分数指数幂.七.课后作业 P59习题 2.1 A 组 1.2.4.八.课后反思
第二篇:指数与指数幂的运算 教案
2、1指数函数
2.1.1指数与指数幂的运算
一、教学目标:
Ⅰ、教学与与技能目标: 1.n次方根定义.根式概念.2、分数指数幂的概念.有理指数幂的运算性质.Ⅱ、过程与方法目标:
1、理解n次方根定义.理解根式的概念.理解分数指数幂的概念 2.正确运用根式运算性质化简、求值.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化.了解分类讨论思想在解题中的应用 Ⅲ、情感态度与价值观目标
掌握由特殊到一般的归纳方法.培养学生用联系观点看问题.二、教学重点:
1、根式概念.分数指数幂的概念.2、分数指数幂的运算性质.教学难点:根式概念的理解.对分数指数幂概念的理解.三、教学过程:
Ⅰ、复习回顾:本节是指数与指数函数的入门课,概念性较强,为突破根式概念理解这一教学难点,关键在于使学生理解n次方根定义,故结合学生在初中已经熟悉的平方根、立方根的概念,由特殊逐渐地过渡到一般的n次方根定义,使学生易于接受,并且引导学生主动参与了教学活动.并强调说明根式是n次方根的一种表示形式.Ⅱ.指导探究:
1.n次方根的定义(板书)若xn=a(n>1且n∈N*),则x叫a的n次方根.比较平方根、立方根.得: 偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;
奇次方根有下列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数.这样,我们便可得到n次方根的性质 2.n次方根的性质(板书)na,n2k1x=(k∈N*)
na,n2k其中na叫根式,n叫根指数,a叫被开方数.注:根式是n次方根的一种表示形式,并且,由n次方根的定义,我们可以得到根式的运算性质.3.根式的运算性质(板书)①(na)n=a ②nan=a,n为奇数;|a|,n为偶数.[例1]求下列各式的值
(1)3(8)3(2)(10)2(3)4(3)4
(4)(ab)2(a>b)
解:(1)3(8)3=-8(2)(10)2=|-10|
(3)4(3)4=|3-π|=π-3(4)(ab)2=|a-b|=a-b(a>b)
根指数n为奇数的题目较易处理,而例题侧重于根指数n为偶数的运算,说明此类题目容易出错,应引起大家的注意.为使大家进一步熟悉根式性质的运用,我们来做练习题.Ⅱ.课堂练习
(1)532(2)(3)4(3)(23)2(4)526 Ⅲ.正数的正分数指数幂的意义
m1、annam(a>0,m,n∈N*,且n>1)注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定(板书)(1)amn1m(a>0,m,n∈N*,且n>1)an(2)0的正分数指数幂等于0.(3)0的负分数指数幂无意义.3.有理指数幂的运算性质(板书)(1)ar·as=ar+s(a>0,r,s∈Q)(2)(ar)s=ar·s(a>0,r,s∈Q)(3)(a·b)r=ar·br(a>0,b>0,r∈Q)说明:若a>0,p是一个无理数,则ap表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.Ⅳ.例题讲解
2[例2]求值:83,100
12,(14),(-
31681)
34.[例3]用分数指数幂的形式表示下列各式:
a2·3a,a·a32,aa(式中a>0)Ⅴ.课堂练习
课本P54练习1、2 Ⅵ.课时小结
通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题.过本节学习,要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质.七.布置作业:课本59页A组1,2,4
(一)求下列各式的值:
(1)327
(3)a6
42(2)(4)2(4)(x13x)
(5)819
3(6)23×31.5×612
2.用分数指数幂表示下列分式(其中各式字母均为正数)(1)3a4a
(2)aaa(4)4(a3b3)2(3)3ab2a2b
3.求下列各式的值:
1(1)|2| 23
4(2)(644912527)
12
23(3)10000
(4)()
八、板书设计(略)
九、教学反思:
第三篇:整数指数幂的运算法则教案
§1.3.3整数指数幂的运算法则
课题
整数指数幂的运算法则
教学目标
1、通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;
2、熟练运用整数指数幂的运算法则进行计算.重点
用整数指数幂的运算法则进行计算 难点
理解整数指数幂的运算法则 教学方法
先学后教,当堂训练 教具
多媒体课件 教学过程
一、导
1、上节课我们学习了零次幂和负整数指数幂,今天我们共同学习整数指数幂的运算法则;
2、多媒体出示学习目标:(1)通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;(2)熟练运用整数指数幂的运算法则进行计算.3、多媒体出示学习指导:(1)阅读课本第19页的“说一说”,理解并熟记整数指数幂的运算法则;(2)独立解答课本第20页的例
7、例8,再阅读课本的解答,注意每一步解答的依据;10分钟后,比一比看谁先正确完成课本第20页的练习题第1、2题.二、学
1、静思自学(10分钟)
学生自学课本P19——P20的内容,教师巡视,确保每位学生都能认真阅读,了解学生个体的学习情况,需要时给予个别指导.2、帮扶互学
鼓励学生相互交流讨论.3、示疑展学
多媒体出示自学检测题;学生展示P20的练习题,互评互纠.三、教
1、教师提问:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?(3)例7的解答依据有哪些?例8的解题结果是什么形式?
2、归纳:(1)整数指数幂的三条运算法则;(2)在整数指数幂的运算结果中,指数通常是正整数,即能把整数指数幂的运算结果写成正整数指数幂的形式.四、练
多媒体出示当堂检测题:
1、下列计算正确的是(3)
325312aaababaa2aaaA.B.C.D.aa0,b0,计算下列各式:
2、设
21332(1)aa(2)a(3)b2b4b2(4)a3ab1 x3y53xy(5)23xy(6)2 4x巩固提高
1、若5x3y2,求10
5x103y的值;
2、计算:22014220132201222011.五、课堂小结
同学们,这节课你有什么收获?
六、作业
课本P22 A组 第6题
教学感悟及反思:
第四篇:整数指数幂教案
上饶县中小学教师备课单
上饶县教育体育局监制
学校
汪村学校
姓名
备课时间
年级
八年级
班级
学
科
数学
课题
整数指数幂
课型
新授
课时
上课时间
16.2.3整数指数幂
一、教学目的:
1.知道负整数指数幂an=
1(a≠0,n是正整数).na2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点
1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、教学方法
1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P24观察是为了引出同底数的幂的乘法:amanamn,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的数,运用了负整数指数幂的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、问题导入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:amanamn(m,n是正整数);(2)幂的乘方:(am)namn(m,n是正整数);(3)积的乘方:(ab)nanbn(n是正整数);
(4)同底数的幂的除法:amanamn(a≠0,m,n是正整数,m>n);
anan(5)商的乘方:()n(n是正整数);
bb2.回忆0指数幂的规定,即当a≠0时,a01.3.你还记得1纳米=10-9米,即1纳米=
351米吗? 1091a3a34.计算当a≠0时,aa=5=32=2,再假设正整数指数幂的运算
aaaa性质amanamn(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3a5=a35=a2.于是得到a2=
1(a≠0),就规定负整数指数幂的运算性质:2a当n是正整数时,an=
五、互动合作
(P24)例9.计算
1(a≠0).na[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10.判断下列等式是否正确?
[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、展示交流 1.填空
(1)-22=(2)(-2)2=(3)(-2)0=(4)20=(5)2-3=(6)(-2)-3= 2.计算
(1)(x3y-2)2(2)x2y-2 ·(x-2y)3(3)(3x2y-2)2 ÷(x-2y)3
七、巩固拓展
1.用科学计数法表示下列各数:
0.000 04,-0.034, 0.000 000 45, 0.003 009 2.计算
(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)3
八、答案:
六、1.(1)-4(2)4(3)1(4)1(5)18 2.(1)x6y9x10y4(2)x4(3)y7
七、1.(1)4×10-5(2)3.4×10-
2(3)4.5×10-7
2.(1)1.2×10-
5(2)4×103
九、布置作业
十、板书设计
6)18
4)3.009×10-3((
第五篇:1.3 整数指数幂教案
1.3 整数指数幂 1.3.1同底数幂的除法
(第6课时)
教学过程 通过探索归纳同底数幂的除法法则。2 熟练进行同底数幂的除法运算。通过计算机单位的换算,使学生感受数学应用的价值,提高学习学生的热情。重点、难点: 重 点:同底数幂的除法法则以及利用该法则进行计算。
难 点:同底数幂的除法法则的应用
教学过程
一 创设情境,导入新课
4a2banx241 复习: 约分:① , ②n1,③ 2 312abcax4x4复习约分的方法 2 引入
(1)先介绍计算机硬盘容量单位: 计算机硬盘的容量最小单位为字节,1字节记作1B,计算机上常用的容量单位有KB,MB,GB, 1KB=210B=1024B1000B, 1MB210KB210210B220B, 1GB210MB210220B230B
其中:(2)提出问题: 小明的爸爸最近买了一台计算机,硬盘容量为40GB,而10年前买的一台计算机,硬盘的总容量为40MB,你能算出现在买的这台计算机的硬盘总容量是原来买的那台计算机总容量的多少倍吗?
40230230220210102 40GB402B,40MB402B 202020402223020提醒这里的结果22103020230,所以,2023020210
2am如果把数字改为字母:一般地,设a0,m,n是正整数,且m>n,则n?这是什么运
a算呢?(同底数的除法)这节课我们学习-----同底数的除法 二 合作交流,探究新知
amanamnamn 1 同底数幂的除法法则 nnaa你能用语言表达同底数幂的除法法则吗?
同底数幂相除,底数不变,指数相减.2同底数幂的除法法则初步运用
xxyx8y2n1,3,4n1(n是正整数)例1 计算:(1)5,2,42xyxxy95x例2 计算:(1)x3例3 计算:(1)x5x,(2)
x34,n243b2bn16x,(2)3n
aa练一练 P 16 练习题 1,2 三 应用迁移,巩固提高
nnnnn例4 已知 2A18,则A=()A5,B12,C12mmmmm31641649n2,Dm5 2例5 计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成: 1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10完字的书?
一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高? 练一练(与珠穆朗玛峰的高度进行比较。)1 已知ax2,ay3,求a3x2y的值。2 计算:[xyyx]yxxy 四 反思小结,巩固提高
这节课你有什么收获?
xy五 作业;1 填空:(1)
xy2423343=____,(2)
x2m2m1x=_______
210643xxx2 计算(1),(2),(3),254(xy)xy381(4)aaa,(5)xxxx(6)0.25
412412345561.3.2 零次幂和负整数指数幂
(第7、8课时)
教学目标 通过探索掌握零次幂和负整数指数幂的意义。2 会熟练进行零次幂和负整数指数幂的运算。3 会用科学计数法表示绝对值较少的数。让学生感受从特殊到一般是数学研究的一个重要方法。教学重点、难点
重点:零次幂和负整数指数幂的公式推导和应用,科学计数法表示绝对值绝对值较少的数。
难点:零次幂和负整数指数幂的理解 教学过程
一 创设情境,导入新课 同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?
amanamna0,m、n是正整数,且m>n 这这个公式中,要求m>n,如果m=n,m 零指数幂的意义3222______,33=33,235333_-______,5555,3510444__-_____,10101010,410(1)从特殊出发:填空: 322233这两个式子的意义是否一样,结果应有什么关系?因此:思考: 2、332220=33332,1044401010104同样:10 由此你发现了什么规律? 一个非零的数的零次幂等于1.(2)推广到一般: mmmm0aaaa(a0),另一方面:a1a11 一方面:mmmma1a1启发我们规定:a0试试看:填空: 1(a0) 2 20=_, 100_, x0=__(x0),=,303_, x21_。 002 负整数指数幂的意义。 5335_-____(1)从特殊出发:填空: _,5555553210423___47__-___=_,33=33,__,10101010373103223(2)思考:3与33的意义相同吗?因此他们的结果应该有什么关系呢?311-11-2-3(3=)同样:,5=2,10=3 3510(3)推广到一般: an? 1a0,n是正整数 naana0na0an1an(4)再回到特殊:当n=1是,a-1=? a-1=1 试试看: 3x1有意义,求x的取值范围1.若代数式;32 若2x1,则x=____,若11,则x=___, 若x100.0001,则x=___.x1083 科学计数法 10-2,10-3,10-4。(1)用小数表示下列各数:10-1,你发现了什么?(10 =) .10-2,2.410-3,3.610-4(2)用小数表示下列各数:1082-38-1,02.4,10思考:1.0-n 3.6这些1数0的表示形式有什么特点?(a10n(a是只有一位整数,n是整数))叫什么计数法?(科学计数法)当一个数的绝对值很少的时候,如:0.00036怎样用科学计数法表示呢?你能从上面问题中找到规律吗? 试试看: 用科学计数法表示:(1)0.00018,(2)0.00000405 三 应用迁移,巩固提高 112例1 若x31,则x的取值范围是_____,若y2,则y的取值 y230范围是____.12例2 计算:2,10,, 233232 例4 把下列各式写成分式形式:x2,2xy3 例5 氢原子中电子和原子核之间的距离为:0.00 000 000 529厘米,用科学计数法把它写成为________.四 课堂练习,巩固提高 P 18 练习1,2,3,4 021补充:三个数,2006,2按由小到大的数序排列,正确的的结果是31() 20211A 20062,B 20062 3300211C 22006, D20062 33201111五 反思小结,拓展提高 这节课你有什么收获?(1)a01(a0),(2)an1(a0,n是正整数),(3)科学计数法 na前两个至少点要注意条件,第三个知识要点要注意规律。 六、作业:P 21习题 A组2,3,4,5, 教学后记: 1.3.3 整数指数幂的运算法则 (第9课时) 教学目标 通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则; 2 会用整数指数幂的运算法则熟练进行计算。重点、难点 重点:用整数指数幂的运算法则进行计算。难点:指数指数幂的运算法则的理解。教学过程 一 创设情境,导入新课 正整数指数幂有哪些运算法则?(1)aaa(3)aba0)nmnmn(m、n都是正整数);(2)(a)amnmn(m、n都是正整数) amab,(4)namn(m、n都是正整数,annanan(5)()n(m、n都是正整数,b0) bb这些公式中的m、n都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.板书课题:整数指数幂的运算法则 二 合作交流,探究新知 1 公式的内在联系 232做一做(1)用不同的方法计算:(1)4,2 233231231341解:(1)423;(1)4232423(4)31 232338218221333 23,23238 27327273333通过上面计算你发现了什么? 幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算。 nama1amnm(n)mn1nnnaaaa,ababa nbbba因此上面5个幂 的运算法则只需要3个就够了: 1)aaanmnmn(m、n都是正整数);(2)(a)amnmn(m、n都是正整数) (3)abab,nn2 正整数指数幂是否可以推广到整数指数幂 做一做 计算:122,2333,23123330解:(1)22233221,232323(3)201 22333(2)3231112326,33(2)3266 3331332332331112333827216 233233311111 3323827216通过上面计算,你发现了什么? 幂的运算公式中的指数m、n也可以是负数。也就是说,幂的运算公式中的指数m、n可以是整数,二不局限于正整数。我们把这些公式叫整数指数幂的运算法则。 三 应用迁移,巩固提高 例1 设a0,b0,计算下列各式: 1a7a3;2a32;3abab3122a4 b2223x2xyy2xy,2例2计算下列各式:1 1223xyxy四课堂练习,巩固提高 1 P20 练习1,2 2 补充: (1)下列各式正确的有() 32(1)a01,(2)amm11am(a0),3an()n,4amn1n1(a0) aaaA 1个,B 2个 C 3个 D 4个 2计算xyxy312的结果为() x5yy5x5A,B5,C2,D2 yxxy2x2y13 当x=,y=8时,求式子52的值。 xy4 五 反思小结,拓展提高 这节课你有什么收获?(1)知道了整数指数幂的运算法则只需要三个就可以了。(2)正整数指数幂的运算法则可以推广到整数指数幂。 六、作业P 22 A组 6 B 7,8