第一篇:三年级下册的统计求平均数教案
教学目标:
1.通过活动,初步感知“平均数”的概念。
2.了解“平均数”的意义,初步学会求简单数据的平均数,能运用生活经验对“平均数”做出解释。
3.能运用“平均数”解决现实中的问题,强化数学在生活中的运用。
教学准备:
教具:十个小皮球、两个小筐、多媒体课件
学具:五个笔筒、十五根铅笔、统计表三张
教学过程:
教学环节 设计意图 教学预设
一、游戏导入,激发兴趣
师:同学们,我们曾经玩过投球游戏,今天咱们再来一场比赛,好吗?男队、女队各出三人,看哪队能赢。请两队各派一名记录员做好统计。其他同学做裁判。学生进行比赛。赛完后展示统计表进行比较。(游戏开始,老师事前制好统计表,分发给两个统计员,进行记录。比赛两次)
二、巧设冲突,理解意义
师:听说亮亮他们也在举行投球比赛呢,咱们一起去看看吧。(多媒体展示书上的两个统计表。)
咦,怎么吵起来了?喔,原来他们在争执哪组投的成绩好呢。引导学生看课件中的两个统计表,从表中知道了什么?(人数不等及每人投中的个数)请大家帮着兔博士一起给评判一下吧。(最后定为比较平均每人投中的个数公平,多者为胜。)
师:怎样才能求出平均每人投中的个数呢?(幻灯单独出示第一组的统计表。)
师:那第一组平均每人投中的数7个,就是这组同学投球的“平均数”。(板书)
师:谁能求一下第二组投中球的平均数?
师:为什么第一组是除以4,而第二组却除以5呢?
师:现在比较一下,哪组获胜?
生:第一组获胜。
三、自主探究,归纳方法
师:刚才我们用的是求平均数的方法裁决出第一组获胜。看来平均数用处不小啊,这不,亮亮看到妈妈经常使用不能降解的塑料袋买菜,就暗暗做了统计,想用真实的数据来说服妈妈保护环境呢。出示统计表。
师:请大家帮亮亮算一算,妈妈平均每天丢弃几个塑料袋?
师:请大家仔细观察我们上边三道题的解答过程,你知道怎样求平均数了吗?(总结出求平均数的数量关系式: 用总数/份数=平均数)
师:不过兔博士还有一个问题要问问大家呢。出示“议一议”1.求出的“3个”是每天实际丢弃塑料袋的个数吗?
生:不是每天丢弃的塑料袋的个数,而是算出的一个平均数。
师:出示2.求出的 “3个”与星期四妈妈丢的塑料袋3个一样吗?
不一样,求出的“3个”只是一个平均数,而星期四妈妈丢的塑料袋3个是一个实际的数,是实际丢了3个。
四、动手操作,巩固验证
师:看到大家学得这么认真,兔博士决定来个小测验,记住,既要动手又要动脑呀。
出示做一做。
下面笔筒中放有根数不同的铅笔,如果要使每个笔筒中放的铅笔根数不同,每个笔筒放几根?
师:谁来说一说,你是怎样想的、怎样做的。
师:大家轻松一下,来一个拍球比赛怎么样?每组为一个队,由组长做好记录,发统计表。最后看哪组平均成绩好,哪组就获胜。比赛。最后表扬优胜小队。
师:大头蛙有几个问题实在是弄不明白,谁能帮帮它?(判断题)
1.河北省篮球队队员的平均身高是201厘米,a王刚是这个篮球队的队员,他身高185厘米,可能吗?b这个球队有没有身高超过201厘米的队员?
2.小明所在的三年级的平均体重是28千克,小明的体重一定是28千克吗?
师:兔博士网站又添新内容了,想去看看吗?
出示:
我国每人平均住房面积:城镇24平方米;农村28平方米。
我国平均每人年收入为8800元。
我国平均每人生活用水量每日为208升。
我国平均每人每年用电量为1081千瓦时。
我国男性平均身高为1.68米。
我国女性平均身高为1.54米。
看完这组数据你想说什么?
五、学以致用,拓展延伸
1.调查自己家水费、电费平均每月要交多少元?
2.统计本小组成员假期读书情况,并计算出小组平均每人读书多少本。
课前让学生亲历一个自己十分感兴趣的游戏,在活动中复习统计的过程,让学生感知到:“人数相等可以比总数”,为后面人数不等求“平均数”的情况埋下伏笔。
由于人数不同,(再用比较总数的方法就不公平了)所以不能用比较总数的方法来决定胜负,一时找不到解决的方法,激起学生进一步探究的欲望和兴趣,老师把富有挑战性的问题大胆抛向学生,在学生的认知思维冲突中,在解决问题的需要中,自然而然地逼近了平均数,让学生在不经意间感受到了平均数产生的价值和必要。
通过实际问题,让学生自己感悟,经历求平均数的过程,为理解平均数的意义建立了平台,又从不同的角度探索出求平均数的方法,使解决问题的方法多样化。
求完平均数提出这一问题的目的是让学生明白总量与份数是要一一对应的,加深学生对平均数计算方法的印象。
在学生学习习近平均数的同时进行环保教育,增强学生的环保意识。
(充分印证求平均数的计算方法)
让学生在探究的基础上,独立概括出求平均数的数量关系式。训练学生的观察、概括的能力。
让学生在具体的情境中感悟平均数的意义,知道“3个”不是妈妈某一天丢弃塑料袋的真实个数,而是一个平均数。
让学生再次明确平均数的意义。与实际数据加以区别。
通过动手动脑再次验证、巩固求平均数的方法。要给学生充分的操作时间,发挥学生的聪明才智。
根据认知规律,适当地加入学生熟悉的游戏作为教学资源,使学生能从熟悉的生活中学习习近平均数。
让学生进一步明确“平均数”的意义,知道平均数介于最大数和最小数之间。
设置兔博士网站是为了让学生加深理解“平均数”的意义,让学生更加深刻地体会“平均数”在现实问题中的必要性,感受数学与生活的密切联系。
适时对学生进行节水节电、积极参加体育锻炼的思想教育。
用学过的知识来解决实际问题,体会到数学与生活的联系,感受数学的魅力。师:男生赢还是女生赢?你是怎么裁决的?
生:男生赢,因为男生一共投进去8个,女生一共投进去了6个,所以男生赢了。
师:女生服气吗?想不想再玩一次?(第二次两队各加2人参加比赛。)
师:这次是哪队赢?你是怎么裁决的?
生:这次男生一共投进了11个球,女生一共投进了12个球,所以是女生赢。(也有可能出现相平的情况)
师:刚才你们是怎样比较出输赢的?
生:看哪队一共投中了多少个球。看哪队投中的多。
师:刚才两个裁判都用比投球总数的方法裁决出了胜利者,这种方法公平吗?
生:公平。
生1:第二组成绩好,因为他们投进球的总数多。(受前面评判方法的影响)
生2:不公平,他们人还多呢。
生3:第二组成绩好,因为他们组有投球冠军,刘杰一个人就投中9个呢。
生4:一个人成绩好不代表全组人都好。
生5:比较平均每人投中的个数就公平了。
(学生若实在说不出来老师可参与进来。老师:同学们,大家听听老师的方法行不行,我们比较这两个组平均每人投中的个数呢?)
在求平均每人投中的个数时,可能会出现两种情况:1.移多补少;2.计算
生:从8里面拿出1给6,那么这四个数都是7了,所以第一组平均每人投中7个。
生:先求出投中的总数,再除以人数就求出来了:(8+7+6+7)÷4=7(个)
生:(9+8+5+3+5)÷5=6(个)第二组投中球的平均数是6。
生:第一组投进球的总数是4个人的总数,所以要除以4;第二组投进球的总数是5个人的总数,所以要除以5
生:(1+3+2+3+2+6+4)÷7=3(个)
师:能说说你怎么想的吗?
生:先算出一周丢弃塑料袋的总个数,再用总个数除以天数,就是平均每天丢弃的塑料袋数。
生:都是用总数/份数=平均数
师:对,这就是我们求平均数的方法。板书。
学生可能会有两种认识:1.认为就是每天丢弃塑料袋的个数;(教师可以让学生再次观察表格明确不是真实的数,从而认识平均数的特点。)2.认为不是每天实际的个数。
会出现三种方法:1.移多补少;2.求平均数;3.把所有铅笔收到一起,再一根一根地分到笔筒里。
生:(边演示边叙述)从多的里面拿出来放到少的里面去。每个竹筒放3根。
生:把所有的铅笔都拿出来,再一根一根的依次分到竹筒里。
生:用刚学的求平均数的方法来做。(3+4+2+5+1)÷5=3(根)
第二篇:三年级下册求平均数
三年级“求平均数”应
练习一:
1、用4个同样的杯子,水面的高度分别是8厘米、用题
5厘米、4厘米和3厘米。这四杯水面的平均高度是多少厘米?
2、小明期末测试语文、数学、英语和科学分别是90分、96分、92分和98分。小明这四门功课的平均成绩是多少分?
3、某学校1—4年级,分别有260人、300人、280人和312人。这个学校平均每个年级多少人?
4、甲筐有梨32千克,乙筐有梨38千克,丙、丁两筐共有梨50千克,平均每筐梨有多少千克?
练习二:
1、幼儿园小朋友做红花,小明做了7朵,小红做了9朵,小花和小张合作了12朵。平均每人做红花多少朵?
2、一个书架上第一层放书52本,第二层放书和第三层共46本。平均每层放书多少本?
3、某工厂第一、第二车间共有工人180人,第三车间有103人,第四车间有81人。平均每个车间有多少人?
4、商店有蓝气球和红气球共43只,黄气球有20只,绿气球有33只。平均每种气球有多少只?
练习三:
1、植树小组植一批树,3天完成。前2天共植了113棵,第三天植了55棵。植树小组平均每天植树多少棵?
2、小明期中考试,语文、数学总分是197分,英语考了91分,小明三门功课的平均成绩是多少分?
3、小红、小青的平均身高是103厘米,小军的身高是115厘米,三个人的平均身高是多少厘米?
4、一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页?
练习四:
1、一辆摩托车从甲地开往乙地,前2小时每小时行驶60千米,后3小时每小时行驶70千米,这辆摩托车平均每小时行驶多少千米?
2、小明家先后买了两批小鸡,第一批的20 只每只重60克,第二批的30只每只重70克,小明家的小鸡平均每只多少克?
3、少先队员为饲养场割草,第一组7人,平均每人割13千克,第二组5人,平均每人割25千克,平均每人割草多少千克?
4、有一小组同学量身高,其中2人都是124厘米,另外4人都是130厘米。这组同学平均身高是多少厘米?
5、已知9个数的平均数是72,从中去掉一个数后,余下的数的平均数为78,去掉的数是多少?
6、小明期末考试,语文和数学的平均成绩是95分,语文、数学、英语、三科的平均成绩是96分,小明的英语成绩是多少分?
7、李刚等四名同学的平均身高是136厘米,其中高红133厘米,王伟141厘米,王军138厘米,李刚身高多少厘米?
8商店用30千克薄荷糖和20千克水果糖混合成什锦糖,每千克薄荷糖12元,每千克水果糖7元,每千克什锦糖多少元?
9、甲地到乙地的全程是90千米,小王骑摩托车从甲地到乙地每小时行45千米,从乙地到甲地每小时行30千米,求小王往返甲、乙两地的平均速度。
平均数问题
在日常的学习和生活中,经常遇到求平均数的问题,比如:求平均分数、平均年龄、平均气温、平均身高、平均亩产量……这是小学学习阶段经常接触的问题,是一种典型的应用题。
平均数问题一般含有两种含义:①指把几个不相等的数,在总和不变的条件下,移多补少,大的补给给小的,使每份相等;②指把总数平均分成大小相等的若干份。
平均数问题涉及概念有总数、总份数、平均数(1份数),解答平均数问题的基本公式:
总数÷总份数=平均数(1份数)
总数÷平均数=总份数
平均数×总份数=总数
解答这类问题的关键主要是弄清总数、总份数、平均数三者之间的关系,根据总数对应的总份数,求出一份数,也就是平均数。例题精讲
1.用5个同样的杯子装水,水面的高度分别是4厘米、5厘米、6厘米、7厘米、8厘米。这5个杯子里水面的平均高度是多少厘米?
2.小明的身高160厘米,小丽比小明矮8厘米,小华比小明高2厘米,小明、小丽、小华3个人的平均身高是多少厘米?
3.甲、乙两地相距540千米,某车从甲地到乙地,然后返回,去时每小时行90千米,回来每小时行60千米,求该车往返的平均速度。
4.甲车间有工人98人,乙车间有工人120人,丙、丁车间共有工人166人,甲、乙、丙、丁四个车间平均每个车间多少人?
5.希望小学三年级学生做玩具小熊,一班48人,共做296个;二班50人,共做292个;三班47人,共做282个,三年级学生平均每人做多少个?
6.有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖,这种什锦糖每千克多少元?
7.小明期中考试的成绩是:语文和英语的平均成绩是96分,数学成绩是93分,小明语文、英语、数学三科的平均成绩是多少分?
8.小王4次语文测试的平均成绩是92分,5次测试的平均成绩是93分,问第5次测试小王得了多少分?
9.小华的三门功课的平均成绩是95分,如果不算语文分数,两门功课的平均成绩要比三门功课的平均成绩少2分。小华的语文分数是多少?
10.小明期末考试英语成绩公布之前,前四门平均分数是96分,英语成绩公布后,平均成绩下降了2分,英语考了多少分?
11.某校三年级学生平均每人采松子2千克,三(1)班有40人,平均每人采松子2.5千克,三(2)班50人,平均每人采松子多少千克?
12.已知八个连续奇数的和是128,这八个数各是多少?
13.有4个数的平均数是100,其中前2个数的平均数是90,后3个数的平均数是95,第2个数是多少?
14.甲、乙、丙三个修路队合修一条路,已知甲、乙、丙三队修的平均数是200米,甲队修了150米,乙队和丙队修的米数同样多。丙队修了多少米?
15.有8个数的平均数是10,因为把其中一个数改成了4,所以这8个数的平均数变成了8,这个被改动的数原来是几?
16.小明期末考试数学得了95分,英文比英语多9分,那么英语考多少分?三科平均分数才能达到94分?
17.某四个数的平均数是40,如果把其中一个数改成100,这四个数的平均数就变成50,这个数原来应是多少?
18.甲、乙、丙三个数,甲、乙之和是100,乙、丙之和是120,甲、丙之和是140,求甲、乙、丙三个数的平均数是多少?
19.一辆汽车从A地开往B地用了6小时,从B地返回A地用了4小时。已知返回时每小时比去时多行了30千米,这两汽车往返的平均速度是多少?
20.甲仓有粮食240袋,比乙仓粮食的2倍少40,如果每次从甲粮仓运出10袋放入乙粮仓,要运几次粮仓粮食的袋数相等?
练习
1.三年级有4个班,分别有45、49、46、48人,平均每班有多少人?
2.某校三年级4个同学参加植树,一班和二班平均每班植树51棵,三班和四班平均每班植树53棵,三年级平均每班植树多少棵?
3.小明期末考试语文、数学、英语三门功课的平均成绩时97分,已知语文考了99分,数学考了98分,英语考了多少分?
4.小红期末考试语文、数学、英语三门功课的平均成绩是94分,其中语文、数学两门功课的平均成绩是95分,小红的英语成绩是多少分?
5.小亮单元测试时,语文、数学、英语三门功课的平均成绩是96分,其中语文得了98分,那么数学和英语的平均成绩是多少分?
6.小军参加了四次数学测试,平均成绩是88分,再进行一次数学测试,将五次的平均成绩提高到90分,那么小军在第五次测试中至少要得多少分才行?
7.数学测试中,一组学生的最高分为100分,最低分是80分,其中余6名学生的平均分是90分,这一组的平均分是多少?
8.商店吧每千克4元的奶糖5千克,每千克8元的水果糖5千克,每千克6元的软糖2千克,混合成什锦糖,什锦糖每千克多少元?
9.小明在期末考试时,数学成绩公布钱,前四门的平均分是93分,数学成绩公布后,平均成绩下降了3分,数学考了多少分?
10.汽车往返于甲、乙两地之间,去时速度为每小时30千米,返回速度为每小时60千米,求往返平均速度。
11.某四个数的平均值是30,若把其中之一改为50,平均值变成40,这个数原来是多少?
12.某次数学竞赛,甲、乙的成绩之和是184分,乙、丙的成绩之和为187分,丙、丁的成绩之和是188分,甲比丁多1分,那么甲、乙、丙、丁分别是多少分?
13,有8个数的平均数是9,前5个平均数是8,后4个平均数是11,第5个数是多少?
第三篇:三年级上册《求平均数》教案
三年级上册《求平均数》教案
教学目标
1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。
2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题能力。
教学重难点
教学重点:灵活选用“求平均数”的方法解决实际问题。
教学难点:平均数的意义
教学准备:多媒体、秒表、绳子
教学流程
(一)创设情境,激发兴趣
师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?
生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。
师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?
生:6人一起跳,分组数数。
师:哦,好主意!那就按你的方法比赛吧!
(二)解决问题,探求新知
1、引出“平均数”,体验“平均数”产生价值。
6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:
第一组:82、86、81
第二组:78、83、82
师:请同学们以最快的口算算出结果,并汇报补充板书如下:
第一组:82+86+81=249
第二组:78+83+82=243
师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)
师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)
师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?
生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。
师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的办法来比较这两组总体跳绳水平的高低了吗?
(全班寂然无声,学生思索着,半晌,有学生举手了)
生:我在电视上看到过这种类似的情况,比较平均数就可以了。
(这时有很多学生表示赞同,并投去了赞赏的目光)
师:(赞赏)哦,你知道的知识真多,老师佩服你!
2、探索求平均数的方法
师:怎样计算每个组跳绳的平均数呢?
(在老师的引导下,学生提出了方法,师要求任选一组说想法)
生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83
生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83
师:谁听明白了吗?(再指5名学生说)
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法
移多补少法
师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
。。。
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。。。
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县1999—XX年家庭电脑拥有量的统计图。
图略:1999年350台,XX年600台,XX年1000台,XX年1600台,XX年2500台
(1)
求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2)
估计一下,到XX年这个县的家庭电脑拥有量是多少?为什么?
(3)
从图上你还知道些什么?
2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
b、辩论交流得出正确答案(2)
c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法
移多补少法)
第一组:(82+86+81)/3=83
第二组:(78+83+82+83)/4~81
当人数不相等,比总数不公平时,我们就得看“平均数”。
“平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势。
第四篇:统计求平均数教学设计
本单元内容是在第一学段学生对数据的收集、整理、描述和分析过程有所体验,会用统计表和条形统计图(一格表示一个单位)表示统计结果,能根据统计图表中的数据提出问题、分析问题,初步了解平均数的意义和求简单平均数基础上学习的。主要内容包括:求稍复杂数据的平均数、理解众数的意义和求众数、用条形统计图(一格表示多个单位)表示数据和读统计图表等。本单元在教材编排上有以下两个特点。
1、强调对统计量实际意义的理解。
《课程标准》4—6年级学段“概率与统计”领域的目标要求是:“通过丰富的实例,理解平均数、中位数、众数的意义,会求数据的平均数、中位数、众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征”。平均数、中位数、众数这三个统计量都是反映数据集中程度的统计量,但描述的角度和适用范围有所不同。平均数也叫算术平均数,主要用于描述统计对象的一般水平,平均数的大小与一组数据里的每个数据的大小均有关系,其中任何数据的变动都会相应引起平均数的变化;众数和中位数过去小学《大纲》中没有,初中才认识。这两个统计量是课标教材新增加的两个概念。什么是众数呢?众数首先是一个具体的数,是一组数据中出现频数最多的数,众数的大小与这组数据的一般水平没有直接关系,只与某个数据出现的频数有关;中位数是一组数据中间的一个(或中间的两个数的平均数),与一组数据的一般水平也没有直接关系,与数据的排位有关系,只与中间的一个或两个数的大小有关。
在实际教学中,这三个统计量的理解,都需要通过丰富的实例来组织教学,考虑到学生的生活经验和理解水平,本套教材先认识平均数和众数,六年级下册再认识中位数。
本单元首先通过两个篮球队队员的身高和体重的素材,帮助学生进一步理解“平均数”的意义和平均数在现实生活中的价值。接着,通过四年级学生一个班32名同学的体重这组既真实又典型的数据,使学生认识“众数”,并通过讨论这个班学生的平均体重与体重的众数表示什么意思,帮助学生理解平均数和众数的实际意义。
2、把读统计表、统计图贯穿在统计学习全过程。在现在信息社会中,统计图、统计表已成为人们用来描述、表达信息的一种普遍的工具和手段,读懂统计表、统计图也成为信息时代每一个公民的基本素养。本单元教材,在1—3年级学段学生已经认识了统计表中一格表示一个单位的统计图的基础上,注意通过统计表、统计图来呈现问题情景,首先让学生读统计表、统计图,发现信息、整理信息、分析信息,学习知识和解决问题。如,在读32名学生体重记录表的过程中,发现体重是38千克的人最多,进而认识众数。在读阅览室星期一至星期五读书人数统计图的过程中,发现统计图一格表示5个人的特征,进而学会用条形统计图描述数据。
本单元共安排5课时。最后设计了“读书调查”的综合运用内容。学情分析:
第一学段学生对平均数的意义已经有了初步的认识,并学习了求简单数据的平均数(结果为整数),认识了一格表示一个单位的条形统计图。学生的计算能力会对求平均数产生影响,学生对众数的理解相对容易。一格表示多个单位的条形统计图,学生也容易理解,但在实际解决问题的过程中,有的学生可能忽略一个所代表的多个单位,除此之外,学生在完成条形统计图时,不够整格时的处理需要教师进行引导。有的学生制作条形统计图时不能做到干净、美观,有时画图的随 意性强,需要培养学生制作正确美观的统计图。单元教学目标:
1.通过实例,了解平均数、众数的意义,会求数据的平均数和众数,并解释结果的实际意义。
2.通过实例,进一步认识条形统计图(一格代表多个单位),能用条形统计图有效的表示数据。
3.能从报刊杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表,能用统计知识描述并解决现实生活中的简单问题。
4.体验数学与日常生活的密切联系,认识到许多实际问题可以借助统计量、统计图来表述和交流。单元教学重点:
通过实例,了解平均数、众数的意义,会求数据的平均数和众数,并解释结果的实际意义。进一步认识条形统计图(一格代表多个单位),能用条形统计图有效的表示数据。单元教学难点:
能从报刊杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表,能用统计知识描述并解决现实生活中的简单问题。
第1课时:进一步认识平均数(教材97—99页)
教材分析:
教材安排了两个活动。活动一,选择了学生比较熟悉和感兴趣的2003年某市小学年篮球友谊赛的事情,呈现了两个篮球队同学的身高、体重等数据,让学生读题,在交流了解到的信息的基础上,提出了先估计哪个队的平均身高高一些的要求,让学生利用已有的知识解决。然后讨论议一议中的两个问题:⑴求出的平均身高是每个队员的身高吗?⑵某个队员的身高能代表整个球队的平均身高吗?通过讨论,使学生理解平均数的意义。接着提出计算两个队队员平均体重的要求,在学生自主解答后,再次讨论“说一说”的两个问题。⑴最重的队员的体重超过本队平均体重多少千克?最轻队员的体重比本队平均体重少多少千克?⑵两个队队员的平均体重和平均身高有关系吗?帮助学生进一步加深对平均数意义的理解,感受身高和体重的关系。活动二,呈现了新华小学四年级(1)班两组不同人数的学生体重,通过求这两个组同学的平均体重进一步掌握求平均数的一般方法,加深学生对平均数意义的理解。教学目标:
1、在读统计表、交流信息、自主计算的数学活动中,经历进一步认识“平均数”意义的过程。
2、通过具体实例,进一步了解“平均数”的意义,会解决求平均数的简单问题。
3、在用平均数描述具体事物的过程中,体会数学与日常生活的密切联系。教学重点:通过具体实例,进一步了解“平均数”的意义,会解决求平均数的简单问题。教学难点:在用平均数描述具体事物的过程中,体会数学与日常生活的密切联系。教学准备:教学课件 教学建议:
教材第一个板块呈现的是2003年某市小学年篮球友谊赛,进入决赛的两支球队部分队员的身高和体重统计表。教师可将统计表制成课件。教材中兔博士提出“先估计那支球队队员的身高高一些,再算一算。”因为统计 表中展示的是部分队员的情况,我们在表述时,是不是就统计表中的信息表达出“统计表中所列出的哪个小队队员的平均身高高一些?”
教材第二个板块呈现了新华小学四年级(1)班两组不同人数的学生体重,其中两个小组人数不一样多,教材中大头娃提出的问题是“分别求出两个组的平均体重”,“议一议”中的问题是“42千克、40千克分别表示什么?”教学中我们可以提出让学生“比较两组同学的平均体重,哪一组重一些”的问题讨论比较人数不同的两组同学的平均体重,使学生感受计算平均数的必要性,然后再让学生分别求出两个组的平均体重,关注学生求平均数的方法,组织学生讨论求出的两个平均数的意义。求平均数时,求和方法的指导教师应作为关注点,使学生掌握适合于自己的计算方法,在不同算法的对比中,尝试简便易行的方法。教学预案:
一、创设问题情境,引入新课:
师生谈话,由学生是否喜欢看篮球比赛的话题,引出两支球队比赛的事情,用课件出示两支球队队员身高和体重情况的统计表。学生读统计表,交流了解到的信息。
预设:学生可能汇报某个队员的身高情况,也可能汇报队员的体重情况。引导学交流通过观察得到的信息,如统计表中两个小队各有9名队员,红星小队胡东风最高是168厘米,红星小队除了李斌身高138厘米外,其余队员的身高都超过了150厘米,银河小队张春光最高是172厘米,银河小队有两名队员的身高低于150厘米,都是140厘米„„ 【设计意图】以学生感兴趣的话题引入教学情境,师生在轻松的氛围中开始本课的学习。
二、探究体验,认识平均数
(一)教师提出:请同学们估计一下,统计表中所列出的哪个小队队员的平均身高高一些?
交流时让学生说出自己的想法。
预设:两支球队中银河小队的张春光最高,这个队的队员平均身高可能高些。红星小队只有一个人的身高偏低而银河小队有两个人身高较低,所以红星小队的队员平均身高可能高些。
两支球队中最高的张春光在银河小队,而最矮的李斌在红星小队,所以银河小队的队员平均身高可能高些。
【设计意图】培养学生估计的意识,给学生创设发表自己见解的平台,达到人人参与学习的目的。
看来大家都有自己估计的理由,到底哪个小队的平均身高高些呢?我们来实际计算一下吧!
你打算怎样计算各小队队员的平均身高?指名学生回答后教师板书: 身高总和÷总人数=平均身高
学生在练习本上进行计算,教师巡视。对学困生进行指导,同时关注学生不同的算法。预设:
A)红星小队:(153+138+153+163+165+158+166+168+158)÷9=158(cm)银河小队:(152+172+140+140+154+160+167+161+167)÷9=157(cm)B)红星小队:(53+38+53+63+65+58+66+68+58)÷9=58 100+58=158(cm)
银河小队:(52+72+40+40+54+60+67+61+67)÷9=57 100+57=157(cm)
教学中让学生交流时教师要关注学生计算身高总和的方法,有的同学可能采用竖式连加的方法,有的学生通过观察可能进行归类,如计算红星小队的身高总和:153+138+153+163+165+158+166+168+158 =153×2+158×2+(163+165+166+168)+138 =306+316+160×4+22+138 =622+160×5 =622+800 =1422
不要求学生写出这个过程,但可以这样思考,要鼓励学生观察思考,寻求简便方法。因为求和的计算在求平均数重视非常重要的。课件出示“议一议”中的问题:
1、求出的平均身高是每个队员的身高吗?
2、某个队员的身高能代表整支球队的平均身高吗?
鼓励学生用自己的语言表达自己的看法,关注红星小队两个队员的身高是158厘米,这只代表他们个人的身高,而求出的平均数158厘米,代表的是红星小队队员身高的平均水平。【设计意图】让学生体会平均身高的实际意义,使学生理解求出的平均身高不是某个队员的身高,某个队员的身高也不能代表整个队的平均身高。
(二)继续练习求平均数
教师提出“分别算出两支球队队员的平均体重”的要求。交流学生的计算情况。重点关注求平均数的方法。教师进行板书:
体重总和÷总人数=平均体重
交流中教师还要关注学生是怎样计算体重总和的。
红星队:(47+35+45+54+53+51+56+56+53)÷9=50(千克)银河队:(48+58+40+42+50+56+52+50+45)÷9=49(千克)预设:有的学生可能先加个位再加十位,然后合起来。有的学生可能用竖式直接计算。
关注学生求和时是否通过观察寻求了可行的简便方法。这也是对学生计算能力的培养。课件出示:求出的平均体重是每个队员的体重吗?某个队员的体重能代表整支球队的平均体重吗?使学生懂得其中同样的道理。出示教材“说一说”中的问题:
(1)最重的队员的体重超过本队平均体重多少千克?最轻的队员的体重比本队平均体重轻多少千克?
(2)两支球队的平均体重和平均身高有什么关系吗?
解决第一个问题可以让学生根据计算的结果,再到统计表中找一找,算一算。预设:红星小队最重的队员刘劲松和胡东风,体重是56千克超过本队平均体重6千克,最轻的队员李斌体重是35千克,比本队平均体重轻15千克;银河小队最重的队员张春光体重是58千克,超过本队平均体重9千克,最轻的队员李来群体重是40千克,比本队平均体重轻9千克。第二个问题可以结合生活常识和计算的结果,使学生懂得正常情况下,身体高,体重也高。
【设计意图】加深学生对平均数的理解,展示学生自主学习的成果,感受身高与体重之间的关系,增加学生的生活经验,感受数学在生活中的存在。
三、尝试应用,解决平均数问题:
出示新华小学四年级(1)班第五组和第六组同学体重的统计表,让学生读表,了解表中的信息。交流时关注学生是否发现第五组有7个人,第六组有8个人。教师提出:要比较哪组同学的平均体重重一些,该怎么办?学生可能回答先计算两个组的平均体重,然后进行比较。
接下来让学生分别求出两个组的平均体重。学生在练习本上计算,教师巡视。指名两名学生进行板演。
预设:第五组同学平均体重:
(34+36+42+44+46+50+42)÷7=42(千克)第六小组同学平均体重:
(38+34+54+34+35+41+39+45)÷8=40(千克)
提出“议一议”中问题“42千克、40千克分别表示什么?”组织学生讨论求出的两个平均数的意义。完成比较哪一组平均体重重一些的问题。【设计意图】进一步加深学生对平均数意义的理解,使学生感受计算平均数的必要性,获得积极的学习体验。
四、巩固练习,提升学习质量:
1、完成教材中练一练的第一题:
引导学生将统计表的合计一栏填写完整。总人数是将六个小组的人数加在一起,植树棵树是将六个小组的植树棵树加在一起。引导学生弄清两个问题分别是什么意思:(1)平均每个组植树多少棵?用植树总棵树除以组数。(2)全班平均每人植树多少棵?用植树总棵树除以人数。关注学生是否理解。【设计意图】把一个数按不同的标准平均分,让学生体验数学问题中富有挑战性的题目。
2、学生独立完成练一练第二题。
【设计意图】考查学生是否会解决求平均数的简单问题。
3、练一练第三题引导学生读统计表,了解信息进行交流。
弄清“售完”的意思。为学生解决第二问做铺垫。“你认为哪种图书的销量大?”学生可能有不同意见,有的学生可能认为《百科全书》销量大,这一周中有五天比《童话世界》卖得多;有的同学可能认为《百科全书》销量大,因为一周中卖出的《百科全书》总数比《童话故事》总数多;有的同学可能认为《童话世界》销量大,从前五天的销售情况看,《童话世界》销售的总数多„„有的学生可能提出计算平均数去衡量哪种图书销量大。教师可以指出这是一种比较科学的方法。然后让学生进行计算。最后让学生根据统计表自己提出问题并解答,可以要求学生书面表达。
【设计意图】借助此题培养学生的数学眼光和应用数学知识解决问题的能力。
第五篇:统计平均数教案
“统计—平均数”教案
苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第92~94页。
一、教学目标
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义。2.学会用移多补少法和先合后分法求平均数,会计算简单数据的平均数(结果是整数)。3.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
4.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
二、教学重难点
教学重点:理解平均数的意义,学会求简单数据的平均数,感受平均数在实际生活中的运用。教学难点:理解平均数的意义,会用平均数解决实际问题。教学准备:多媒体课件,方块贴
三、教学过程
(一)谈话导入
师:同学们,你们喜欢玩套圈游戏吗?(PPT呈现图片)
这里有几个同学正在进行套圈比赛,我们一起去看看他们套的怎么样好不好 ?
(二)创设情境,自主探索
1.呈现套圈成绩的统计图
师:三年级第一小组的男生、女生进行套圈比赛,每人15个圈。这张图表表示他们套中的个数。
老师现在要选择套的比较准的那一队去参加总决赛,可是老师不知道应该是选男生队还是女生队,你们能帮帮老师吗?(鼓励学生发表自己的看法,并说出理由。)生:
师:对学生的回答给予充分的肯定和鼓励。那是不是应该选套的总数多的那一队呢?(„„)这样是不是对男生队不公平呢,男生只有四个人,而女生有五个人。那是不是最高分在哪一队就要选哪一队呢?(„„)可是,最低分也在女生对呀。老师现在实在是没有办法做出公平的选择了,看来呀,我们要找一位新的朋友来帮忙了,那就是“平均数”。(板书课题“统计—平均数”)
2.引入平均数,移多补少法 师:同学们看,老师刚刚在黑板上贴了四组小方块,分别是2块、6块、5块、7块,现在老师想请同学们帮老师变个魔术,使得每组的小方块一样多。同学们先想一想,然后老师请同学来给大家变一变。生:„„
(让学生上黑板移一移,使四个同学的一样多,并说说自己移动的想法,过程,其他同学也说说自己的发现)
师:总结出第一种求平均数的方法“移多补少”。(板书“移多补少”)
师:总结学生的想法、观点,得到平均数的概念“在总数不变的情况下,经过移多补少,使得每组的数都相等,这个相等的数就是平均数”。结合例题介绍概念,要求学生气度概念。生:(齐读概念)
师:闭上眼睛想一想什么是平均数,想想刚刚移多补少的过程,看看自己记住了没有。师:刚刚我们已经学会了用“移多补少”的方法来求平均数,那么“移多补少”法能不能帮我们解决生活中更多的问题呢?假如老师要知道两位同学的平均身高能不能运用“移多补少”法呀? 生:
师:看来呀我们的寻找一种新的求平均数的方法了。回到刚刚分方块的问题,引导学生数一数“总共有多少块方块”“有几个同学”“最终平均每组有几块方块”鼓励学生发现其中的计算关系。
生:(4×5=20„„)
师:哦,一共有20块方块,要平均分成四组,那么每组可以得到20÷4=5(块)(PPT呈现)
师:应到学生总结说出新方法“先合后分”。(板书“先合后分”)生:(闭上眼睛回忆刚刚“先合后分”法)
4、探究发现平均数范围
师:引导学生观察发现平均数与原来四个数的大小关系 生:(各抒己见)
师:给予肯定的、鼓励的评价。总结假如小于等于2,那么四组总共不可能有20块,假如大于等于7,四组总块数肯定不止20块,得出“最小值<平均数<最大值”。(板书“最小值<平均数<最大值”)
5、运用知识,解决问题 师:让学生运用所学的知识,去解决套圈的问题,先估一估两队平均数的范围。生:
师:先运用“移多补少法”,再运用“先合后分法”求两队的平均数。生:书本练习,两位同学到黑板上练一练
师:评讲。验证最终的平均数是不是在刚刚估计的范围内。
师:现在我们知道该选择哪一队了吧(男生),因为他们的平均得分较高,套的比较准。师:同学们,觉得这两种方法哪种更好、哪种运用范围更广? 生:
师:其实,我们很容易发现,“先合后分”法可以再更多的地方进行运算,而 “移多补少”法,在数字较小,较直观具体的题目中使用比较好。
(三)知识运用,巩固练习(PPT呈现)想一想:
1、三年级学生的平均身高是130厘米。
(1)那么三年级小明的身高有可能是120厘米吗?
(2)小刚的身高是150厘米,那么他有可能是三年级的学生吗? 师:同学们先好好想一想,然后老师请同学来给大家说一说? 生:
师:评价分析(让学生真正理解平均数的意义)说一说
师:你们知道生活中还有哪些平均数的运用吗?谁来给我们说一说? 生:
师:很好,同学们真是善于发现,其实我们生活中还有许多关于平均数的知识,同学们在课后做一些关于平均数的记录。(旨在加强平均数与实际生活的联系)算一算: 1.想想做做1 先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。2.想想做做2 老师:要求的是这三条丝带的平均长度是多少,那你能估计一下平均长度在什么范围之间呢? 那请你动手算一算,看看你得到的结果和你估计的结果是否符合。生:
3、给出三组数据让学生直接算平均数。(PPT呈现)
(旨在考查学生对这节课所学知识的掌握情况,同时巩固运用)考一考:
师:舞蹈演员得分:95 92 98 93 84 99 97,求最终得分。生:
师:讲解评析,引导学生了解平均数运用的特殊情况。
四、课堂总结
同学们现在我们一起来回忆一下这节课我们学了些什么,首先平均数是什么?求平均数有哪两种方法?平均数的范围是什么?很好,看来同学们上课都听得非常认真,掌握的很好,老师希望你们在课后要充分运用平均数解决生活中的问题,学有所用。
五、布置作业,强化学习
数学书第94页,想想做做的3、4两题。
六、板书设计
统计—平均数
移多补少
先合后分
最小值<平均数<最大值
教学反思:这节课关于平均数的教学,涉及平均数的意义和平均数的计算两个方面,下面是我教学后的一些想法。
在呈现了套圈游戏,并提出问题后,我没有直接用这道题来引入今天的学习内容,而是利用在黑板上贴的方块。一方面,我认为直接运用书上的统计图来让学生移一移、补一补不够直观贴切,比较难,另一方面,我认为让学生来移动黑板上的方块是比较简单易操作,切直观形象的,其他的学生也可观察到具体的操作过程,便于学生理解什么是移多补少、怎样移多不少。当然内容的衔接、切入上可能显得较为仓促、突兀,有待改进。
在学生学会了移多补少、先合后分两种方法后,让学生运用所学的方法去解决套圈的问题,我是认为这样的安排是比较合理的,让学生感受到学以致用。当然在学生运用了这两种方法后,我没有引导学生去比较两种方法的特点、适用范围,是我在这节课教学的一个疏漏。因为,两者的比较是必要的,通过比较,让学生了解每种方法的特点、优点,便于学生在今后的练习中选择较合适的一种方法来解决问题。
想一想这部分的题目在教学过后,回过头来看看,确实存在一些问题。首先,问题提的不是特别清楚,可能在抛出问题后,学生不知道要回答什么;再者,作为第一层次的练习,可能题目偏多偏难。应该减少题目的量,可以仅仅选择第一个问题,将这个问题具体化、深入化。(三年级学生的平均身高是130厘米。(1)那么三年级小明的身高有可能是120厘米吗?(2)小刚的身高是150厘米,那么他有可能是三年级的学生吗?)这样的话,问题就变得清晰,学生就能知道自己要回答什么。
说一说,课堂总结这两块内容我在课件上都没有给予呈现,而是采用口头阐述的形式,其实,若是在课件上直接呈现出来,然后再在课堂上讲一遍,可能效果会更好。因为呈现之后再讲一遍学生不仅看了一遍,听了一遍,还可以凭借着课件思考一遍,而说一遍学生可能就是仅仅听了一遍。
以上就是我对这节课教学的一些反思,今后的教学中必将加以注意,努力克服这些问题,不断取得教学上的进步。