有理数的乘法与除法教案设计

时间:2019-05-15 11:20:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有理数的乘法与除法教案设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有理数的乘法与除法教案设计》。

第一篇:有理数的乘法与除法教案设计

学习目标:

1、要熟记有理数除法的法则,会进行有理数除法的运算。

2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。

3、能熟练地进行简单的有理数的加减乘除混合运算。

4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有

学习重点:有理数除法的法则及应用;求一个有理数的倒数。

学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。

学习过程:

一 前置复习:

1、有理数的乘法法则是:

举例说明。

2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。

(2)几个有理数相乘,积就为零。

二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)

自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:

(1)有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2)有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3)与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。

三 新知应用:

1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1)(42)7(2)()()

2、计算(1)()()()(2)()()

(温馨提示:

1、有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。

2、加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试:(独立完成)填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)()=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1)(2)

(3)、(4)(+)

六 总结反思:

1、说一说:

本节课我学会了;

使我感触最深的是;

我感到最困难的是;

我想进一步探究的问题是。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题)课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题)课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

第二篇:“有理数乘法法则”教案设计

“有理数乘法法则”教案设计

【课题】有理数的乘法法则 【教学目的】

1.使学生理解有理数乘法的意义,掌握有理数乘法的运算法则,会进行有理数的乘法运算。

2.渗透数形结合的数学思想。【教具】两块小黑板(预先画好)。【教学过程】

一、设置问题,引入新课

问题:一辆玩具汽车每次运动a米,运动了b次,一共运动了几米? 如果a、b都是算术数(正有理数和0),我们很容易计算出运动的结果。引入负有理数之后,又怎样进行乘法运算呢?今天我们就来学习有理数的乘法法则。(板书课题)

二、探求规律,归纳结论 1.铺路:

提问:一个有理数由哪两部分组成?

因此,有理数的乘法也与加减法一样,既含有绝对值的计算,又包括符号运算。现在规定:

(1)向东运动,a为正;向西运动,a为负。

(2)沿与a相同的方向运动,b为正;沿与a相反的方向运动,b为负。2.探求规律:

(1)提问:根据这种规定和上面的题意,下面算式中的a、b各表示什么意义?其结果应是什么?

(+2)×(+3)(-2)×(+ 3)根据学生的回答情况,适时拿出小黑板一,加以启发引导或验证。注意强调:+3与a同向运动3次。

然后再引导学生共同归纳出:

①有理数乘法的意义仍是求几个相同加数的和。②当乘数为正数时,积与被乘数同号。

(2)当乘数为负数时,积的符号与被乘数又有什么关系呢?请看:(+2)×(3)(2)×(3)

提问:-3表示什么意义?这两个算式的积各是什么?

根据回答情况,适时拿出小黑板二,进行启发引导或验证。注意强调:-3表示与a反向运动3次。

然后师生共同归纳出:当乘数为负数时,积与被乘数异号。

现在我们归纳一下上面的两种情况。请看:(+2)×(+3)=+6,(-2)×(-3)=+6,而(-2)×(+3)

=-6。从这两组算式中,你能总结出什么结论?想好以后,再和教科书92页上的黑体字对照,并记住这一法则。(稍停片刻,将有理数乘法法则板书在黑板上。)

最后,还有一个问题需要解决。那就是:法则中为什么说任何数同0相乘都得0?要解决这个问题,我们先想一想,a等于0或b等于0各表示什么意义? a为0,表示原地不动;b为0,表示设有运动。因此,不论a等于0还是b等于0,结果小汽车仍是在原处。

4.例题示范: 例计算:

(1)(-3)×(-9);

解:有理数乘法按照法则应分两步完成。第一步是确定符号,第二步是计算绝对值。

解:(1)(-3)×(-9)=+27;(同号得正,3×9)

三、巩固练习教科书第93页练习: 1.第 1题口答。

2.第2题让4名学生板演。

根据学生解答中出现的问题与巡视中发现的问题,让学生相互纠正,并强调要说明理由。必要时由教师讲解。

四、总结

1.有理数乘法的意义。2.有理数乘法的法则。3.讲数学历史知识和小故事。

关于“同号得正,异号得负”还有一种解释。我国是世界上最早使用负数的国家。在我国使用负数之后,阿拉伯人也发明了“+”、“-”号。阿拉伯人在发明“+”、“-”号时,是把正号当作朋友,负号当作敌人来考虑的。当时对“同号得正,异号得负”的解释分别是:朋友的朋友还是朋友,敌人的敌人也是朋友;而朋友的敌人和敌人的朋友则都是敌人。

五、布置作业

1.阅读课文,熟记有理数乘法法则。

2.书面作业:教科书第98页习题2.8的A组第1、2、3 题。

第三篇:有理数的乘法的教案设计

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

第四篇:【教案1】2.5有理数乘法与除法

2.5有理数的乘法与除法(1)

教学目标

1.通过对实际生活问题的思考,初步感受有理数乘法法则的合理性;

2.明确有理数乘法法则,会运用法则进行两个有理数的乘法运算;

3.经历有理数乘法法则的探索过程,体验“分类”的思想方法.

教学重点

关注学生的合作交流;突出两个有理数乘法运算的双基训练.

教学难点

有理数乘法运算法则的探索、认识及运用.

教学准备

多媒体演示课件.

教学流程

一、设境引入

师:同学们还记得1998年夏天长江发生的那一场特大洪水吧!你看,滚滚的急流使长江大堤有决堤的危险.当时啊,长江沿线,军民一心,严防死守,终于战胜了洪水,取得了抗洪的胜利.这其中,我们的水文工作日日夜夜、时时刻刻观察、记录着水位上升与下降的变化情况,为抗洪作出贡献.【配合导语,播放“长江洪水”影片,最后定格在水文站画面】

在这里,水文工作者遇到了水位上升与下降的问题.现在就让我们带着这个问题一起走进今天的数学乐园.

二、引导探究

1.初步感受.

问题1:如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?【动画演示】

生:我觉得高了,因为以后3天水位都在上升.从动画演示看,高12cm.

师:很好!

问题2:如果水位每天上升4cm,那么3天前的水位与今天相比又如何呢?【动画演示】

生:因为3天前水位还没有升到今天的水位,所以3天前的水位比今天低.从演示看低12cm.

师:你真棒!

问题3:如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?【动画演示】.

生:低了,因为以后3天水位都在下降.从动画演示看,3天后的水位比今天低12cm.

师:你回答得真好!

问题4:如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?【演示动画】.

生:从演示中可以看出高了,我想水位每天下降4cm,3天前的水位还没有下降.高12cm.

师:太棒了!

2.深入探究.

师:这些结果,是我们根据动画演示及实际生活经验获得的.那么同学们能不能把上述问题中的变化过程用数学式子来表达呢?其变化结果能用有理数来表示吗?我们若规定:水位上升记为正,水位下降记为负;几天后记为正,几天前记为负.

师:【探究问题1】按上面的规定,水位上升4cm记为“+4cm”,3天后记为“+3”,那么3天后的水位变化的数学式子是什么?

生:(+4)×(+3).

师:正确!你能说一说(+4)×(+3)的合理性吗?

生:水位每天上升4cm,按规定求3天后的水位应该用乘法,这样就是(+4)×(+3).

师:那么3天后的水位变化的结果呢?

生:由演示图可知,3天后的水位比今天高12cm,结果为+12cm.

师:你知道(+4)×(+3)与+12的关系吗?

生:我感到“水位上升4cm,3天后的水位变化的数学式子”应该与“3天后的水位变化的结果”相等,即(+4)×(+3)=+12.

师:回答得很好!这里实质上3天后的水位变化的过程与3天后的水位变化的结果应是一致的.

师:【探究问题2】按上面的规定,水位上升4cm记为“+4cm”,3天前记为“-3”,那么3天前的水位变化的数学式子是什么?

生:由问题1的解决,我想是(+4)×(-3).

师:这个发现了不起!将问题1的解决方法用在同一类型的问题解决.那么3天前的水位变化的结果呢?

生:由3天前的水位比今天低12cm可知,结果为-12cm.

师:你知道(+4)×(-3)与-12的关系吗?

生:相等,即(+4)×(-3)=-12.

【与上述探究过程相同,引导学生继续探究问题3与问题4,并结合下面图示,帮助学生理解,同时完成了下述表格,为进一步探究规律作准备】

探 究 问 题水位变化的数学式子表达结果表示 1.水位上升4cm记为“+4”,3天后记为“+3”,则3天后的水位变化的

(+4)×(+3)= +12cm 2.水位上升4cm记为“+4”,3天前记为“-3”,则3天前的水位变化的(+4)×(-3)=-12cm 3.水位下降4㎝记为“-4”,3天后记为“+3”,则3天后的水位变化的(-4)×(+3)=-12㎝ 4.水位下降4㎝记为“-4”,3天前记为“-3”,则3天前的水位变化的

(-4)×(-3)= +12cm

三、概括法则

师:【演示课件(下表)】请同学们根据刚才所学及自己的经验,猜想表中各式的结果,并解释(+4)×(+2)=?与(-4)×(+1)=?的实际意义.请同学们前后四人一组,先小组讨论交流,并将讨论所得结果由组长记录在纸上,最后小组代表展示所得成果.【巡视指导,参与讨论交流】

(+4)×(+3)=+12,(-4)×(-3)=+12,(+4)×(+2)=,(-4)×(-2)=,(+4)×(+1)=,(-4)×(-1)=,(+4)×0=,(-4)×0=,(+4)×(-1)=,(-4)×(+1)=,(+4)×(-2)=,(-4)×(+2)=,(+4)×(-3)=-12.

(-4)×(+3)=-12.

生:(+4)×(+2)=+8,实际意义表示每天买4个本子,2天后的本子比现在的本子多8个.

师:规定谁为正?

生:买本子记为正、几天后记为正、本子多记为正.

师:精彩!

生:(-4)×(+1)=-4,实际意义表示气温每天下降40C,1天后的气温比今天的气温

低40C.

师:规定谁为正?谁为负?

生:气温下降记为负、几天后记为正、气温低记为负.

师:很形象!

师:仔细观察上表,你发现两个有理数相乘有规律可循吗?将你的发现先与同伴交流,之后再回答.

生:两个有理数相乘先确定积符号,再把绝对值相乘.

师:你认为如何确定积的符号?如何确定积的绝对值?

生:正正相乘得正,正负相乘得负,负正相乘得负,负负相乘得正.积的绝对值就等于这两个有理数绝对值的积.

师:两个有理数积的绝对值说得很好;积的符号也抓住了关键.有谁还想作一下补充吗?

生:与0相乘得0.

师:对!0既不是正数,也不是负数,应该考虑的.到此,我们已经把所有情形都考虑到了.能用简洁的语言概括这个规律吗?

【演示课件,并板书法则】

有理数的乘法(multiplication)法则

①两数相乘,同号得正,异号得负,并把绝对值相乘.

②任何数与0相乘都得0.

四、新知运用

师:同学们我们已经历经了实际问题--数学表示--法则概括的全过程,有了法则我们可以快速简捷解决两个有理数乘法运算(我们可以由算式直接运用法则来计算).下面就请同学们来解决以下问题:

1.确定下列两数积的符号.

①2×(-2.5); ②2×(+3);

③(-5)×(-7); ④(-4)×6;

⑤(-)×(-); ⑥6×();

⑦(-5)×; ⑧×.

2.计算.【引导学生口述解答(谁愿意起来口述过程),师板书,强调先确定积的符号,再算绝对值】

(1)9×6;(2)(-9)×6;

(3)3×(-4);(4)(-3)×(-4).

3.计算.【生板演(谁想到黑板上板演),师指导评改(谁愿意当裁判)】

①(-7)×3; ②(-48)×(-3);

③(-6.5)×(-7.2); ④(-)×9.

4.直接说出下列各题的运算结果.

①(-1)×(-2); ②3×5;

③3×(-4); ④(-5)×2;

⑤0×(-7); ⑥(-3)×(-2);

⑦(-)×; ⑧(-)×0;

⑨(-)×(-2); ⑩×(-).

五、归纳总结

这节课的学习我们经历了一个“体验”、“领悟”、“概括”、“应用”的过程,主要学习了有理数的乘法法则.你在这个学习的过程中,有哪些感受?有何收获?掌握了什么?

【作业】 P49习题2.5 题1

第五篇:2.5 有理数的乘法与除法教案

第13课时 2.5有理

教学目标:

1、利用探究的方法推导出有理数乘法的运算律;

2、能用乘法运算律简化运算,了解互为倒数的意义;

3、体现从特殊到一般的数学思想

(2)

教学重点与难点:

熟练运用有理数乘法的运算律

教学设计:

1.探索活动:同加法运算律在有理数范围内仍然适用的验证活动一样,从复习有理数的乘法运算开始,由问题“在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?”

引发学生思考,让学生感到验证的必要性,主动投入验证活动,例如对扑克牌上数字的正负规定(黑正,红负),用抽两张扑克牌的方法验证有理数乘法交换律.2.观察下列各有理数乘法,从中可得到怎样的结论(1)(-6)×(-7)=

(-7)×(-6)=

结论?

(2)[(-3)×(-5)]×2 =

(-3)×[(-5)×2]= 结论?

(3)(-4)×(-3+5)=

(-4)×(-3)+(-4)×5= 结论?

(4)请学生再举几组数试一试,看上面所得的结论是否成立? 3.有理数乘法运算律 交换律

a×b=b×a

结合律(a×b)×c=a×(b×c)分配律

a×(b+c)=a×b+a×c 4.例题教学 例1.计算: 1、8×(-

2、703112(562397)×(-0.125))(7122573115)(149)

3、()×(-36))(7)(257)(12)(257)

4、(5)(

[练一练]:

1、(-25)×(-85)×(-4)

2、—(100)×(310-

12+-0.1)

513、(-7.33)×(42.07)+(-2.07)×(-7.33)

例2.(1)991617×20

(2)(—99

12425)×5

(3)(-28)×99

(4)(—5例3.计算

(1)8×

(2)(—4)×(—811418)×9)

(3)(—

78)×(—

87)

[小结]互为倒数的意义

倒数等于本身的数是

;绝对值等于本身的数是

;相反数等于本身的数是

.[练一练]:见书P42 例

4、已知:互为相反数,c、d互为倒数,x的绝对值是1,求:3x—[(a+b)+cd]x的值

5、定义一种运算符号△的意义:a△b=ab—1,求:2△(—3)、2△[(—3)—5]的值

5.师生共同小结本节课内容:有理数乘法运算律 6.课堂作业

P39/2 P43/3

课后思考题:

1、计算:(1)211×(—455)+365×455—211×545+545×365

(2)37.9×0.0038+1.21×0.379+6.21×0.159(第16届“五羊杯”竞赛题)

(3)0.7×149+234×(—15)+0.7×+

9514×(—15)(第15届江苏省竞赛题)

2、有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张,(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?

下载有理数的乘法与除法教案设计word格式文档
下载有理数的乘法与除法教案设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数乘法与除法的优秀教案

    一、学习目标:1. 熟练掌握有理数的乘法法 则2. 会运用乘法运算率简化乘法运算.3. 了解互为倒数的意义,并会求一个非零有理数的倒数二、学习重点:探索有 理数乘法运算律学习难点......

    有理数的乘法和除法教案

    有理数的乘法和除法教案 课时:2 授课时间:2012年4月11日 授课人:许美斌 教学目标:经历探索有理数的乘法和除法法则过程,掌握和使用有理数的乘法和除法法则。 教学重点:应用法则正......

    易而实 教案 有理数的乘法与除法

    2.6 有理数的乘法与除法(1) 学生起点分析: 教学目标: 1.了解有理数乘法的实际意义,理解有理数的乘法法则; 2.能熟练地进行有理数的乘法运算; 3.在积极参与探索有理数乘法法则的数学活......

    2.5 有理数的乘法与除法(第1课时) 教案

    案例2.5 有理数的乘法【课题】:义务育课程标准实验教科书数学(苏教版)七年级上册 第二章 有理数第2.5节有理数的乘法(第1课时) 一、教材分析: 有理数的乘法这一节是学生刚开始经......

    初中数学有理数的乘法教案设计(汇编)

    【教学目标】(一)知识技能1。使学生掌握多个有理数相乘的积的符号法则;2。掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;(二)过程方法在师生互动、生生互动的系列活动......

    1.5 有理数的乘法和除法教学案

    1.5 有理数的乘法和除法 一、教与学目标: 1、让学生能说出有理数乘法法则,并能应用法则进行乘法运算。 2、能体会正数与负数,负数与负数相乘时的符号确定。 二、教与学重点难点:......

    有理数的除法

    有理数的除法 篇一:有理数除法练习题2014/9/6 33 (1)(?)?(?) ( 2)(?2)? 3 105 (3)(?323)?(?512) (5)(?3)11???(?21 4?2?4) (7)(?31 4)?(?13 )?8?4 2 (9) 5?(?2283......

    有理数的除法

    有理数的除法 夏朝友 学习目标:理解并掌握有理数除法的法则,会应用法则进行有理数的除法运算。 核心问题一:探索有理数的除法法则 复习回顾:有理数的乘法法则 两数相乘,同号得......