第一篇:七年级下册数学二元一次方程组课时测试题
一、选择题:
1.下列方程中,是二元一次方程的是()
A.3x-2y=4zB.6xy+9=0
C.+4y=6D.4x=
2.下列方程组中,是二元一次方程组的是()
3.二元一次方程5a-11b=21()
A.有且只有一解B.有无数解C.无解D.有且只有两解
4.方程y=1-x与3x+2y=5的公共解是()
A.5.下列各式,属于二元一次方程的个数有()
①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;⑤x2-y2=
2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+x
A.1B.2C.3D.46.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()
A.二、填空题
7.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.8.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.9.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.10.已知是方程x-ky=1的解,那么k=_______.11.二元一次方程x+y=5的正整数解有______________.12.以为解的一个二元一次方程是_________.13.已知的解,则m=_______,n=______.三、解答题
14.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.15.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?
16.二元一次方程组的解x,y的值相等,求k.17.已知x,y是有理数,且
(│x│-1)2+(2y+1)2=0,则x-y的值是多少?
18.根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
第二篇:七年级数学下册二元一次方程组测试题参考
【摘要】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。在此为您提供“七年级数学下册二元一次方程组测试题”,希望给您学习带来帮助,使您学习更上一层楼!
七年级数学下册二元一次方程组测试题
一、填空题(每题2分,共20分)
1、把方程2x-y-5=0化成含y的代数式表示x的形式:x=.2、在方程3x-ay=8中,如果是它的一个解,那么a的值为.3、已知二元一次方程2x-y=1,若x=2,则y=,若y=0,则x=
.4、方程x+y=2的正整数解是__________.5、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
6、7、如果方程组的解是,则。
8、已知:,则的值是。
9、若与是同类项,则
10、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X米,每分钟Y米,则可列方程组{___________________.二、选择题:(每题3分,共18分)
11、下列各方程组中,属于二元一次方程组的是()
A、B、C、D、、12、方程组的解是()
A、B、C、D、13、已知的解是,则()
A、B、C、D、14、用加减法解方程组时,有下列四种变形,其中正确的是()
A、B、C、D、15、既是方程2x-y=3,又是3x+4y-10=0的解是()
A、B、C、D、16、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是()
A、14B、13C、12D、15
5三、解方程组(每题6分,共24分)
17、用代入法解
18、用代入法解
19、加减法解
20、用加减法解、21、二元一次方程组的解互为相反数,求m的值.(8分)
四、用方程组解应用题(每题10分,共30分)
22、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?
23、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
24、某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(13分)
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案?
第三篇:数学二元一次方程组测试题
一、填空题(每题4分,共20分)
1.写出二元一次方程的一个正整数解_____________.2.若与是同类项,则
3.已知则
4.已知则.5.若则.二、解下列方程组(每题8分,共32分)
三、解答题(每题8分,共24分)
10.满足方程组的x,y的值的和等于2,求m的值.11.甲、乙二人同解方程组,甲正确解得,乙因抄错了c,解得,求a、b、c的值.12.已知关于x、y的方程组和的解相同,求的值.四、列方程组解应用题(每题8分,共24分)
13.据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间换表前换表后
峰时(8:00~21:00)谷时(21:00~次日8:00)
电价0.52元/千瓦时x元/千瓦时y元/千瓦时
已知每千瓦时的峰时价比谷时价高0.25元.小卫家对换表后最初使用的100千瓦时的用电情况进行统计分析得知:峰时用电量占80%,谷时用电量占20%,与换表前相比,电费共下降2元.请你求出表格中的x和y的值.14.甲乙两工厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%.两厂共生产了机床400台.问上月两个厂各比计划超额生产了多少台?
15.牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?
答案:
1.(不惟一)2.2,-1。3.-1.4.1∶2∶3.5.14.6.7.8.9.10.m=4.11.12.1.13.0.55,0.30.14.24台,16台.15.方案一:4天生产奶片4吨,其余直接销售1×4×2000+(9-4)×500=10500(元);方案二:设x天生产奶片y天生产酸奶.从而(元).所以选择方案二获利最多.
第四篇:七年级数学下册二元一次方程组说课稿
七年级数学下册二元一次方程组说课稿
七年级数学下册二元一次方程组说课稿1
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=10
2x+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=10
2x+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x xy
y
上表中哪对x、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的`过程在情感和态度的形成和发展。
七年级数学下册二元一次方程组说课稿2
一、说教材
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
二、说教学目标
(知识与技能)
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答
(情感态度与价值观)
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
三、说教学重、难点
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题
(教学难点)确定解题策略,比较估算与精确计算
四、说教法
教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
教法设计意图
1.回顾练习
内容:
用适当的方法解方程组
(2)既是方程的解,又是方程的解是
A.B.C.D.设计意图:巩固二元一次方程组的解法
2.自主探究
出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
为了解决这个问题,请认真看P.105页的内容.
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
设计意图:引导学生独立思考,培养自主学习的能力
3.小组交流
组内成员讨论各自的探究成果,对不足和错误进行补充与更正
最终提炼出最佳方法.
设计意图:培养合作学习的习惯
4.成果展示
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.
设计意图:培养分析与解决问题能力
5.疑难点拨
(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组
(2)方法的多样——2种解法
设计意图:突破难点,打开思考路线,指导规范解题
6.课堂运用
实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
捐款(元)
5
10
20
50
人数
6
7
设计意图:巩固解决实际问题的方法与步骤
7.小结发言
谈出本节课的收获与困惑
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.
五、说作业安排
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)
设计意图:从不同层次有效的提高学生对知识的掌握程度
七年级数学下册二元一次方程组说课稿3
一、教材分析
1.教材的地位与作用
二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。
2.教学目标
[知识技能]
掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。
[数学思考]
体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。
[解决问题]
通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。
[情感态度]
引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
3.教学重点与难点
按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。
通过学生亲身体验,理解二元一次方程(组)解的个数的确定。
二、学情分析
七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。
三、教法与学法
1.教法
数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。
2.学法
学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。
四、教学过程与课堂活动
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:
1。创设情境,引入概念
NBA篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。
2。观察归纳,形成概念
概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。
3拓展延伸,深入概念
知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。
4.当堂检测,强化概念
通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。
5.反思小结,回归概念
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。
五、教后反思
美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:
一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;
二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;
三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。
第五篇:初一下册数学同步练习第八章二元一次方程组课时测试题
一、选择题:
1.下列方程中,是二元一次方程的是()
A.3x-2y=4zB.6xy+9=0
C.+4y=6D.4x=
2.下列方程组中,是二元一次方程组的是()
3.二元一次方程5a-11b=21()
A.有且只有一解B.有无数解C.无解D.有且只有两解
4.方程y=1-x与3x+2y=5的公共解是()
A.5.下列各式,属于二元一次方程的个数有()
①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;⑤x2-y2=
2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+x
A.1B.2C.3D.46.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()
A.二、填空题
7.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.8.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.9.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.10.已知是方程x-ky=1的解,那么k=_______.11.二元一次方程x+y=5的正整数解有______________.12.以为解的一个二元一次方程是_________.13.已知的解,则m=_______,n=______.三、解答题
14.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.15.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?
16.二元一次方程组的解x,y的值相等,求k.17.已知x,y是有理数,且
(│x│-1)2+(2y+1)2=0,则x-y的值是多少?
18.根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
8.2解二元一次方程组——代入消元
一、选择题:
1.用代入法解方程组时,代入正确的是()
A.B.C.D.2.方程y=1-x与3x+2y=5的公共解是()
A.3.若5x-6y=0,且xy≠0,则的值等于()
A.B.C.1D.-
1二、填空:
4.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.5、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;
6、方程2x+3y=10中,当3x-6=0时,y=_________;
7、如果x=1,y=2满足方程,那么a=____________;
8、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;
初一数学同步练习;下册第八章二元一次方程组单元测试题
一、用代入法解下列方程组
二、用加减法解下列方程组
1、三、选择适当的方法解方程组
四、列二元一次方程组解下列应用题
1、加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等。
2.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?
3.一条船顺流航行,每小时行20km;逆流航行;每小时行16km,求轮船在静水中的速度与水的速度。
4.运输360吨化肥,撞在了6节火车皮与15辆汽车;运输440吨化肥,撞在了8节火车皮与10辆汽车,每节火车皮与每辆汽车平均各装多少吨化肥?
三、用代入法解下列方程组
8.2解二元一次方程组——加减消元
一、选择题
(1)用加减法解方程组应用()
A.①-②消去y.B.①-②消去x.C.②-①消去常数项.D.以上都不对.(2)方程组消去y后所得的方程是()
A.6x=8.B.6x=18.C.6x=5.D.x=18.2.二、填空题
3.已知方程组两个方程只要两边就可以消去未知数。
4.已知方程组两个方程只要两边就可以消去未知数。
三、用加减法解下列方程组
5.6.9.10.(其中为常数)
四、解答题
11、代数式,当时,它的值是7;当时,它的值是4,试求时代数式的值。
12、求满足方程组中的值是值的3倍,求的值,并求的值.13、列方程解应用题
一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求原长方形的长、宽各是多少。
8.2解二元一次方程组——综合拓展训练
一填空题
1.在方程中,若,则.若,则;
2.若方程写成用含x的式子表示y的形式:_________________;写成用含y的式子表示x的形式:___________________________;
3.已知是方程2x+ay=5的解,则a=
4..4.二元一次方程有一个公共解,则m=______,n=_____;
5.已知,那么
二选择题
6.对于方程组,是二元一次方程组的为()
A.(1)和(2)B.(3)和(4)C.(1)和(3)D.(2)和(4)
7.若是方程的一个解,则等于()
8.方程组的解为()
9.已知满足方程组,则的值为()
A.-1B.0C.1D.2三解下列方程组:
四、解答题
16、若,是方程组的一组解,求m的值。
17、已知等式(2A-7B)x+(3A-8B)=8x+10,对一切实数x都成立,求A、B的值。
8.3实际问题与二元一次方程组(一)
1、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为
2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为
3、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?
4、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元?
5、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。
8.3实际问题与二元一次方程组(二)
1、若两个数的和是187,这两个数的比是6:5,则这两个数分别是___________.2、木工厂有28人,2个工人一天可以加工3张桌子,3个工人一天可加工10只椅子,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?
3、一外圆凳由一个凳面和三条腿组成,如果1立方米木材可制作300条腿或制作凳面50个,现有9立方米的木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?
4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?
5、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
6、某中学组织七年级同学到长城春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用60座客车,则多出1辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车日租金为每辆300元,试问:(1)七年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?
8.3实际问题与二元一次方程组(三)
1、某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?
2、某公园的门票价格如下表所示:
购票人数1人~50人51~100人100人以上
票价10元/人8元/人5元/人
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。问:甲、乙两个班分别有多少人?
3、甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?
4、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。
5、已知甲、乙两种商品的原价和为200元。因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。求甲、乙两种商品的原单价各是多少元。
6、现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?
8.4三元一次方程组的解法
一、填空题
1.若则x+y+z=__________________.2.方程组的解是________________.3.判断是否是三元一次方程组的解______.二、解下列三元一次方程组
4.5.三.综合运用
一、填空题
7.方程组的解满足x+y=0,则m=________.8.若x+y+z≠0且,则k=_________.9.代数式ax2+bx+c,当x=1时值为0,当x=2时值为3,当x=-3时值为28,则这个代数式是_________.二、解下列三元一次方程组
四.拓展、探究、思考
12.甲、乙、丙三个班的学生共植树66棵,甲班植树的棵数是乙班植树棵数的2倍,丙班与乙班植树棵数比为2∶3,求三个班各植树多少棵?
13.三个数的和是51,第二个数去除第一个数时商2余5,第三个数去除第二个数时商3余2,求这三个数.三元一次方程组习题
1.解下列方程组
(1)(2)
2.解下列方程组
(1)(2)
3.有这样一个数学题:在等式中,当x=1时,y=1;当y=3时,y=9,当x=5时,y=5.(1)请你列出关于a,b,c的方程组.这是一个三元三次方程组吗?
(2)你能求出a,b,c的值吗?
4.甲、乙两位同学解方程组,甲解得正确答案为,乙因抄错了c的值,解得,求的值
5.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种
6.某足球联赛一个赛季共进行26场比赛(即每队均赛26场),其中胜一场得三分,平一场得一分,负一场得0分.某队在这个赛季中平局的场数比负的场数多7场,结果共得34分.这个队在这个赛季中胜、平、负各多少场?
7.某城镇邮局对甲、乙两个支局的报刊发行部2003报纸的发行量进行了统计,并绘成统计图,如下:请根据上面的统计图反映的信息,回答问题:新课标第一网
(1)哪个支局发行《齐鲁晚报》的份数多?多多少?
(2)已知甲、乙两个支局的服务的居民分别是11280户、8600户,哪个居民区住户订阅报纸的份数多?试说明理由。
甲支局乙支局
8.去年我国遭受到非典型肺炎传染性疾病的巨大灾难,全国人民万众一心,众志成城,抗击“非典”下图(1)是某市某中学“献爱心,抗非典”自愿捐款活动中学生捐款情况制成的条形图,图(2)是该中学学生人数比例分布图。该校共有学生1450人。
(1)九年级学生共捐款多少元?
(2)该校学生平均每人捐款多少元?
第八章《二元一次方程组》单元检测题(一)
一、选择题(每题3分,共18分)
1、表示二元一次方程组的是()
A、B、C、D、2、方程组的解是()
A、B、C、D、3、方程组,消去后得到的方程是()
A、B、C、D、4、设则()
A、12B、C、D、5、设方程组的解是那么的值分别为()
A、B、C、D、6、方程的正整数解的个数是()
A、4B、3C、2D、1二、填空题(每题3分,共18分)
7、中,若则_______。
8、由_______,_______。
9、如果是一个二元一次方程,那么数=___,=__。
10、购面值各为20分,30分的邮票共27枚,用款6.6元。购20分邮票_____枚,30分邮票_____枚。
11、已知是方程的两个解,那么=,=
12、如果是同类项,那么=,=。
三、用适当的方法解下列方程(每题6分,共36分)13、14、17、(为常数)
18、(为常数)
四、列方程解应用题(每题7分,共28分)
19、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。问一工多少名学生、多少辆汽车。
20、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。
21、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。(用两种方法求解)
22、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。
第八章《二元一次方程组》单元检测题(二)
一、选择题:(每题3分,共30分)
1、下列各方程组中,属于二元一次方程组的是()
A.B.C.D.2、方程组的解是()
ABCD3、若是二元一次方程组的解,则这个方程组是()
A.B.C.D.4、某年级共有246人,男生人数比女生人数的2倍少2人,问男、女生各有多少人?若设男生人数为x人,女生人数为y人,则()
A.B.C.D5、下列说法正确的是()
A、二元一次方程只有一个解
B、二元一次方程组有无数个解
C、二元一次方程组的解必是它所含的二元一次方程的解
D、三元一次方程组一定由三个三元一次方程组成6、在方程中,用含的代数式表示,则()
A、B、C、D、7、方程2x-3y=5,xy=3,3x-y+2z=0,中是二元一次方
程的有()个。
A、1 B、2 C、3 D、48、方程2x+y=9在正整数范围内的解有()
A、1个B、2个C、3个D、4个
9、在解方程组时,甲同学因看错了b的符号,从而求得解为;乙同学因看漏
了c,解得,则a+b+c的值应为()
A.2 B.3 C.5 D.710、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了
12场比赛,共得22分,已知这个队只输了2场,为求此胜几场和平几场.设这支足球队胜x场,平y
场.根据题意,列出如下四个方程组,其中正确的是()
A.B.C.D.二、填空题:(每题3分,共30分)
11、在方程3x+4y=16中,当x=3时,y=________,10、如果x=1,y=2满足方程,那么a=____________;
12、方程的解是。
13、如果,那么。
14、若方程组与方程组同解,则m=___
15、若方程的两个解是,则_________,_________
16、如果,那么_________,_________
17、请你写出一个二元一次方程组,使它的解为,这个方程组是_________.18、若方程组的解和的值相等,则=.19.写出二元一次方程3x+y=9的所有正整数解是
20.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和,则这两个数分别为().A.4和-6B.-6和4C.-2和8D.8和-
2三、解答题:(共40分)
21、解下列方程组:(每题5分,共20分)
(1)、(2)
(3)(4)
22、用16元买了60分,80分两种邮票共22枚。60分与80分的邮票各买了多少枚?(6分)
23、(本题8分)先阅读,然后解方程组.解方程组时,可由①得③,然后再将③代入②得,求得,从而进一步求得这种方法被称为“整体代入法”,请用这样的方法解下列方程组:
24、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上,树下的鸽子就一样多了。”你知道树上,树下各有多少只鸽子吗?(8分)
25.(8分)某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
初一数学同步练习:下册第九章不等式与不等式组课时测验题
一、选择题
1.下列式子①3x=5;②a>2;③3m-1≤4;④5x+6y;⑤a+2≠a-2;⑥-1>2中,不等式有()个
A、2B、3C、4D、52.下列不等关系中,正确的是()
A、a不是负数表示为a>0B、x不大于5可表示为x>
5C、x与1的和是非负数可表示为x+1>0D、m与4的差是负数可表示为m-4<0
3.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x+3>2成立的数有()个
A、2B、3C、4D、54.下列说法错误的是()
A、1不是x≥2的解B、0是x<1的一个解
C、不等式x+3>3的解是x>0D、x=6是x-7<0的解集
5.不等式x-2>3的解集是()
A、x>2B、x>3C、x>5D、x<
56.满足不等式x-1≤3的自然数是()
A、1,2,3,4B、0,1,2,3,4C、0,1,2,3D、无穷多个
7.已知关于x的不等式x-a<1的解集为x<2,则a的取值是()
A、0B、1C、2D、38.四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()
ABCD
二、填空题
9.如果一个三角形的三条边长分别为5,7,x,则x的取值范围是______________.10.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x+3=0的解;_______是不等式x+3>0的解;___________________是不等式x+3<0.11.不等式6-x≤0的解集是__________.12.在-
213.若∣m-3∣=3-m,则m的取值范围是__________.14.三个连续正整数的和不大于12,符合条件的正整数共有________组.三、解答题
15.根据下列的数量关系,列出不等式
(1)x与1的和是正数
(2)y的2倍与1的和大于
3(3)x的与x的2倍的和是非正数
(4)c与4的和的30%不大于-
2(5)x除以2的商加上2,至多为
5(6)a与b的和的平方不小于2
16.根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A
17.规定一种新的运算:a△b=ab-a+b+1.如3△4=3×4-3+4+1,请比较(-3)△5与5△(-3)的大小。
第二课时不等式的性质
1.“x的2倍与3的差不大于8”列出的不等式是()
A、2x-3≤8B、2x-3≥8
C、2x-3<8d、2x-3>8
2.在数轴上表示不等式≥-2的解集,正确的是()
ABCD
3.不等式<6的正整数解有()
A.1个B.2个C.3个D.4个
4.如果则下列各式中一定正确的是()
A、B、C、D、