正多边形和圆教学反思

时间:2019-05-15 02:45:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《正多边形和圆教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《正多边形和圆教学反思》。

第一篇:正多边形和圆教学反思

正多边形和圆教学反思

儋州市西联中学 邓高春

正多边形和圆,下面对这节课教学进行如下反思:

一、成功之处:

1、本节课的教学从生活实际出发(观看美丽图案),引导学生得出定义。这一做法渗透了数学来源于实践,反过来又作用于实践的辨证唯物主义思想。对定义的教学,不是简单地由教师告诉学生,而是由学生自己观察、猜想、探究得出结论,让学生体验知识的产生过程。

2、学生走上讲台,拉近了师生之间的距离。教师不是高高在上,而是与学生处在同等位置上,培养了学生能力。

3、备课仔细,对课堂上可能出现的问题作了充分地考虑。如在探究正多边形的定义的时候,对学生可能得出的结论作了充分的准备。反映了教师的基本功扎实。

4、整堂课都体现了对学生动手能力的培养。在探究正多边形和圆的关系时,让学生自己动手操作,画圆,实验并进行猜想,这正是新大纲教改思路的体现。

5、注重学生间的合作交流。表现形式有同位或小组讨论。实验表明学生之间的知识交流比师生间交流更利于学生的知识掌握。同时,这种形式也培养了学生将来走向社会后能够充分地表达自己的见解,听取别人的意见。

6、注重学法指导。在进行正多边形和圆关系的第二个结论时,指导学生自学,教给学生学习的方法,“授学生以渔”,为学生将来的终身教育打下基础。

7、小结的形式。

8、本节课一个突破性的地方就是在课堂上让学生质疑,让学生对本节课不明白的地方或是与老师意见不一致的地方敢于提出自己的见解。尽管在这方面做得不是很到位,但是已跨出大胆的一步。

二、不足之处:

1、在讨论时应该放得更开一些,可以采用多种形式,如:下位找自己熟悉的同学讨论,或是不局限有于一个小组,而进行多组合作,或是与老师(甚至是听课老师)讨论。

2、应注意多媒体板演的示范作用,投影应适时。

第二篇:正多边形和圆反思

正多边形和圆教学反思

孙叶

这一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。

我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。

这节课的第二个问题是:探究正三角形的外接圆半径R和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。

整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。

第三篇:画正多边形教学反思

画正多边形教学反思

画正多边形教学反思1

对于LOGO语言教学教师还是必须要由一定的教学技巧,因为本身LOGO程序就比较枯燥,学生在基础学习时就会漫不经心,学习本课的LOGO重复语言就更加死板了,学习本课最原始的教学手段无非是教师讲学生听,但我考虑到学生枯燥的学习不一定能全神贯注在这个知识点上,所以我大胆的想试试放手,选择让学生去探究学习。

重复命令是这个本单元的一个大难点,不容易学生理解。我采用课件呈现之前的LOGO画楼梯的重复命令,让学生观察哪些命令是一样的,重复一样的几次,在强调重复命令的简便性,让学生更好地了解重复命令,再让学生自己操作小海龟,让海归运动起来,通过实践得到的运动、移位旋转等动作将学生原本的抽象思维变成了生动的形象思维,加速了学生的学习,达到了事半功倍的效果。

本节课,我是通过“观察—思考—操作—结论”四个环节让学生自己得出了重复命令的精髓,锻炼了学生自主学习的能力,加强了学生对LOGO程序的编辑和操作能力。小组学生让学生互相帮助激起了学生的积极性。

另外这节课存在着很多的`问题,由于前一节课已经导入了重复命令,这节课开始我就很快的进入了主题以至于一些差异性学生没有及时的跟上,这样起点不同后面的教学很多学生就更难掌握了。还有一点小海龟画闭合图形时总共要转360度的这个知识,这个知识点对于学生来说有点难度,我以老师的角度去考虑了问题,认为学生能很快了解,讲的就有点过快,导致后来发现问题纠正的时候就比较累了,学生也比较糊涂了。最后对于小组的评价我要更加注意,学生只有在老师不断的鼓励中才会由信心去进步。

我觉得我还有很多的不足,希望老师们指点,我自己也会不断反思、提高。

画正多边形教学反思2

本节课的内容是泰山版六年级下册第八课《画正多边形》。在这节课中,我没有采用把logo命令以及参数的用法直接告知学生,而是采用自主探究的方法,让学生举一反三。

程序设计的教学手段往往是老师讲学生听,老师示范学生照做,因此造成重难点难突破,学生云里雾里。重复命令是本单元的一大难点,不容易理解。我采用课件展示的.方式呈现海龟的画图过程,让学生更好地了解重复命令,通过海龟的运动,位移,旋转等动作将抽象的思维变成生动的动画,加速学生的领悟,做到事半功倍。

本节课通过“观察”——“实践”——“总结”三个环节,锻炼了学生的思维,有增强了他们的操作能力,大大提高了课堂的趣味性。学生通过主动参与课堂教学,积极动手操作练习、自主探究新知识很快掌握了repeat命令的使用,会用这个命令画出自己喜欢的正多边形,这节课效果达到了预期。

当然,本课中出现的问题就是360度外角和这个概念,我认为应该在海龟画图形时总要转360度的这个知识,应该再多讲几次,讲明为什么,以达到加深学生的印象的目的。

画正多边形教学反思3

《多边形面积》这一单元教学上周都已经结束并及时进行了测评。

回顾这一单元的教学,我个人比较注重学生参与知识的形成过程,即多边形面积公式的推导过程。这一单元的多边形主要是平行四边形、三角形、梯形三个图形。而每个图形面积公式的推导都是在前面已学的图形面积公式基础上学习的。在教学时,我一般提前让学生做好学具,如上平行四边形时,就让学生先剪好平行四边形,再通过引导提问引发学生思考:能否将平行四边形转化成我们以前学过的某个图形来研究呢?这之前,学生其实只学过长方形和正方形两种面积的求法,所以学生可以很快猜到转化成什么样的图形来研究,之后,我再放手让学生去尝试。当学生通过小组或同桌的'交流将平行四边形转化成长方形后,我再进一步引导学生思考:现在的图形与原来的图形哪些地方有联系呢?这样我们可以得出平行四边形的面积公式是怎样的?也许有人会觉得有必要这样麻烦吗。结论是这么简单的,绕来绕去。可是这一推导过程其实对学生思维能力以及对数学这门学科趣味性和动手能力的培养是非常有价值,学生对公式的理解绝大部分都很透彻。后面三角形和梯形面积公式的推导过程都是按照这个模式来教学的。这多年来教这个内容我都坚持这么做,可能上这样的课我花费的时间要比别人多,但我觉得非常值。

但是经过测评,我也发现这一单元中学生存在许多共性问题:一是单位换算问题。这一单元都是有关面积的问题,自然和面积单位分不开,面积单位是学生三、四年级学得内容,时间长了,单位换算进率和方法一部分学生出现了遗忘,还有一部分一点都不记得(当初学时都糊里糊涂)。这学期我们重点是研究面积公式,所以我没有投入精力给学生复习,有大部分学生在这方面失分。另外解决问题时单位不统一学生没有注意到,这些说明学生审题不够细致所至。第二个问题是拼成的平行四边形和原有的三角形之前的关系,特别是等底等高这个条件学生的理解还不够,虽然我口头有作过强调,但这个知识点最初出现时,也就是在上三角形面积公式的推理时我没有重点突出来强调,导致学生理解得不够深刻,所以后来再讲效果也不太理想,这些以后再上时一定要注意。第三个问题是在组合图形面积求法中。一是找不准对应的条件,如三角形要找出对应的底和高,特别是一些复杂的图形,学生有困难,这些在平时教学中要加强引导学生去找,去认。二是运用分割法求组合图形的面积后来要合在一起,添补法最后要将补起来的大图形减掉小图形面积,这些中偏下的学生容易遗忘,平时教学时要加以强调。

画正多边形教学反思4

《多边形的面积》这单元教学内容包括四部分:平行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。

教学时要注重让学生经历面积公式的推导过程,让学生亲自经历思索、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法,通过对比探究图形与转化后图形间有什么关系,从而得出图形面积计算的方法。

同时也要注重同一个图形不同的推导方法,像梯形的面积计算公式,除了可以用两个完全一样的梯形拼成一个平行四边形,其中一个梯形的面积是这个平行四边形面积的一半,我引导学生思索另外的推导方法。有的'学生想出了可以沿对角线连接,把梯形分成两个三角形,还有的同学想出了把梯形分成一个平行四边形和一个三角形等。这样多种方法的推导,开阔了学生的思路,进一步巩固了“转化”的思想。

对于组合图形面积的计算,我则渗透了两种思维:一是分割法,将组合图形分成若干个已会计算面积的单一图形,这几个单一图形面积总和便是这个组合图形面积;二是添补法,根据图形特征将这个组合图形补成已学过的一个单一大图形,用这个大图形面积减去补充部分的图形面积便是原组合图形面积。

画正多边形教学反思5

1、要创造性的使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。

2、相信学生并为学生提供充分展示自己的机会

通过课前小组合作社会调查、课堂展示正多边形的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3、在教学中注意的方面

本节新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高。在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习。通过形象生动的直观图形,给学生营造一个问题情景,通过问题的`探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力。

4、注意改进的方面

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

画正多边形教学反思6

本单元的主要教学内容包括:平行四边形的面积、三角形的面积、梯形的面积以及组合图形的面积。多边形面积的计算是在学生学习了图形的平移与旋转,掌握了这些平面图形的特征,以及长方形,正方形面积计算公式的基础上进行教学的。

回顾08学年五年级学生学习本章时,学生的问题主要有:

1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的.推导过程模糊,表达不清。

2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用平行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。

3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。

为了有效地解决类似问题,我主要采取了以下措施:

1、重视动手操作、观察与交流汇报

本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,却忌由教师带着做。

2、引导学生探究,渗透“转化”思想。

本单元面积的推导都采用了转化的方法。在本单元的教学中,以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作——转化——推导的过程叙述出来,以发展学生的思维和表达能力。

3、注意培养学生用多种策略解决问题的意识和能力。

运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师要鼓励学生从不同的途径和角度去思考和探索解决问题。引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。

4、在教学中培养审题习惯、检查习惯等等

学生出现审题不清,单位出错,原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯,并强调学生完成计算后,应该对答案和单位进行检查,从而杜绝不写单位和写错单位的不良行为。

第四篇:24.3 正多边形和圆(教案)

24.3正多边形和圆

教学目标 【知识与技能】

了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】

结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】

学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】

正多边形与圆的相关概念及其之间的运算.【教学难点】

探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.教学过程

一、情境导入,初步认识

观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?

(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来? 【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知 1.正多边形和圆的关系

问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵ABBCCDDEEA,∴AB=BC=CD=DE=EA,CDA3BCEAB,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?

答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.2.正多边形的有关概念

综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:

360°n;内角的度数为:180°(n-2)n 3.正多边形和圆有关的计算问题

例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.4.画正多边形

画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆

正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.三、运用新知,深化理解

1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,„„正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;

(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°

4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结

通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?

课后作业

1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时 练习的“课后作业”部分.教学反思

第五篇:24.3 正多边形和圆(教案)

24.3正多边形和圆

【知识与技能】

了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】

结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】

学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】

正多边形与圆的相关概念及其之间的运算.【教学难点】

探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识

观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?

(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来? 【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知 1.正多边形和圆的关系

问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵ABBCCDDEEA,∴AB=BC=CD=DE=EA,CDA3BCEAB,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?

答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念

综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:

360°n;内角的度数为:180°(n-2)n 3.正多边形和圆有关的计算问题

例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形

画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆

正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解

1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,„„正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;

(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°

4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结

通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?

【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时 练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.

下载正多边形和圆教学反思word格式文档
下载正多边形和圆教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《正多边形和圆》第二课时参考教案

    24.3 正多边形和圆 第二课时 教学目标: 1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形. 2、使学生会用尺规作圆内接正方形和正六边形,在这个基......

    3.8 圆内接正多边形 教学设计

    《圆内接正多边形》 教学目标为: 知识目标: (1)掌握正多边形和圆的关系; (2)理解正多边形的中心、半径、中心角、边心距等概念; (3)能运用正多边形的知识解决圆的有关计算问题; (4)会运用......

    圆与正多边形教案一

    正多边形与圆 田小华 一.学习目标: 1、了解正多边形的概念、正多边形和圆的关系; 2、会通过等分圆心角的方法等分圆周,画出所需的正多边形; 3、能够用直尺和圆规作图,作出一些特......

    [初中数学]正多边形和圆教案2 人教版

    《正多边形和圆》教案2 教学目标 : (1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理; (2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的......

    24.3 正多边形与圆 教学设计 教案(精选5篇)

    教学准备 1. 教学目标 1.1 知识与技能: 经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法. 记住正多边形的定义,能根据定义判定......

    圆教学反思

    圆教学反思 《圆》教学反思 本课是在前面学习了圆的概念和探索了点和圆的位置关系的基础上继续进行圆的有关概念的教学。而数学概念教学并不是单纯地让学生记忆概念,只有让学......

    《圆》教学反思

    圆这个单元我认为是小学的一个难点。所以在教学圆的认识的时候,对于圆的直径、半径的关系作为重点,还有为什么直径是圆内最长的的线段以及应用。在教学圆的周长的时候,让学生充......

    学案(第8课时)24.3正多边形和圆[推荐5篇]

    24.3 正多边形和圆 教学过程一、复习引入 请同学们口答下面两个问题. 1.什么叫正多边形? 2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,......