第一篇:第15讲第三章习题课
《量子力学》教案
林洁丽
第三章 矩阵力学(I)
量子力学中的力学量(习题课)
一、算符在量子力学中的意义。
1.证明厄米算符的本征值为实数。见讲义。2.证明力学量在任意态中的平均值为实数。
解:设已归一化,则
ˆdxF*F ˆdx(Fˆ)*dx*F ˆdx)*(Fˆ)*dxF*(*F ˆdxF*F.所以力学量F在任意态中的平均值为实数。
ˆ的ˆLˆMˆ-MˆLˆ1,求证:若为kˆMˆ,且L3.若kˆ也是kˆ本征函数,对应的本征值为,则vM的本征函数,对应的本征值为1。
ˆ的本征函数,对应的本征值为,证:为kˆ kˆMˆ-MˆLˆ1 MˆLˆLˆMˆ-1 又Lˆ ˆLˆMˆ,vM且kˆvkˆMˆLˆMˆMˆMˆLˆ1Mˆk ˆˆˆˆˆˆˆMLMMMkvMv1vˆ也是kˆ的本征函数,对应的本征(练习:证uL值为1)
ˆukˆLˆLˆMˆLˆLˆLˆMˆ-1kˆ-LˆLˆMˆ-Lˆkˆ-1Lˆ-1u Lˆ的本征函数,相应的本征值为1。u为k第1页 《量子力学》教案
林洁丽
二、对易子的计算:
dx,e1. 求。dxˆ,Pˆ]iPˆ 2. 求证[Lzxyˆ,Pˆ]=iPˆxˆ;Lˆˆˆ3. 求证[Lxyz-xLziy。z
1.解:设x为任一波函数,则
d-xdxxdxeeee
dxdxdxd-xxdxxdxdeeeee 而dx dxdxdxdd-xxxd-x,eeee 即= dxdxdxˆxPˆ-yPˆ(要记忆)2.证:L
ˆPˆ-PˆLˆxPˆ-yPˆPˆ-PˆxPˆ-yPˆ ˆ,Pˆ]L [Lzyyzyxxxyxzx2ˆˆˆˆˆˆˆˆˆxPP-yP yxx-PxxPyPxyPx PxyyPx
2ˆ2ˆˆˆˆˆxPP-PxPyP yxxyx-Px
ˆPˆ-PˆxPˆxˆ-PˆxˆiPˆ ˆˆPP xPyxxyxxyy
三、作业评讲(黑板)
第2页 zyx《量子力学》教案
林洁丽
四、补充例题:
1.设t0时,氢原子体系处于(r,0)211(r)
3321(r)的状态中,式中nlm为氢原子的定态波
函数,求任意时刻t体系的态函数(r,t)。
解:一般解为定态波函数的线性迭加:
iEnt-(r,t)Cnn(r)e
(r,t)为含时薛定谔方程(式)的解,故(r,t)描n述状态随时间t变化的规律,因此,本题的解:(r,t)211(r)ei-E2t(3)321(r)eiE3t
444eseses 其中 E2222282,E3182
{注意:(r,0)未归一化,因而(r,t)也未归一化,但本题无此要求。} 2.质量为m的粒子处于0xa的一维无限深势阱中的基态,设阱壁xa突然运动至x2a。求这时粒子仍处于基态的几率。
解:在0xa无限深势阱中,粒子的基态是2x1xsin(0xa)。[公式要记住!] aa在0x2a无限深势阱中,本征波函数(基矢)1nπx为nxasin2a(0x2a)本题的关键是理解:当xa突然运动至x2a时粒子的状态(即波函数)仍处于1x所描述的状态之中(因为态的变化需要时间)。
第3页 《量子力学》教案
林洁丽
x0,xa0 x2x即:sin 0xa aa用nx展开ψx,即 ψxCnnx,则Cnn2就是(由ψx态描写的粒子处于nx态的几率。而
2ππ*C11ψdxsinx sinx dx a02aa02π3πcosxcosxdx2a02a2aa1aπ3π3πx42 π12cosxdx-cosxd2a2a3π02a2a3ππ0aaa所求几率为 C123292。
五、讨论的主题:
1.测不准关系意味着物理学什么也不能决定吗?(并不是)
其实,不论位置也好、动量也好,若牺牲它们之间的相互关系的话,是完全可以准确测定的。测不准关系并不意味着物理学什么也不能准确测定,而是表示在原理上相互间测定受到限制这一事实。
可是,如果孔变小,则电子就容易碰到孔的边缘。如果碰到孔壁上,由于电子的一部分动量消耗在孔壁上,就会是电子的速度发生改变,而且,因为孔壁是固定的,所以不能从对孔壁的作
第4页 《量子力学》教案
林洁丽
用而得知有多少电子的动量发生变化。为了把孔变小来准确地测定位置,那就要牺牲速度的精确性。
那么,如果把装置改一下,把孔壁改成活动式的,通过测定电子给孔壁的动量来确定电子的速度的话,又将会怎样呢?根据动量确实是可以求得速度的。但是,壁每动一次,孔也动一次,这样,电子通过的位置就又不清楚了。为了准确地测定电子的速度,这一下子,位置就测不准了。结果,由于不能同时确定地知道孔穴附近的电子的位置和速度,所以也就不能够说清是在底片上的哪一个点上成像的。也就是说,电子的位置和速度是两个不能同时准确测定的量。更确切说:电子的位置和动量是有着测不准的关系。最初发现这个事实的是海森堡,他用假想的实验来表示这个测不准关系。
在量子力学中,将原理上可测定的量称为可观测量。位置、时间、动量、能量等都是可观测量。可以认为,不论哪一个量,刻度尺或钟表都可以用仪表的指针来表示它们的值。
所以在某一个实验中,假如靠仪表读出可观测量中的一个值,那么,也可同时确定另一个可观测量的值。这无论对哪一组来说,都是适用的。例如,对电子的位置和动量也是这样。可是,再重复一次这个相同的实验时,对于同一个可观测量来说,可能得到相同的值;但对于另一个可观测量来说,有可能得到和前一次不同的第5页 《量子力学》教案
林洁丽
值。反复实验无论进行多少次都是这样。这就是说,这两个量相互有着测不准的关系。
不论是位置还是动量,每一个值都是以单个实验来确定的。然而,这种相同的实验不论反复进行多少次,假如说,若位置得到相同的位置则动量就不一定能取得和前几次完全相同的值。象这样的可观测量,不论出现多少也是不足为奇的。
说得确切一些,量子力学对于种种的量,决不是“不决定”,而是相对的“测不准”。这就是打开电子的“粒子”和“波”的二象性秘密的钥匙。
我们再来研究电子射线通过小孔的问题。由于小孔附近电子的位置和动量不能同时确定,所以对电子在底片上的哪一个点成像也就不清楚。但,我们不能因此就说对底片上的像是完全无知的。假如把单个电子象波那样来考虑在底片上预先标好位置,然后,用多个电子进行实验,则能得到和标记相同的衍射图样。
这就象掷(zhi)股子一样,如果这股子不是骗人的话,是不会知道倒出来的谷子是哪一个“点儿”朝上的。如果统计一下出现的次数,即使开始时是无规律的,然而,若增加掷的次数,就会看出谷子上的这六个“点儿”出现的次数是大致相同的。
把掷的单个股子出现的情况统计一下,发现不论
第6页 《量子力学》教案
林洁丽
哪个“点儿”都分配到六分之一的次数。这就是所谓的几率的概念。实际上,几率不是表示掷股子时将出现的“点儿”,但如果增加掷的次数,它决不是没有意义的。实际上,某一特定“点儿”出现的次数极接近于几率跟掷的总次数的乘积这个数值,所以至少可以提出某种预想。而且,实际上如果考虑到掷的次数很多的情况下,它会有非常可靠的规律性的。
通过小孔的电子,在小孔的附近的位置和动量这两个量中的一个或两个作为不准确的结果,会出现种种可能性。因为在电子射线中有无数的电子,能够估计得到的可能性,必然可以由某些电子来实现。即,考虑每个电子的可能几率是十分有意义的了。如果,按照你预想的那样在底片上,能画出每一点的命中几率图的话,那么,在实际的照片上就确实得到象图那样的图像来。
对股子来说,可简单地认为不论哪个“点儿”出现的几率都是1/6,而对电子来说,则有些稍微复杂的程序,这个程序就是用薛定谔的电子波动方程式。在此所得到的称为“波函数”,而这个波函数的平方是同几率有关系的。
也就是说,量子力学的理论基础是数学上所说的几率。
2.测不准的测定方法
德布罗意和薛定谔所设想的那种电子波,实际是不存在的。然而,为了确定电子在什么地方存在的可能性(即所谓的几率),而引进了电子波
第7页 《量子力学》教案
林洁丽
这个不可缺少的概念。当电子射线穿过小孔时,若按照旧的理论,则只考虑以底板上的一点为中心,离中心愈远,点就愈少那样的分布图,可是,考虑到每个电子不准确的因素,以几率来表示电子的动向,那么,实际的衍射波可用数学推导出来。
如果为了测量小孔附近电子的位置,使装置上的小孔缩小,又为了想知道电子的动量,将装置做成可移动的壁,则在底片上得到的衍射图样是不一样的。如果测量位置的话,则动量成为测不准的结果,所导出的是波的图像;若知道动量,则因位置成为测不准,也能导出波的图像。这些都是解薛定谔方程的条件。
解薛定谔方程根据条件的不同,得到的结果也不同。这么说,即使不说明方程式的复杂程序,也可以想象得出条件和答案之间是密切相关的。这样就可以不用几率平方这个量或者波函数这个数学上的术语,而使用“状态”这个术语更为合适些。也就是说,电子在给定的条件下,具有一定的状态,这种说法更好一些。
位置或动量随便哪一个如果确定的话,则另一个就确定不下来,但是,确定不下来的那一个的几率分布,却能够确定。这种情况,用状态表示是很相称的。例如,当位置确定时,可以这样说:决定电子位置的状态是完全确定下来了。尽管量子力学在本质上含有测不准的性质,可是把它用状态这个概念来表示的话,就可以这样说:
第8页 《量子力学》教案
林洁丽
状态是可以确定的。
为了要知道电子的位置,而使小孔缩小的实验中,尽管不知道电子的动量,但可以准确求出用几率来表示的波。因此就可以说成是已知电子位置的状态被确定了。为了测定动量而将壁做成可移动的实验中,就可以说成是已知电子动量的状态被确定了。
前面提过,不一定限于位置和动量,原则上凡是能测定的量都可叫做可观测量。不论对哪一个可观测量都可确定其测定状态,但这和测定其它可观测量的状态不一定是一致的。两个可观测量也可能会决定完全不同类型的状态。例如,在用位置和动量来表示有测不准关系的可观测量就是如此。但是对没有测不准关系的可观测量,因为所确定的状态是一致的,所以为了进一步正确地表征状态,可利用更多的各项知识。因此,象这样的可观测量收集得越多,当然就越能准确、详细地确定状态了。
结论:量子力学不单是主张测不准的关系,而且又抓住了另一个确定性的东西,那就是“状态”,就是说,互不干扰的可观测量收集得越多,就越能准确地确定它。
3.振子几率图说明:
振子的两端多,中间少。这是因为在中间附近摆动得快,所以被照相机拍下的机会就要少的缘故。
第9页 《量子力学》教案
林洁丽
但是,对于像电子那样必须用量子力学的情况,答案是完全不同的。假定振子服从量子力学的规律,首先,在能量最低的状态时,在中心附近的几率最大,越往两端就越小。其次,能量在较高的状态时,中心附近的几率却完全没有,而在离开中心的地方又增大。更高的能量,也和这个相似,但几率小的地方和几率大的地方交替出现。能量越高,这种交替变化就越显著,最后就密集一堆了。因此,若从远处来看,这部分恰好和小石子的摆动次数的分布,大体上一致。也就是说,在能量高的场合下,经典力学与量子力学的答案是一致的。这就是玻尔在创建量子力学所利用的桥梁。然而,在能量低的场合下就完全不同了。
原子的情况也是如此,如果按经典电磁学来看,电子就会掉到原子核上,现在若不考虑这点,打开照相机的快门。于是,电子就应该在原子里面均匀分布。然而,量子力学的答案却不是那样。能量在最低的时候,电子在中心附近的几率是均匀的,但能量若一增大,则几率就会形成高低的圈。而且,麻烦的事还夹杂着有的地方几率多,有的地方几率少这样凹凸不平的分布。可是,这时在能量大的场合下,高低和凹凸并不明显,恰恰跟前面讲过的涂黑部分的结果接近。即是跟经典物理学的答案相似。
第10页 《量子力学》教案
林洁丽
六、讨论:为什么要用算子?
量子力学里力学量(可观察量)是用线性厄米算符表示的。之所以要这样做,是与量子力学对象的波粒二象性以及特殊的描写方式紧密相关的。由于作为几率波振幅的波函数包含了有关体系的全部信息,因此我们需要有一种方法从波函数那里提取出各种信息来,而能够整体地把握住某种性质的抽象办法之一是采用算符。
由于力学量代表物理性质,它的值直接地与实验挂钩,因此必须满足一定的要求,诸如测量值是实数,不同态的无关性(正交性)、一切物理态的完备性以及态的叠加性等,这使得我们必须用线性的、厄米的算符来代表力学量。
物理上,力学量作用在体系的状态上,是一种作用,一种行动,一种操作,一种仪器;响应的在数学上就是线性厄米算符作用在波函数上,或这算符是Hilbert态空间中的一个变换(在连续情形下,是无穷小变换为生成元)。
所以量子力学里代表力学量的线性厄米算符的基本性质是:
+Â=Â,Â(α|1>+β|2>)=αÂ|1>+βÂ|2>,Â|fn>=fn|fn>,Â|λ>=λ|λ>,fn*=fn,λ*=λ,
第11页 《量子力学》教案
林洁丽
这些就是厄密性、线性、本征值的示性、不同本征态的正交性及全部本征态的完备性的数学表述。
第12页
第二篇:高等数学-第4章 小结习题课
第4章 小结
本章知识要点如下: 1.原函数与不定积分的概念,不定积分的性质,基本积分公式.2.直接积分法,换元积分法,分部积分法.3.简易积分表的使用.
复习题4 1.判断题
(1)yln(2x)与ylnx是同一个函数的原函数.()(2)若f(x)dxF(x)C,则f(sinx)dxF(sinx)C.()(()
(()
(5)1f(x)3)若
f(x)dxg(x)dx,则
f(x)g(x).4)若
f(x)dxf(x)C, 则
f(x)ex.dxlnf(x)C.()2.选择题
(1)设f(x)的一个原函数是e2x,则f(x)()
A.e2x B.2e2x C.4e2x D.4e2x
(2)若F'(x)f(x),则下列各式中正确的是()
A.F'(x)dxf(x)C B.f(x)dxF(x)C
C.F(x)dxF(x)C D.f'(x)dxF(x)C(3)若f(x)dxF(x)C,则f(2x)dx()
AD.F(x)C
B.2F(2x)C
C.12F(2x)C
.F(2x)C(4)1x21f()dxx1x()A.f()C
B.f()C
C.f()C
xxD.f()C
x11x(5)dx()
xA2.2ln|x|xC B.x1x2ln|x|C11x2ln|x|xC
C. D.ln|x|xC
3.填空题(1)d(x1lnxdx).x2c(2)若f(x)dx2sin(3)x1xdx,则f(x)=..4.计算下列不定积分:(1)(3xx3)dx;(2)xxdx;(3)(x)2dx;
x1(4)1sinxcosxx222dx;(5)x1x122dx;(6)1x1x2dx;
(7)edx;(8)92xdx;(9)(10)(13)sinx1cosx2lnxx2101cos(23)1x22 d;
dx;(11)1x(12lnx)1eexxdx;(12)sin1xdx;
dx;(14)dx;(15)12x1dx;
(16)x(2x23)3dx;(17)x1x11xdx;(18)xe2xdx;
(19)xcosdx;(20)excos3xdx.25.若曲线通过点(e2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程.6.物体由静止开始作直线运动,经t秒后的速度是3t2(米/秒),问:3秒后物体离开出发点的距离是多少?
第三篇:物理化学第2章习题课讲稿
工作电话:6939049,email:slz@jlu.edu.cn
1.5 分(0622)
一可逆热机在三个热源间工作,当热机从T1热源吸热1200 J,作功200 J 时,试求:
(1)其他两个热源与热机交换的热量,指出热机是吸热还是放热;
(2)各热源的熵变和总熵变。
已知各热源T1,T2,T3的温度分别为 400 K,300 K,200 K。
[答](1)热机循环一周 U = 0,W = Q1+ Q2+ Q3........(1)
(1分)
可逆热机的热温商之和为零,Q1/T1+ Q2/T2+ Q3/T3=0(2)
(1分)
由(1)、(2)两式联立解得
Q2=-1200 J,(放热);
Q3= 200 J,(吸热)
(1分)
-(2)ΔS1= Q1/T1= 3 J·K;
ΔS2=-4 J·K;
ΔS3= 1 J·K
ΔS总=ΔS1+ΔS2+ΔS3= 0
(2分)
2.10 分(0743)
(1)请写出 Gibbs 对热力学及化学热力学的八个贡献;
(只写出二个或二个以下者都不得分)
(2)将某纯物质的液体用活塞封闭在一个绝热的筒内,其温度为T0,活塞对液体的压力正好是该液体在T0时的蒸气压p0,假设该液体的物态方程为
0
Vm=V m×{1+(T-T0)-Κ(p-p0)}
0式中,V m 是液体在T0,p0的摩尔体积,和K分别是膨胀系数和等温压缩系数,设它们都为常数。将该液体经绝热可逆过程部分汽化,使液体的温度降到T,此时液体的蒸气压为p。试证明液体所汽化的摩尔分数为:
x=(m/n)
0=(T/ΔvapHm)[Cp, m(l)ln(T0/T)-V m(p0-p)] 式中,n为汽化前液体的物质的量,m是变成蒸气的物质的量,Cp, m(l)为液体物质的摩尔定压热容,ΔvapHm是该物质在T时的摩尔汽化焓。
示意图
[答]
(1)引入 Gibbs 自由能,化学势;Gibbs-helmholtz 方程;Gibbs 基本方程;
Gibbs-Duhem 方程;Gibbs 定律;
相律;平衡态稳定性理论;
Gibbs 表面,Gibbs 吸附方程。
(5分)
(2)设过程分二步进行:
ΔS = ΔS1+ ΔSΔS1= T2T1(S/T)dT +(S/p)Tdp
p1p2
=T[(nCp,m(l)dT)/T ]-p1T2p21n(Vm/T)pdp
(状态变化)
(2分)
= nCp,m(l)ln(T/T0)-nVm(T0)(p-p0)(积分限:T1= T0,T2= T,p1= p0,p2= p)
ΔS2= mΔvapHm/T
(相变化)
ΔS =nCp,m(l)ln(T/T0)p0)-Cp,m(l)ln(T/T0)}
(3分)
3.10 分(0756)
一绝热容器正中有一无摩擦、无质量的绝热活塞,两边各装有 25℃,101325 kPa的 1mol 理想气体,Cp, m =(7/2)R,左边有一电阻丝缓慢加热(如图),活塞慢慢向右移动, 当右边压力为202650 kPa 时停止加热,求此时两边的温度T左,T右和过程中的总内能改变U及熵的变化S(电阻丝本身的变化可以忽略)。
[答] 右边容器内可视为绝热可逆压缩过程(2分)
因为
1-γp
1T1= p21-γT2
(1-γ)/γ
所以 T右=(p1/p2)T1= 363.3 K V右= nRT右/p2 = 0.01490 m
V左= V总-V右=(2RT/p1)4.142 kJ,ΔU = 4.142 kJ
(1分)
ΔH = Cp(T2-T1)= 5.799 kJ
(1分)
*ΔF = ΔUSΔT
=-36.720 kJ
(2分)
*ΔG = ΔHΔcH(金刚石)
$m$m$m
= 1.88 kJ·mol
(2分)
$$
ΔrS m= S m(金刚石)-S(石墨)
-1-1
=-3.263 J·Kmol
(2分)
$$$-1 ΔrGm=ΔrHm-TΔrSm= 2.852 kJ·mol(2分)
(2)(ΔG/p)T =ΔV,(G/p)T =V
**(G(g)/p)T = V(g),(G(d)/p)T = V(d),$m-1积分:dG=Vpp21dp , G(p2)-G(p1)=V(p2-p1)对两种物质的相变:
始态
G(g,p2)-G(g,p1)=V(g)(p2-p1)(1)终态
G(d,p2)-G(d,p1)=V(d)(p2-p1)(2)
(2)-(1)
ΔrG(p2)=ΔrG(p1)+ΔV(p2-p1)若要 ΔrG(p2)≤ 0,(习题书上有错)
p2≥1.51×109 Pa
(4分)
6.5 分(0878)
有人发明了一种装置,可使压缩空气分为两股:一股变冷,一股变热,若空气
-1-1Cp, m =29.3 J·K·mol,设热量不传递到环境,试判断该装置是否可能?
$m$m$m
[答]
据
ΔS = Cpln(T2/T1)p外(V2-V1)
(2分)
p1= nRT1/V1= 196.7 kPa 解上式得
T2= 407.6 K,(4分)
ΔS = nRln(p1/p2)+
T2T1CpdT/T
= 1.17 J·K-1
(4分)
第四篇:高中物理习题课评讲模式
高中物理评讲课教学模式探索
课前准备:课前批阅学生练习册,统计优秀学生,优秀小组名单,并分析出学生的错题原因,做好归类。针对错误情况进行分析总结,并针对错误情况及时编写相应针对性训练,帮助学生加深理解,巩固提高。
课堂教学过程:
一 出示教学目标,分析批改情况;多媒体出示教学目标,让学生知道本节课需要掌握哪些内容,那些需要自己解决,那些需要小组讨论,那些需要老师讲解。通报本节训练案的完成情况,优秀小组优秀个人相应表扬并加分。
二 公布答案,学生自主纠错错误率低的习题,学生自行解决。自主分析错误原因(知识理解不透 表达问题 书写问题 方法问题 题目理解问题),牢记错误原因争取下一次少犯同样错误。
三 小组讨论,合作探究教师公布讨论的题目全体起立,组长分配任务,最开始同层次互相讨论,尽最大努力解决老师公布解决的题目讨论后半段,学科组长或A1学生带领全组人员共同讨论重点难点题目,共同解决问题。教师全程参与其中,了解学生的思路及错误原因。
四 展示点评,总结升华由教师布置本节课展示的内容及展示小组学生(展示时重点是展示解题思路),其他学生继续讨论研究。教师公布点评学生名单,由小组A层学生进行点评(重点归纳错误原因,分析出本类题型解题思路及方法)鼓励学生针对点评情况进行质疑,点评学生及时回答解决,问题较难老师介入。4 教师对重点题目进行点拨,强调,恰当对问题进行变形,让学生思考。5 教师引导学生进一步总结题型和解相关问题的基本思路。6 教师及时评价。
五 学生自主总结归纳,当堂检测让学生自己静下心来认真总结反思,归纳解题方法,并及时完成达标检测习题(教师针对批改情况及时整理地几个习题供学生巩固)。
六 学科班长及时评价
学科班长对本节课及时评价,表扬优秀小组,优秀展示个人,优秀点评质疑个人并相应加分。
七 作业布置
确定练习册上2-3个典型习题让学生规范的整理在错题本上。
2011年12月18日
第五篇:第五讲: 第一章光的干涉小结、习题课
21光学与近代物理学 第五讲:第一
一、光的干涉小结
1、光的干涉现象及分类
⑴光的干涉现象:当两束光波的①频率相同;②振动方向相同;③有恒定的相位差,就可能出现明暗分布的现象。
⑵光干涉现象的分类(光的干涉现象有很多,可分成两大类)①分波面法:比如:杨氏双缝干涉
②分振幅法:比如:劈尖干涉、牛顿环
2、光干涉的五个条件
⑴相同的频率; ⑵相同的振动方向;
⑶相同的相位或恒定的相位差; ⑷振幅不能相差太大; ⑸不能超出波列。
3、光程差、相长相消的条件
n2r2n1r1k
k0,1,2,3,(明纹)2n2r2n1r12k122
k0,1,2,3,(暗纹)
4、杨氏双缝干涉
⑴光程差:r2r1dsindtandx D⑵相长相消的条件:相长:k k0,1,2,3,
相消:(2k1)⑶ 明、暗条纹中心线的位置坐标
x明kDx k0,1,2,3, 推导:kd dD k0,1,2,3, 2Dxx暗(2k1)k0,1,2,3,推导:(2k1)D
d22d
⑷ 相邻条纹之间的间距 xxk1xkD
讨论:①d,一定,xD d②d,D一定,x ③D,一定,x干涉条纹是等宽的,与干涉级无关。d5、等倾干涉:当薄膜厚度均匀时,倾角i变化,相同的入射角对应相同的条纹。
2en22n12sin2ik
k0,1,2,3,(明纹)22en22n12sin2i2k1
k0,1,2,3,(暗纹)226、等厚干涉:当薄膜厚度不均匀时,垂直入射i0,相同的厚度对应相同的条纹。
2n2ek
k0,1,2,3,
(明纹)22n2e2k1
k0,1,2,3,(暗纹)22⑴ 劈尖干涉
①在空气劈尖中,任意相邻明条纹对应的厚度差:
eek1ek ; sin 22②当劈尖的折射率为n2时:sin(楔角,条纹间隔)
2n2⑵牛顿环:是由平凸透镜和平面镜组成。①明暗环的条件: 2ek
k0,1,2,3,
(明环)2e2k1
k0,1,2,3,(暗环)22②明暗环的半径公式:(反射光)
r明环2k1R k0,1,2,3,
(明环)2r暗环kR k0,1,2,3,
(暗环)
★牛顿环的透射光的明暗环的半径公式如何表示? ⑶迈克耳孙干涉仪
2en22n12sin2ik
k0,1,2,3,(明纹)22en22n12sin2i2k1
k0,1,2,3,(暗纹)22①M1M2 即 M1M2'时,为等倾干涉,是同心圆环。②M1M2 即 M1M2'时,为等厚干涉,是相互平行的直条纹。③迈克耳孙干涉仪条纹移动:dN④测量透明薄膜的厚度、折射率
27、光的干涉应用:测量微距、波长、膜厚、折射率等。
二、习题练习
习题1:在杨氏双缝干涉实验中,双缝间距d=0.20mm,双缝到屏的距离D=1.0m,试求:(1)若第二级明条纹离屏中心的距离为6.0mm,计算此单色光的波长;(2)相邻两明条纹之间的距离。
解:(1)由xkD得 dxd61030.21037610m6000A
kD21.0D610733103(mm)
(2)
x3d0.210
习题2:在杨氏双缝干涉实验中,若用折射率为1.60的透明薄膜遮盖下面一个缝,用波长为632.8nm的单色光垂直照射双缝,结果使中央明条纹中心移到原来的第三明条纹的位置上,求薄膜的厚度。
解: 若在下缝处置一折射率为n厚度为t的透明薄膜,则光从下缝到屏上的光程将增加(n-1)t,屏上的条纹均要向下移动。依题意中央明条纹多到屏中心下方原来第3级明条纹位置,则从双缝到该位置的光程差
r2(n1)tr1(r2r1)(n1)t
3(n1)t0
336.3281073.16106m3.2m
故
tn11.61
习题3:在很薄劈形玻璃板上,垂直地入射波长为589.3nm的钠光,测出相邻暗条纹中心之间的距离为5.0mm,玻璃的折射率为1.52,求此劈形玻璃板的楔角。解:
由lsin2n2得
5.893107sin3.881053 2n2l21.525103.88105rad8习题4:检查一玻璃平晶(标准的光学平面玻璃板)两表面的平行度时,用波长=632.8nm的氦氖激光垂直照射,观察到20条干涉明条纹,且两端点M,N都是明条纹中心,玻璃的折射率n=1.50,求平晶两端的厚度差。
解:
∵ek1ek2n2,∴ 20条明条纹对应平晶厚度差为
19196.328107 d19(ek1ek)2n221.5
4.0106(m)
习题5:在利用牛顿环未知单色光波长的实验中,当用已知波长为589.3nm的钠黄光垂直照射时,测得第一和第四暗环的距离为d14.0103m;当用未知的单色光垂直照射时,测得第一和第四暗环的距离为d23.85103m,求未知单色光的波长。
解:
依题意
r4r14RRd1
r4r14RRd2
由上两式可解得未知单色光波长
d23.85103410358935459A d12习题6:当牛顿环装置中的透镜与玻璃板之间的空间充以液体时,第10个亮环直径由D11.40102m变为D21.27102m,试求液体的折射率。
解:
依题意有
r10(101/2)RD1/2
r10(101/2)R/nD2/2
由上两式可解得液体折射率
D11.4102n1.271021.22 D222
习题7:如果迈克耳孙干涉仪中的反射镜M1移动距离0.322nm时,测得干涉条纹移动数为1024条,求所用的单色光的波长。
解:
由dN
2d20.32210376.2910m6290A
N10242得
小结: 作业: 预习: