第一篇:数学史融入小学数学教学的探讨论文
摘要:小学数学课堂教学以学生掌握更多数学知识、实现小学数学有效教学为终极目标。而在小学数学教学的过程中,适当将数学史融入其中,不仅能够丰富教学内容,健全学生数学知识体系,还能培养学生树立正确的数学观,激发学生学习兴趣,为实现小学数学教学目标提供有利条件。本文谈谈如何将数学史适当融入小学数学课堂教学。
关键词:小学数学;数学史;课堂教学;小学生
数学作为一门自然学科,抽象性较强,如果教师在教学过程中存在教学方法不得当、综合素质较低等问题,就会导致小学生对数学产生畏难心理,失去学习数学的兴趣和信心。针对目前我国大部分小学数学课堂教学存在的问题,将数学史适当融入小学数学课堂教学就显得尤为必要,这不仅是学生学习知识的需要,更是现代数学教育发展的必然趋势。
一、提升数学教师综合素质
数学教师综合素质的高低直接影响学生掌握数学知识的程度。由于长期受我国应试教育的影响,很多数学教师只注重自身数学解题技能水平的提升以及向学生传授数学解题方法;但在目前小学数学知识更新速度日新月异的情况下,教师的综合素质就会显得力不从心,尤其数学史方面的知识更是知之甚少。甚至有的数学老师始终认为即便是掌握丰富的数学史知识,在考试时数学史也不会作为考试内容,还不如把学习数学史的时间腾出来向学生多讲授几道练习题更实际。这样导致学生只知道机械解题,长期如此,学生就会对这种枯燥无味的教学方法产生厌烦心理,进而导致小学数学课堂教学效率的下降。鉴于此,数学教师应在提升数学专业技能水平的同时,转变自身观念,努力加强数学史的学习,熟知数学教学主题内容后面的数学故事,并将其适当融入小学数学课堂教学,让小学生认识到我国数学知识的博大精深。
二、以数学史作为教学背景,丰富教学方法
传统教学方法中,往往教师一到课堂,就让学生打开课本,告诉学生今天所要学习的内容,接着在黑板上写出本节课所讲内容,直至讲课结束。很多学生对这种教学方法早已司空见惯,了然于胸,因为太过熟悉,已经无法提起任何兴趣,在老师讲解知识的过程中自然不能全神贯注,走神、开小差的现象在所难免。小学生对任何新鲜事物都充满好奇,以数学史作为教学背景,可以使小学生耳目一新。教师可以在讲授内容之前,以与讲解内容相关的古代数学家的故事为引题开展教学活动,可以使学生放松对传统教学的戒备心理,定会集中精神认真听讲。然后教师自然引出教学主题并进行讲解。在课堂教学的过程中,小学生的注意力并不能持久,只有通过教师的引导,其思维才能始终跟上教师的教学进度。而笔者对我国数学史梳理后发现,小学数学每个教学主题背后都有可追溯的历史渊源,而这些背后的故事就是教师可以利用的数学史题材,可通过例题练习—解题技巧—讲解数学史,交替进行,合理引用。这样不但能促使学生学习数学知识,还能有效提高小学数学课堂教学水平。
三、将数学史内容融入教学计划
首先,要明确数学史与数学知识同等重要。小学数学教学应结合教材内容来开展,又要根据学生的不同年龄特点增加数学史的内容。此外,数学史内容的呈现方式应该是多种多样的,除目前已有的形式外,还应结合学生的心理年龄特征、知识接受水平对数学史内容加以选择、编排,譬如连环画、卡通画等形式;也可将数学游戏、数学谜题等作为数学史内容。这样更易激发学生的学习热情,为学生的终身学习提供一个良好的开端。在编排方式上,选择学生最需了解的主题,并以此为基本原则,在各个学段以不同方式系统连贯地加以呈现。只有这样,数学史的教育价值才能得到充分发挥。
四、结论
数学史在我国小学数学课堂教学中的适当融入,可以让学生全面了解我国的数学发展史,并在丰富数学课堂教学、激发学生学习兴趣、提升教学有效性等方面产生十分重要的作用,轻视不得。同时教师要从学生的实际情况出发,多角度、多层次地将数学史融入教学,拓宽学生视野,最终为达到小学数学教学目标创造更多的有利条件。
参考文献:
[1]聂卫兰.浅谈如何在小学数学中渗透数学史[J].情感读本,2015,(14).[2]陶博慧.数学史对小学数学课堂教学效率的影响研究[J].新课程学习(上),2015,(1).
第二篇:小学数学课堂教学中融入数学史内容论文
[摘要]随着我国经济的不断发展,人们对于教育的认识也发生了改变。将数学史融入小学数学课堂教学有助于学生深层次了解数学知识,养成良好的阅读习惯,提高学习兴趣,促进学生的全面发展。本文以论述数学史实践为出发点,通过发现当前小学数学教学过程中存在的突出问题,提出有针对性的解决方案,以期提高数学课堂教学的质量。
[关键词]数学史;小数数学;探讨
自新课程改革以来,怎样提高小学数学课堂教学效率成为了一项重要的课题[1]。将数学史巧妙融入课堂教学是学校和教师当前非常关心的问题,因为,将数学史融入数学教学能够促使学生对其产生深刻的印象,有助于学生理解和掌握数学知识,还能够提升学生的数学学习兴趣。
一、数学史融入小学数学课程的重要意义
(一)有助于培养学生的人格
许多数学家都具有优秀的品质,锲而不舍和勤奋刻苦的精神、顽强拼搏的毅力都令人感动。数学家的工作为人类发展做出了贡献,数学定理、概念以及公式都经过科学家的反复思考、大量演算及推理,虽然无数次的考证中也面临着重重困难,他们并没有气馁,而是突破障碍,最终取得了成功。当前舒适的生活条件和美好的生活环境在很大程度上取决于科学家的顽强拼搏与辛勤付出,因此,数学教师有义务将科学知识的产生过程讲授给学生,使学生养成严谨的治学态度和顽强的意志品质。
(二)有助于丰富学生的知识
数学史具有很强的教育功能,将其引入小学数学课堂教学有助于小学生高效地学习数学知识、理解数学发展的大致脉络,使学到的数学知识更加深刻[2]。数学史能够使课堂教学内容更加丰富和生动,激发学生的学习兴趣,使数学知识的学习更加有效。数学史中包括很多趣味性强的故事,比如,教师讲授十进制内容时,可以给学生讲解十个手指的故事;数学史包括数学家的故事;数学史包括趣味游戏,如摆火柴和七巧板拼图;数学史还包括许多历史名题,如四色问题和哥德巴赫猜想。丰富的数学内容能够活跃课堂教学的气氛,有助于学生积极开展数学知识的学习。
(三)有助于培养学生的数学能力
1.使学生具备正确的数学思维和数学方法
思维和方法是数学的精髓。数学史与数学思维和方法有着密切的联系,学生可以从数学史学习中形成一套适合自己的思维和学习方法。日本数学家米山国藏认为:科研工作者需要不断学习数学知识,知识永远无法满足他们的需要,数学思维和方法却能满足他们的需要;数学知识暂时存在于脑海中,数学思维和方法却是长期受用,经过一段时间仍能发挥很大的作用,使人一生受益。引用数学史内容时,教师需要剖析数学家主要的思想和方法,旨在帮助学生形成解决问题的思路和方法。在小学数学课堂教学中,教师需要引导学生在学习和体味知识的同时引入思维方法,使学生在头脑中生成印象深刻的学习思想,促进学生对于知识的有效类比与归纳,实现知识的记忆和有效利用。法国数学家阿玛达认为:学生遇到和解决数学问题的过程与科学家研究和探索数学问题有相似之处,当然差异性更多表现在程度上。学习数学史的过程就是学生尊重数学的过程,学生在数学知识学习中遇到的问题能够映射出数学家在探索过程中遇到的问题。当前的数学教材在编排顺序上存在一些不合理之处,主要是重视数学定义、原理、公式等内容的呈现,却忽略了数学史的内容,使得数学学习的顺序和数学知识的探索过程完全相反,学生难以较好地了解数学家探索问题时的解决思路,导致学生缺乏学习主见,只是被动接受知识。数学史能够使学生了解到数学思维的根源,从不同的角度审视问题,不仅开阔了学生的视野,而且使学生在解决数学问题时成功避开障碍,有效解决问题。
2.有助于培养学生的问题解决能力和创造力
小学数学的教学目的在于帮助学生获得知识,并运用已有知识解决现实生活中存在的问题,培养学生运用已有知识解决实际问题的能力。素质教育的培养目标给教师提出了新的要求,强调学生主观能动性的发挥,尊重学生的人格,培养学生分析与解决问题的能力,实现学生智慧和潜能的开发,促使学生养成健全的人格,培养学生的创新能力,最终提高学生的整体素质。将数学史融入数学课堂教学符合素质教育的需要,具有一定的现实意义。数学史能够培养学生分析与解决问题的能力,帮助学生掌握解决问题的新方法。在学习知识和解决问题的过程中,学生的知识体系也在不断完善,思维能力得到不断的提升,不仅形成了创造性思维,而且培养了创造能力。
二、小学课堂设置数学史的现状
(一)注重激发学生兴趣,忽视数学思维与方法渗透
我国数学史的内容包括多种类型,有数学家解决的数学问题、有针对问题的解决策略、有数学发展史资料,还有数学家在现实生活中遇到的奇特事物。小学数学课堂教学中融入数学史有助于学生对数学知识形成深刻的认识,极大调动了学生的学习兴趣。在教师教育中,课程的设置多以经验为主,以实证研究为决策基础的现象还不多[3]。通常情况下,数学教学只把数学史当成一种辅助性手段,大多数教师将数学史融入课堂教学只是为了提高学生的学习兴趣,并非为了真正实现学生的全面发展。当前,一些版本的数学教材中已经融入了数学史,以数学知识中的“方程”内容为例,教师可以联系古代方程的求解开展教学。
(二)过于展现“正面历史”,淡化“负面历史”
数学经过漫长的发展过程。事实上,数学教师给学生讲授数学知识时,重点讲述具有积极意义的数学史,通过正面的内容促进学生对数学知识的理解,调动学生的学习兴趣,那些有负面色彩的内容却没能客观地介绍给学生。比如,牛顿和莱布尼为了微积分的发现权争夺得不可开交,从中我们可以了解到数学家也会为了荣誉而不惜一切去争斗,这类知识可以加深学生对微积分知识的印象,数学知识不再是刻板和严肃的符号,而是变得十分生动和有趣,学生才能从中认识到自己的不足,从而不断努力学习和充分实践,最终得出实践是检验真理的唯一标准。
三、小学数学课堂呈现数学史
(一)呈现数学史的真实进程
一些人对于小学生的数学学习发挥着至关重要的作用,包括教材的编写者、教学研究者以及教师。小学数学课堂教学的效果是大家共同努力的结果,需要大家相互配合,一方面,教学内容中数学史知识的选择要有针对性,能够突出数学史的真实性和科学性;另一方面,数学史知识的筛选要有一定的合理性,既有助于学生对数学思想的理解,又能调动学生的学习兴趣,使小学生主动投入数学学习,实现全面发展。由于小学数学教学内容不能完全与数学史知识相匹配,往往存在不同年级和不同数学内容的限制。比如,教师讲授与图形运动有关的内容时,会涉及到小学六年级的内容,包括角的认识、长度及立体图像;另外,三角形等平面图形的知识和图形运动等内容分散在不同年级的教学中。在实际的数学课堂教学过程中,数学教师要将数学内容和数学史很好地融合在一起,目的是为了保证数学教学的客观性和完整性,将数学知识更好地呈现给学生。
(二)将数学史融入教学过程
了解数学史的发展可以更好地挖掘高等数学的文化价值[4]。教师在讲授数学知识之前,可以先介绍相关的数学故事,从而为学生营造一种和谐的教学环境,调动学生的学习主动性,点燃他们对于数学知识的学习热情。另外,教师需要运用多种教学方法将数学知识传授给学生。将数学史渗透进小学数学课堂教学是一个极其复杂的过程,恰当的教学手段能够发挥积极的作用,为此,数学教师需要教会学生不同的学习方法,并引导他们在消化与整合后形成符合个体特点的学习方法,从而加深知识的理解,实现学生能力的真正提高。最后,教师在课堂教学中需要引导学生积极探究数学知识的根源,这不仅是素质教育的要求,也是数学教学的目标。
(三)教材编订形式多样化
目前,我国基础教育阶段普遍使用的教材版本主要有人教版、苏教版、西师版及北师大版,虽然版本不同,却有不少的相似点,包括较少涉及数学史方面的知识。为了解决这个突出的问题,笔者认为可以编写满足小学生发展需要的数学史读本,本着教材多样化的思想,巧妙地将数学史知识融入数学课堂教学中,不仅丰富了学生的数学知识,而且有助于新旧知识的有效整合,还能调动学生的数学学习兴趣,最终提高数学课堂教学的效率。综上所述,当前的小学数学教学中存在一些突出的问题,不利于学生的全面发展,也不能提高课堂教学的质量。因此,本文特别提出引入数学史解决小学数学教学效果不佳的问题。
[参考文献]
[1]张颂军.试分析逻辑性在小学数学课堂教学中的作用[J].现代妇女(下旬),2014,(1).
[2]黎智鹏.浅析数学史对小学数学课堂教学效率的影响[J].才智,2014,(30).
第三篇:数学教学中融入数学史的策略研究
数学教学中融入数学史的策略研究
摘 要:数学史教育是数学新课程改革中进行素质教育的重要手段.在数学教学中融入数学史教育具有十分重要的意义,可从六个方面进行:介绍我国数学成就,培养学生爱国主义情操;领略数学的美学价值,培养学生的审美意识;了解数学的文化价值,培养学生的学习兴趣;感悟数学家的励志故事,培养学生的创新精神;经历数学知识的产生过程,使学生了解数学知识的应用价值;挖掘数学思想方法,提高学生解决问题的能力.
早在十九世纪末,在美国就有人提倡将数学史作为数学教师的教学工作的必要组成部分,数学史家卡约黎在《数学史》的前言里论述数学史对数学研究的意义之后,谈到数学史对数学教师的价值中称:“如果用历史回顾和历史轶事点缀枯燥的问题求解和几何证明,学生的学习兴趣就会大大增加”.自七十年代以来,数学史在数学教育中的重要性逐渐为人们所认识,国际教育委员会设立专门研究数学史与数学教学关系的研究群,目的是结合数学史与数学教学,以提升数学教育的成效.国际数学教育会议上曾开展过关于数学史融入数学教育专题讨论,认为数学史对激发学生的学习兴趣,培养学生的品格和思想,熏陶学生不畏艰难的性格等都有重要的作用.现在世界上越来越多的国家开设了数学史课程,我国近年来也开始在部分院校开设数学史课,编写各种数学史教材,举办数学史教师培训班等等.在新课程改革中,根据不同年级和单元在中小学数学教材中适当的渗透数学史内容.
近10余年,数学史研究在国内引起广泛的重视,但许多研究成果仅仅停留在学术层面上,还没有真正转化为数学教育的内容.如何将数学史融入数学教材及其教学活动中,使数学史与数学教育的结合更有生命力,这是我们必须认真思考、急待解决的问题.本文结合我国新课程改革的实际,论述了数学教学中融入数学史的六个策略,为数学史渗透在教材中,融入到数学教学中提供借鉴.
1.学习数学史的意义
数学史,即数学发展的历史.数学史在数学教材中既有在章节引言和正文部分的直接介绍,也有作为阅读材料的一般罗列.数学史对有重大影响的某些人物、事件、思想方法等作了详尽的介绍,但是教材中对数学史知识的介绍缺乏系统性,在有的知识点上进行大量介绍,而有的则没有很好发掘,没有形成完整的体系.新一轮的课程改革,对数学教育有了新的要求,这一次系统而复杂的工程要所有教师以高度的热情参与其中,但是一些学校的课堂教育改革依然滞后,“满堂灌”“填鸭式”等教学方式仍然存在,教师在课堂上把知识灌输给学生然后学生模仿老师展开题海战术,强化知识的记忆,这种教学方式不能让学生真正理解数学知识的本质和内在的逻辑关系.所以说传统的数学教育观念、教育方法、教育模式还没有得到根本的改变.
数学老师在数学教育教学中适当的渗透数学史的知识,不仅能增加数学教学的科学性和趣味性,更能激发出学生对数学的热爱,培养学生的能力.通过生动、丰富的数学家的故事、数学趣闻和数学史料等,使学生初步了解数学产生与发展的过程及数学知识的现实来源,有助于学生对数学的全面认识和了解,形成正确的数学观,更好地理解数学;有助于活跃课堂气氛,激发学生学习数学兴趣;有助于学生感受数学家的严谨和锲而不舍的探索精神;有利于学生形成正确的思维方式;有利于培养学生的创新精神;有利于提高学生的美学修养;有助于学生学会如何运用数学知识,对学生的实践能力起着巨大的推动作用.在数学学习中渗透数学史教育这种全新的教学内容,不仅能使学生掌握数学文化方面的内容,还可以获得人文科学方面的修养.所以说数学史对于数学教学来说是一种十分有效的、不可缺少的工具.
2.数学史在数学教学中渗透的策略
2.1介绍我国数学成就,培养学生爱国主义情操
中华民族是一个有着五千多年文明的伟大民族,中华文化更是源远流长.对于数学的发展而言,中华民族有着不可磨灭的贡献,特别是在代数、算术以及几何方面有更高的成就.但现在的数学教材中很少涉及关于数学史的知识,许多读完高中,甚至读完大学的学生对几个著名的数学家都知之甚少,更不知道数学悠久曲折的发展史.这是我们数学教育中的一大缺陷.所以要在数学教学中渗透数学史方面的知识,数学教学中可以介绍一些我国数学成就,如刘徽、杨辉、秦九韶、祖冲之等一批优秀的数学家;还有著名的中国剩余定理、祖冲之的圆周率的计算、刘徽的“割圆术”等具有世界影响的数学成就,其中有些比国外领先几千年以上.南北朝时,祖冲之用“缀术”推出圆周率,精确到小数点后第七位,那时的印度只精确到小数点后第四位,欧洲也仅仅精确到小数点后第六位,可见中国的“祖率”可以称得上首屈一指了.中国代数上的成就也是不可忽视的,公元一世纪以前就发现了正负数计算和联立一次方程的解法,这比印度以及欧洲要早几百年到一千年.今有解决了著名世界数学难题“哥德巴赫猜想”中的(1+2),创造了距(1+1)这颗“皇冠上的明珠”只有一步之遥的陈景润,有享誉海内外的华罗庚的“华氏定理”等.
例如在最优化的学习中老师在讲著名的邮递员问题时,都会提到邮递员问题的提出者管梅谷,他一直从事运筹学、组合优化与图论方面的工作,在国内外知名度都很高,1962年他首先提出“中国邮路问题”即:邮递员从邮局出发送信,要求对辖区内每条街,都至少通过一次,再回邮局.在此条件下,怎样选择一条最短路线?中国邮路问题可以应用于扫雪车路线、邮政部门、警车巡逻路线、洒水车路线、(计算机制造工业)如何将激光刻制用于集成电路加工的模具、(计算机绘图)如何节约画笔的空走问题等.这一问题的提出不仅对中国影响很大,对世界的影响也是不容忽视的.这样一讲学生会为我国数学家获得这样的成就感到自豪,从而培养学生的爱国主义情操,更加积极主动地去学习.
这些数学家的成就无疑都在弘扬中华文化,振兴中华精神,使学生为我国数学悠久的历史以及数学家的成就感到自豪.所以教师必须要了解数学的发展脉络,认真分析数学知识与数学史之间的联系,引导学生进行自主探索,促使学生在课外活动中主动去学习数学史中数学家的故事.教师也可以结合数学知识在数学教学中渗透数学史方面的知识,特别是我国那些感人至深的数学成就,它不仅能够触动每个盼望国家繁荣富强的学生爱国主义情操,而且可以增加学生的民族自豪感和使命感.
2.2领略数学的美学价值,培养学生的审美意识
著名英国哲学家和数学家罗素曾说过“数学不仅拥有真理,而且拥有一种至高无上的美,一种冷峻严肃的美,就像一尊雕像„这种没有音乐美术那样华丽的装饰,它可以纯洁到崇高的程度,能够达到只有严格的,只有最伟大的艺术才能显示的完美境界”无数数学家都被这种纯洁至高无上的美所折服.
数学史中蕴含着无数美的宝藏,在数学教学中渗透数学史,对学生审美意识的提高起着很重要的作用.数学中通过数学史的学习可以让学生感受和欣赏数学的美,真正领悟数学的美.许多著名的定理、原理都表现出数学的美.例如毕达哥拉斯定理(勾股定理)是初中教材中一个十分简洁而又深刻的定理,两千多年来激起了无数人对数学的兴趣,很多人都给出了他的证明,1940年,著名美国数学家卢米斯在《毕达哥拉斯命题艺术》的第二版中收集了370种证明过程,这充分展现出这个定理的魅力,体现出数学的美学价值.
数学的美主要体现在简洁、容易、对称、一目了然.下面的例题解析过程充分体现出了数学的美学价值.
例1 已知关于的函数:求此最小值函数
.,其最小值是的函数,教师们在一起制定评分标准时,达成了以下共识:(总共6分)写出:
得1分;
分三种情况进行讨论,任意答对一种得1分.(1)(2)(3)时,时,时,; ;
;
写出最终形式得2分.
数学老师都认为对于最后拿“2分”就是为了锻炼学生的一种能力,但具体哪种能力,并未给出,但是在考试中大部分同学都丢失了这2分.
在评试卷时,老师对被扣这2分的理由各不相同.
有一位老师告诉学生:扣这两分就是为了养成你们总结的习惯.但这种说法并不能说服学生,仍有许多学生感到十分气愤.
另一位老师则这样解释的:打个比方,如果几位工人去搬砖,劳动结束后,每个人在结束后,都要对自己搬的数量汇总,才能拿到工钱.如果不总结结论,结果就会不清晰,并且提出解题的美学标准,结果没有学生提出异议,因为学生领略到了数学的美学价值. 在之后的测试中,来自提到过“数学美”的班级,大部分同学都写上最后的结论.
这次调查反映出教学中是否提到数学美是否自觉主动地审视最后结论是有影响的,在提到数学美的班级,大部分学生自觉审视结果是否符合美的标准,其它班,学生则依赖于教师指出答案最终形式的要求,可见在数学教学中让学生领略数学的美学价值,可以培养学生的审美意识.
2.3了解数学的文化价值,培养学生的学习兴趣
数学文化是指人类社会历史发展过程中所创造的物质财富和精神财富的总和.特指精神财富,如:文字、艺术、教育等,从某种意义上说数学教育就是数学文化的教育.数学家的故事以及他的成就,就是他们所处时代的文化产物,反过来又丰富了那个时代的文化,我们应该在教学中认识数学的文化价值,培养学生的学习兴趣.许多概念,定理得证明都可以让学生了解到数学的文化价值.
孔子曰“知之者,不如好知者,好知者不如乐知者.”大部分学生都怕数学,更害怕学习数学,他们普遍认为数学枯燥单一,如何使知识趣味化,让学生感到学习数学是一件有趣的事是提高数学教学效率的手段,巧妙地渗入数学史,让学生了解数学的文化价值是有效地方法之一.
例如在讲用二元一次方程组解应用题时,可以举我国古代《孙子算法》上著名的“鸡兔同笼”问题,然后这样设计教学:
老师:同学们,现在有鸡兔头共有5只,脚有16只,请问鸡兔各有多少只?
(设计的问题与小动物有关,学生非常感兴趣,立刻积极讨论起来)
学生1:1只鸡4只兔,脚18只;2只鸡3只兔正好16只.
老师:好,看同学们这么高兴又这么快算出来,我也很高兴,大家非常棒!那就请同学们继续解决“鸡兔同笼,共有头45个,腿146只,此时鸡兔各多少只?”
学生2:不好找了.
老师:显然刚才试推法太复杂啦,我告诉大家这是一道历史名题,源于《孙子算法》上著名的“鸡兔同笼”问题.
(“这是历史名题啊!”学生充满了惊讶和兴奋,并跃跃欲试)老师:我们先假设有鸡x只,有兔y只,一只鸡有1个头2只脚,那么x只鸡就有x个头,2x只脚;一只兔有1个头,4只脚,那么y只兔就有y个头,4y只脚,根据刚才的分析,大家能找到两个方程吗?(学生积极讨论起来)学生3:根据头可列方程x+y=45,根据脚也可列方程2x+4y=146.
老师:很正确,那么如果我们把这两个方程组成一个方程组是否可以解决这个问题呢?
学生4:当然可以,可以解得x=17,y=28. „„„
从这个教学设计中可以看得出学生得到答案心情非常舒畅,彼此会心的笑了,课堂气氛活跃了,学生们的兴趣也提高了,对列方程组解应用题收到很好的效果.数学本身具有广泛而深刻的文化内涵和人文价值,在平时数学教学中要善于挖掘数学文化,让学生在学习过程中感受到数学和其他人类创建的文明一样,具有特定的文化价值,提高学生学习的兴趣,促进学生的全面发展.
2.4感悟数学家的励志故事,培养学生的创新精神
学习数学史可以使学生学习数学家的一些优秀品质,无理数的发现、微积分的发现以及非欧几何的创立等等都说明了数学的发展道路是不平坦的,数学家们坚持不懈、不畏权威、坚持真理,很多人为之付出了毕生的努力.欧拉虽然31岁右眼失明,到晚年双目失明,但他从未放弃过研究,以至于他在去世后的十年里,他的论文仍然在科学院的院刊上持续发表.又如大几何家施泰纳,自幼家贫,18岁才开始正式读书,但通过艰苦奋斗,终于在三十岁一举成名.
这些故事告诉我们一个道理:数学上的每一个概念、定理都来之不易,对知识要热爱并执着,只有这样我们才能创新,希尔伯智喜欢独立思考,对不明白的问题总是问为什么,这也恰恰说明了这一点,教师在数学教学中涉及到他们的知识时可以先讲一下他们励志的故事,学生可以从数学家的故事中,冷静思考数学家的思想品质,并将这些品质转化为指导自己的原则,这样创新思维就会慢慢形成.数学家们动人的故事、对科学的热爱与执着以及严谨的作风和顽强的毅力等,都对学生影响很大,对于调动学生的非智力因素很有意义,所以在数学教育教学中结合教材内容多讲一些数学家的励志故事.
例如在讲无理数时,可以围绕无理数的发现展开教学: 老师:古希腊有一个著名的毕达哥拉斯学派,它的信条是“万物皆整数”,也就是说宇宙中一切现象都可以归结为整数或整数的比.这是两千五百年之前人们对于数学的最高等的认识,根据你现在掌握的知识,你觉得当时人们已经知道了哪些数?
学生1:整数和分数. 老师:其他同学同意吗?
学生2:不同意,他们当时可能还不知道负数呢.
老师:非常好,但是事实上当时已经发现了负数的意义,比如一头猪平均 成两份,一个人拿走了一份,就用亏空表示拿走的那份,记为.看来他们当时已经认识到有理数了.下面我们来研究一下他们所提出的“整数之比”请同学们每个人随便写一个分数,然后化成小数„,你发现了什么?
学生3:有的是有限小数;有的是无限循环小数.
老师:原来毕达哥拉斯学派所指的就是这两种数,那么大家思考一下当时他们没有发现什么数啊?
学生4:应该是无理数吧!老师:为什么呢?
学生4:正数有与它对应的负数,有理数也应该有与它对应的无理数. 老师:非常好,学会运用类比的方法.
学生5:当时他们忽略了一个数,它不可以用两个整数之比表示. 老师:非常好,显然那时候毕达哥拉斯学派并没有认识到这一点,其实人类最早研究是在两千三百多年前,当时该学派有位成员著名数学家希伯索斯发现了:“边长为1的正方形的对角线的长度不能用整数或整数之比表示”.他违背了毕氏学派“万物皆整数”的教义,发现了无理数,由于毕氏学派无法解释这个世界到底发生了什么事,让当时的毕氏学派内部引起很大震动,但是希伯索斯并没有放弃自己的成果,最后他为此被投进大海.但是真理是不可能被锁住的,这个发现最终还是被广泛应用.
„„„
这个教学片度故事让学生深刻感受到数学家在努力发现新知识的过程中所体现出的励志精神和创新精神,从而激励学生励志学习,培养创新精神. 2.5经历数学知识的产生过程,使学生了解数学知识的应用价值 数学教学中一定要讲知识的背景、知识的形成过程以及它的应用,让学生感受到数学概念、数学方法和数学思想的来源与发展都是自然产生的,历史可以揭示出数学知识的现实来源与应用,使学生了解数学的应用价值,从而提高认识自觉学习.在运用正弦定理和余弦定理解决问题时,会遇到比较复杂的计算问题,学生会感到很反感.如果讲一下它的来源,学生就会了解它是在什么条件下产生的,学习时就不会仅仅停留在知识的表面了,而是有更深刻的理解,就会知道怎样去运用它,因此在学习正弦定理和余弦定理的教学中应介绍三角学简史.学生从中可以得到知识的产生过程,提高解决问题的能力.
例如在学习圆时,可以先讲一下:大约在6000年前,美索不达米亚人就靠他们的智慧做出了世界上第一个圆的木轮。约在4000年前,人们将木制轮子固定在架子上做成最早的车子。在2000多年前,我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆只有一个圆心并且圆心到圆周的长度都相等。从此人们会作圆并且真正了解圆的性质。这个定义比希腊的数学家欧几里得给圆下的定义至少早100年。可以让学生了解到数学知识的产生与发展首先源于人类生活的需要,增进学生对数学的理解。
讲这些知识会让学生感到数学知识来源于生活,反映出数学知识都是生活中最普遍的问题,数学可以提供解决生活中的问题的方法,可以使问题简单化.我们正处于一个知识经济时代,数学在各种技术中扮演着不可或缺的重要角色,作为新时代的学生,必须了解数学知识的产生过程,了解数学知识的应用价值. 2.6挖掘数学思想方法,提高学生解决问题的能力
学生在学习数学的过程中思维方式与数学家研究过程中思维方式有很多相似的地方,但是现在的数学教材为了使知识具有系统性,通常是“定义-定理-性质-举例-应用”这一模式,这与数学知识的发展过程以及学生的学习数学思维都是相反的,所以在数学学习过程中很难发现数学的思维过程,所以学生在学习数学时总是抱怨数学太难学了,根本原因是他们根本没有理解学习数学的科学方法,大部分只是把课本内容死记硬背下来,并没有去深刻探索知识的来龙去脉,这样并不利于创造性思维的发展.数学史的引入可以帮助学生对数学知识产生的过程有一个比较清晰地认识,从而培养正确数学思维方式. 例如教师在讲“负数”时,可以告诉同学们负数就是为了解决客观世界中具有相反意义量而产生的,有正的数必然也会有负的数.从世界上最先在《九章算术》中提出负数,到1637年笛卡尔发明几何学创立坐标系概念.由于生产生活中的需要,负数从被发现到承认经历了一千八百多年历史,最后形成了有理数系统.教学中要让学生体会数学史上一些命题的产生、发展.从而更好的让学生认识数学科学的本质,挖掘数学中正确的思维方法,形成正确的思维方法是学生学好数学的必要条件.科学的思维方法包括数形结合思想、方程思想、转化思想、函数思想等,数学史中蕴涵着许多重要数学思想方法,如高斯10岁时可以巧算1+2+3+4+5+„+100,主要运用如何从特殊到一般的思想方法;用三角函数思想测量教学楼的高度掌握建模的思想方法等,数学史中展现数学思想方法的例子还有很多,在教学中适当渗透这些数学思想,可以让学生通过对数学思想方法的理解、问题本质的探究,从而形成了自己的科学思维方式,这有助于提高学生对知识探索的积极性,从而找到学好数学的有效途径,达到事半功倍的效果.
总之,在数学教学中可以通过数学史对数学知识思想方法的发生、发展给予总的描述,并从中揭示数学发展的基本方向,以及数学学科与其他学科之间有什么关系,从而让学生更好地了解数学中的思想方法,进而更好地解决数学问题和生活中的问题.所以教师要适时地给学生渗透数学思想方法,引导学生运用数学方法去科学的思考问题,培养学生解决问题的能力.
3.结束语
综上所述,数学教育中结合数学史进行教学有着不可估量的价值和重要的意义,所以说数学史的教育是不可或缺的,特别是在新课程改革阶段、在全面推行素质教育的时代提出要充分肯定数学史的价值,数学教育应对数学史予以充分的重视和积极的应用.作为21世纪的数学教育工作者应该深切理解这一点,尽量去学习、研究一些数学史的知识,树立正确的数学观,不要一味沉浸在题海战术中,充分重视数学史与数学内容相结合,促进数学的改革,让学生真正理解数学、学好数学,为培养学生创新意识和数学素养打好基础.
运用数学史可以丰富数学的课堂教学使数学课堂变得有生机有活力,有助于学生对知识的掌握.希望能引起数学史界和教育界的共同关注、共同合作,根据数学教学内容与要求适当在数学教学过程中将数学家的故事写入教材;出版一些关于数学史与数学内容的家财对一定教育对象进行试验,然后调整内容;在学校里开设数学史选修课等.相信在广大教育工作者和数学史家共同努力下我们的数学教学一定会充满生机和活力.
第四篇:把数学史元素融入初中数学课堂2
把数学史元素融入初中数学课堂 ——以《勾股定理》教学为例
一、学习目标 知识与技能:
掌握勾股定理a2+b2=c2在中学数学占有重要地位,通过数学史的渗透,培养学生发现问题,提出问题的能力。
过程与方法:
1、了解勾股定理的文化背景,体验勾股定理的探索过程。
2、在勾股定理的探索过程中,体会数形结合思想,发展合情推理能力。
3、通过拼图活动,体验数学思维的严谨性,发展形象思维。情感、态度和价值观:
1、通过了解数学史与数学文化,提高学习兴趣,激发我们的爱国热情。
2、在探究活动中,学会与人合作,并在与他人交流中获取探究结果。
3、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
二、教学重点、难点
重点:经历探索及验证勾股定理的过程。难点:用拼图的方法证明勾股定理。
三、教学媒体准备 教学媒体:多媒体课件。
学具准备:方格纸(老师准备)、4个全等的直角三角形(学生四人一组,分组准备)。
四、教学过程:
(一)导入新课: 活动一
师:今天我打算讲勾股定理,那么再讲新课之前,关于这一节课你有没有什么问题想要了解?
学生:老师,他为什么叫勾股定理呀?
学生:老师,勾股定理给我的感觉就是看不到,摸不着,不喜欢,肯定非常难学。
老师:有人听说古代数学史上数学家毕达哥拉斯的相关知识或“百牛定理”的故事吗?
学生:我曾经查阅了“百牛定理”的故事。接着讲起了故事: 勾股定理是数学史上一个非常重要的定理,早在3600多年前,古巴比伦人就已经发现了勾股定理,在西方,2000多年前的毕达哥拉斯学派证明了勾股定理,所以在国际上一般把它称之为毕达哥拉斯定理,传说毕达哥拉斯学派在发现了勾股定理以后宰了100头牛庆祝,所以又称为“百牛定理”。可是我还是不明白为啥起名字为“勾股定理”
师:你讲的非常好。
师生:共同举起手臂,模仿图形,说出个部分名称。活动二
(二)教师展示搜集的图片,并解说图片包含的数学史与数学文化含义
(把搜集到的图片分发到每个小组中,下面是几幅有代表性的图片)
设计意图:尽量为学生创设“做数学、玩数学”的情境,让学生从“学会”到“会学”,使学生真正成为学习的主人。了解中国数学史与数学文化,提高学生的学习兴趣,激发学生的爱国热情。
活动三
(三)动手拼图,体验勾股定理的正确性
师:我准备了全等的直角三角形,按要求动手拼一拼,看谁拼得又对又快!
生:积极思考、动手试拼。先自己动手,然后小组内交流。
每组有两名学生展示,其余小组进行补充。最终得出以下两图:
设计意图:通过学生动手操作、计算,主要通过直观的,乐于接受的拼图法去验证勾股定理。“操作+思考”的方式符合八年级学生认知水平,适应其思维发展规律及心理特征。让学生感悟到:学习任何知识的最好方法就是自己去探索,在探索中领悟、在领悟中理解,让他们“学会学习”。结论也就很自然的被接受了。
活动四
勾股定理多种证明方法探索与欣赏
教师:刚才大家通过动手拼图,小组交流展示,对勾股定理进行了论证,数学蕴含着无穷的奥妙,下面再来欣赏一下其他的证明方法。勾股定理是数学史上证明方法最多的一个定理,有一千多种证法,总体上可分为三大类:一是通过严密的理论推导证明,由于知识所限,我们这里不做研究;二是通过一些图形的面积计算进行验证,比如我们在前面接触过的两个拼图证法:
其它证法:
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即,整理得
.【证法2】(1876年美国总统Garfield证明)
以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于又∵ ∠DAE = 90º,∠EBC = 90º, ∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于
.∴ ∴..【证法3】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔCAD,∵ ΔFAB的面积等于,ΔCAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴,即
.【证法4】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,∴ ΔADC ∽ ΔACB.∴ AD∶AC = AC∶AB,即 同理可证,ΔCDB∽ΔACB,从而有∴.,即
.教师:欣赏了这么多的证明方法,相信你对勾股定理的历史也有了一个全新的认识,想不想来挑战一下自己?
学生:想…… 活动五
(五)数学史与数学文化知识竞赛
1.在现存的中国古代数学著作中,最早一部是()A.《孙子算经》 B.《墨经》
C.《算数书》 D.《周髀算经》
2.世界上讲述方程最早的著作是()
A.中国的《九章算术》 B.阿拉伯花拉子米的《代数学》 C.卡尔丹的《大法》 D.牛顿的《普遍算术》
3.最早记载勾股定理的我国古代名著()。A.《九章算术》 B.《孙子算经》
C.《周髀算经》 D.《缀术》
4.世界上第一个把π 计算到3.1415926<π <3.1415927 的数学家是()
A.刘徽 B.祖冲之 C.阿基米德 D.卡瓦列利
5.中国数学史上最先完成勾股定理证实的数学家是()A.周公后人荣方与陈子 B.三国时期的赵爽
C.西汉的张苍、耿寿昌 D.魏晋南北朝时期的刘徽 6.唐初规定()为国子监明算科的教材之一 A.《九章算术》 B.《孙子算经》 C.《周髀算经》 D.《孙子算经》
(六)谈谈你的收获 这节课你的收获是什么?
学生小组内交流,每组两名学生展示,其余小组进行补充。教师最后点评,将来你或许有更好的方法来证明勾股定理,勾股定理的魅力远不止如此,他的应用更具魅力,下一节课我们再来欣赏。
(七)作业设计:
【教学反思】
新课程标准要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。为此我在教学设计中注重了以下几点:
一、让学生主动想学
通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
二、在课堂教学中,始终注重学生的自主探究
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、教会学生思维,培养学生多种能力
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
四、注重了数学应用意识的培养
数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心。
第五篇:数学史论文
数学史论文 ——中世纪的中国数学
院系:数信学院
班级:数教一班 姓名:韩军香
学号:20120503031 摘要:从公元476年西罗马帝国灭亡到14世纪文艺复兴长达1000多年的欧洲历史称为欧洲中世纪。与希腊数学相比,中世纪的东方数学表现出强烈的算法精神,特别是中国与印度数学,着重算法的概括。算法本来是古代河谷文明的传统,但在中世纪却有了质的提高,它很难再仅仅被看作是简单的经验法则,而是一种归纳思维能力的产物。从公元前后至公元14世纪,前后经历了三次发展高潮,其中宋元时期达到了中国古典数学的顶峰。
关键字:中世纪、中国数学、算法
牙牙学语的时候,我们就开始接触到数学。从简单的加减乘除再到现在的高等数学。数学与我们的生活息息相关,贯穿了我们的整个学习过程。那数学又有怎样一段历史呢?下面是对中世纪的数学的简单介绍:
一、《周髀算经》与《九章算术》
(一)、《周髀算经》:编纂于西汉末年,天文学著作。西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。
(二)、《九章算术》:中国传统数学最重要的著作,全书246个问题,分成九章。它完整地叙述了当时已有的数学成就,在长达一千多年间,一直作为中国的数学教科书,并被公认为世界数学古典名著之一。《九章算术》标志以筹算为基础的中国古代数学体系正式形成。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展
二、刘徽与祖冲之
(一 刘徽公元263年撰《九章算术注》,系统地阐述了中国传统数学的理论体系与数学原理,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。
刘徽数学成就中最突出的是“割圆术”,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。
(二)祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。
著作《缀术》取得了圆周率的计算和球体体积的推导两大数学成就。祖冲之算出圆周率在3.1415926与3.1415927之间,并以355/113(=3.1415929„)为密率,22/7(=3.1428„)为约率,他计算圆周率,取得当时世界最先进成就,900多年之后,其精度方被人超过。《缀术》的另一贡献是祖氏原理 :幂势既同则积不容异,在西方文献中称为卡瓦列里原理,或不可分量原理。
祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。隋唐时期以后,人们制造量器时就采用了祖冲之的“祖率”数值。
(三)《算经十书》:隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》﹝包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。它们是唐代以前的主要数学著作,代表了中国古代数学的光辉成就。传本《周髀算经》,有赵爽注、甄鸾注等,当时被称为“算经”。
三、宋元数学
宋元时期是中国数学发展的高峰,这一时期重新统一了的中国社会发生了一系列有利于数学发展的变化,以筹算为主要内容的中国传统数学达到了鼎盛时期。还涌现了许多杰出的数学家和先进的数学计算技术,是数学全盛时期,其印刷出版、记载着中国传统数学最高成就的宋元算书,是世界文化的重要遗产。
(一)贾宪三角与秦九韶“正负开方术”
1、贾宪(约公元11世纪)约1050年完成《黄帝九章算术细草》,发明了“增乘开方法”,创造了“开方作法本源图”。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。
他的一些独到的数学思想和方法,主要有以下两点。
(1)、抽象分析法:在研究《九章》过程中,贾宪使用了抽象分析法,尤其在解决勾股问题是更为突出,他首先提出了“勾股生变十三图”。他完备了勾股弦及其和差的所有关系,说这些关系“有用而取,无用不取,立图而验之”,说明他已经抛开《九章》算题本身而对勾股问题进行抽象分析了。
(2)、程序化方法:主要是指探究问题的思维程序、过程和步骤.适用于同一理论体系下,同一类问题的解决。贾宪的“增乘开方法”和“增乘方求廉法”尤其集中地体现了这一方法,2、秦九韶(约1202-1261年)1247年完成数学名著《数书九章》,推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。其中两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。一是创立了“大衍求一术”(中国剩余定理),二是提出了“正负开方术”。“秦九韶算法”,一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。特别是在现代,在使用计算机解决数学问题时,对于计算机程序算法而言秦九韶算法可以以更快的速度得到结果,减少了CPU运算时间。
(二)内插法与垛积术
1、郭守敬(1231-1316年)1280年完成了中国古代最精密的历法《授时历》,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。郭守敬建造的河南登封观星台(1276)留存至今。
2、杨辉(公元13世纪)1261年完成《详解九章算法》,其中主要的数学贡献是“垛积术”,另一贡献是所谓的“杨辉三角”,其实是记载了贾宪的工作。杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。他署名的数学书共五种二十一卷。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。
杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。
(三)天元术与四元术
1李冶(1192-1279年)1248年撰成代数名著《测圆海镜》,该书是首部系统论述“天元术”的著作,是符号代数的尝试,在数学史上具有里程碑意义。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。
所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
2、公元1303年,元代朱世杰著《四元玉鉴》,它是中国宋元数学高峰的又一个标志,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利和公元1676一1678年间牛顿才提出内插法的一般公式。
“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。他的主要贡献是创造了一套完整的消未知数方法,称为四元消法。主要著作是《算学启蒙》与《四元玉鉴》,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术。
中国中世纪的数学家的学习探索精神值得我们借鉴和学习,但是,我们也要看到时间数学史的发展历程,有其实近代数学史,中国已经被甩在后头,这需要我们清醒的认识!“取其精华去其糟粕”这是千古名言,需要我们牢记。
参考文献:
1、张维忠.数学, 文化与数学课程[ M].上海: 上海教育出版 社, 1999
2、斯科特,数学史 中国人民出版社
3、费泰生.算法及其特征[ J].数学通讯, 2004, 7
4、李文林,数学史教程 高等教育出版社 斯普林格出版社
5、张奠宙.算法[ J].科学, 2003, 55(2)