第一篇:《高等数学.同济五版》讲稿WORD版-第08章 多元函数微分学及其应用
高等数学教案
§8
多元函数微分法及其应用
第八章 多元函数微分法及其应用
教学目的:
1、理解多元函数的概念和二元函数的几何意义。
2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。
3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4、理解方向导数与梯度的概念并掌握其计算方法。
5、掌握多元复合函数偏导数的求法。
6、会求隐函数(包括由方程组确定的隐函数)的偏导数。
7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8、了解二元函数的二阶泰勒公式。
9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。教学重点:
1、二元函数的极限与连续性;
2、函数的偏导数和全微分;
3、方向导数与梯度的概念及其计算;
4、多元复合函数偏导数;
5、隐函数的偏导数
6、曲线的切线和法平面及曲面的切平面和法线;
7、多元函数极值和条件极值的求法。教学难点:
1、二元函数的极限与连续性的概念;
2、全微分形式的不变性;
3、复合函数偏导数的求法;
4、二元函数的二阶泰勒公式;
5、隐函数(包括由方程组确定的隐函数)的偏导数;
6、拉格郎日乘数法;
7、多元函数的最大值和最小值。
高等数学课程建设组 高等数学教案
§8
多元函数微分法及其应用
§8 1 多元函数的基本概念
一、平面点集n维空间
1.平面点集
由平面解析几何知道 当在平面上引入了一个直角坐标系后平面上的点P与有序二元实数组(x y)之间就建立了一一对应 于是 我们常把有序实数组(x y)与平面上的点P视作是等同的 这种建立了坐标系的平面称为坐标平面
二元的序实数组(x y)的全体 即R2RR{(x y)|x yR}就表示坐标平面
坐标平面上具有某种性质P的点的集合 称为平面点集 记作
E{(x y)|(x y)具有性质P}
例如平面上以原点为中心、r为半径的圆内所有点的集合是
C{(x y)| x2y2r2}
如果我们以点P表示(x y) 以|OP|表示点P到原点O的距离 那么集合C可表成 C{P| |OP|r}
邻域
设P0(x0 y0)是xOy平面上的一个点 是某一正数 与点P0(x0 y0)距离小于的点P(x y)的全体 称为点P0的邻域 记为U(P0 即
U(P0,){P| |PP0|}或U(P0,){(x, y)|(xx0)2(yy0)2 }
邻域的几何意义 U(P0 )表示xOy平面上以点P0(x0 y0)为中心、 >0为半径的圆的内部的点P(x y)的全体
点P0的去心邻域 记作U(P0, ) 即
U(P0, ){P| 0|P0P|}
注 如果不需要强调邻域的半径 则用U(P0)表示点P0的某个邻域 点P0的去心邻域记作U(P0)
点与点集之间的关系
任意一点PR2与任意一个点集ER2之间必有以下三种关系中的一种
(1)内点 如果存在点P的某一邻域U(P) 使得U(P)E 则称P为E的内点
(2)外点 如果存在点P的某个邻域U(P) 使得U(P)E 则称P为E的外点
(3)边界点 如果点P的任一邻域内既有属于E的点 也有不属于E的点 则称P点为E的边点
E的边界点的全体 称为E的边界 记作E
E的内点必属于E E的外点必定不属于E 而E的边界点可能属于E 也可能不属于E
聚点
高等数学课程建设组 高等数学教案
§8
多元函数微分法及其应用
如果对于任意给定的0 点P的去心邻域U(P,)内总有E中的点 则称P是E的聚点
由聚点的定义可知 点集E的聚点P本身 可以属于E 也可能不属于E
例如 设平面点集
E{(x y)|1x2y22}
2222满足1xy2的一切点(x y)都是E的内点 满足xy1的一切点(x y)都是E的边界点 它们22都不属于E 满足xy2的一切点(x y)也是E的边界点 它们都属于E 点集E以及它的界边E上的一切点都是E的聚点
开集 如果点集E 的点都是内点 则称E为开集
闭集 如果点集的余集E c为开集 则称E为闭集
开集的例子 E{(x y)|1 闭集的例子 E{(x y)|1x2y22} 集合{(x y)|1x2y22}既非开集 也非闭集 连通性 如果点集E内任何两点 都可用折线连结起来 且该折线上的点都属于E 则称E为连通集 区域(或开区域) 连通的开集称为区域或开区域 例如E{(x y)|1x2y22} 闭区域 开区域连同它的边界一起所构成的点集称为闭区域 例如E {(x y)|1x2y22} 有界集 对于平面点集E 如果存在某一正数r 使得 EU(O r) 其中O是坐标原点 则称E为有界点集 无界集 一个集合如果不是有界集 就称这集合为无界集 例如 集合{(x y)|1x2y22}是有界闭区域 集合{(x y)| xy1}是无界开区域 集合{(x y)| xy1}是无界闭区域 2 n维空间 设n为取定的一个自然数 我们用Rn表示n元有序数组(x1 x2 xn)的全体所构成的集合 即 RnRRR{(x1 x2 xn)| xiR i1 2 n} Rn中的元素(x1 x2 xn)有时也用单个字母x来表示 即x(x1 x2 xn) 当所有的xi(i1 2 n)都为零时 称这样的元素为R中的零元 记为0或O 在解析几何中 通过直角坐标 R2(或R3)中的元素分别与平面(或空间)中的点或向量建立一一对应 因而Rn中的元素x(x1 x2 xn)也称为Rn中的一个点或一个n维向量 xi称为点x的第i个坐标或n维向量x的第i个分量 特别地 Rn中的零元0称为Rn中的坐标原点或n维零向量 为了在集合Rn中的元素之间建立联系 在Rn中定义线性运算如下 设x(x1 x2 xn) y(y1 y2 yn)为Rn中任意两个元素 R 规定 xy(x1 y1 x2 y2 xn yn) x(x1 x2 xn) 这样定义了线性运算的集合Rn称为n维空间 n R中点x(x1 x2 xn)和点 y(y1 y2 yn)间的距离 记作(x y) 规定 (x,y)(x1y1)2(x2y2)2 (xnyn)2 高等数学课程建设组 n 高等数学教案 §8 多元函数微分法及其应用 显然 n1 2 3时 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至 Rn中元素x(x1 x2 xn)与零元0之间的距离(x 0)记作||x||(在R1、R2、R3中 通常将||x||记作|x|) 即 ||x||22 x12x2 xn采用这一记号 结合向量的线性运算 便得 ||xy||(x1y1)2(x2y2)2 (xnyn)2(x,y) 在n维空间Rn中定义了距离以后 就可以定义Rn中变元的极限 设x(x1 x2 xn) a(a1 a2 an)R 如果 ||xa||0 则称变元x在Rn中趋于固定元a 记作xa 显然 xa x1a1 x2a2 xnan 在Rn中线性运算和距离的引入 使得前面讨论过的有关平面点集的一系列概念 可以方便地引入到n(n3)维空间中来 例如 设a(a1 a2 an)R 是某一正数 则n维空间内的点集 U(a ){x| x R (x a)} 就定义为Rn中点a的邻域 以邻域为基础 可以定义点集的内点、外点、边界点和聚点 以及开集、闭集、区域等一系列概念 二 多元函数概念 例1 圆柱体的体积V 和它的底半径r、高h之间具有关系 V r2h这里 当r、h在集合{(r h)| r>0 h>0}内取定一对值(r h)时 V对应的值就随之确定 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 pRTVnn n其中R为常数 这里 当V、T在集合{(V T)| V>0 T>0}内取定一对值(V T)时 p的对应值就随之确定 例3 设R 是电阻R1、R2并联后的总电阻 由电学知道 它们之间具有关系 RR1R2R1R2 这里 当R1、R2在集合{(R1 R2)| R1>0 R2>0}内取定一对值(R1 R2)时 R的对应值就随之确定 定义1 设D是R2的一个非空子集 称映射f DR为定义在D上的二元函数 通常记为 zf(x y)(x y)D(或zf(P) PD) 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 其中点集D称为该函数的定义域 x y称为自变量 z称为因变量 上述定义中 与自变量x、y的一对值(x y)相对应的因变量z的值 也称为f在点(x y)处的函数值 记作f(x y) 即zf(x y) 值域 f(D){z| zf(x y)(x y)D} 函数的其它符号 zz(x y) zg(x y)等 类似地可定义三元函数uf(x y z)(x y z)D以及三元以上的函数 一般地 把定义1中的平面点集D换成n维空间R内的点集D 映射f DR就称为定义在D上的n元函数 通常记为 uf(x1 x2 xn)(x1 x2 xn)D 或简记为 uf(x) x(x1 x2 xn)D 也可记为 uf(P) P(x1 x2 xn)D 关于函数定义域的约定 在一般地讨论用算式表达的多元函数uf(x)时 就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域 因而 对这类函数 它的定义域不再特别标出 例如 函数zln(xy)的定义域为{(x y)|xy>0}(无界开区域) 函数zarcsin(xy)的定义域为{(x y)|xy1}(有界闭区域) 二元函数的图形 点集{(x y z)|zf(x y)(x y)D}称为二元函数zf(x y)的图形 二元函数的图形是一张曲面 例如 zaxbyc是一张平面 而函数z=x2+y2的图形是旋转抛物面 三 多元函数的极限 与一元函数的极限概念类似 如果在P(x y)P0(x0 y0)的过程中 对应的函数值f(x y)无限接近于一个确定的常数A 则称A是函数f(x y)当(x y)(x0 y0)时的极限 定义2 设二元函数f(P)f(x y)的定义域为D P0(x0 y0)是D的聚点 如果存在常数A 对于任意给定 n2222的正数总存在正数 使得当P(x,y)DU(P0,)时 都有 |f(P)A||f(x y)A| 成立 则称常数A为函数f(x y)当(x y)(x0 y0)时的极限 记为 也记作 limf(P)A或f(P)A(PP0) PP0(x,y)(x0,y0)limf(x,y)A 或f(x y)A((x y)(x0 y0)) 上述定义的极限也称为二重极限 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 例4.设f(x,y)(x2y2)sin 证 因为 1 求证limf(x,y)0 (x,y)(0,0)x2y211220| |xy||sin| x2y2 2222xyxy |f(x,y)0||(x2y2)sin可见 >0 取 则当 0(x0)2(y0)2 即P(x,y)DU(O,)时 总有 |f(x y)0| 因此lim(x,y)(0,0)f(x,y)0 必须注意 (1)二重极限存在 是指P以任何方式趋于P0时 函数都无限接近于A (2)如果当P以两种不同方式趋于P0时 函数趋于不同的值 则函数的极限不存在 讨论 xy22 xy02 函数f(x,y)xy2在点(0 0)有无极限? 220 xy0 提示 当点P(x y)沿x轴趋于点(0 0)时 lim(x,y)(0,0)f(x,y)limf(x, 0)lim00 x0x0当点P(x y)沿y轴趋于点(0 0)时 lim(x,y)(0,0)f(x,y)limf(0, y)lim00 y0y0当点P(x y)沿直线ykx有 lim(x,y)(0,0)y kxkx2klim x2y2x0x2k2x21k2xy因此 函数f(x y)在(0 0)处无极限 极限概念的推广 多元函数的极限 多元函数的极限运算法则 与一元函数的情况类似 例5 求 lim(x,y)(0,2)sin(xy)x 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 解 sin(xy)sin(xy)sin(xy)limylimlimy122 xxy(x,y)(0,2)(x,y)(0,2)xy(x,y)(0,2)(x,y)(0,2)lim 四 多元函数的连续性 定义3 设二元函数f(P)f(x y)的定义域为D P0(x0 y0)为D的聚点 且P0D 如果 lim(x,y)(x0,y0)f(x,y)f(x0,y0) 则称函数f(x y)在点P0(x0 y0)连续 如果函数f(x y)在D的每一点都连续 那么就称函数f(x y)在D上连续 或者称f(x y)是D上的连续函数 二元函数的连续性概念可相应地推广到n元函数f(P)上去 例6设f(x,y)sin x 证明f(x y)是R2上的连续函数 证 设P0(x0 y0) R2 0 由于sin x在x0处连续 故0 当|xx0|时 有 |sin xsin x0| 以上述作P0的邻域U(P0 ) 则当P(x y)U(P0 )时 显然 |f(x y)f(x0 y0)||sin xsin x0| 2即f(x y)sin x在点P0(x0 y0)连续 由P0的任意性知 sin x作为x y的二元函数在R上连续 证 对于任意的P0(x0 y0)R2 因为 lim(x,y)(x0,y0)f(x,y)lim(x,y)(x0,y0)sinxsinx0f(x0,y0) 所以函数f(x,y)sin x在点P0(x0 y0)连续 由P0的任意性知 sin x作为x y的二元函数在R2上连续 类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时 它们在各自的定义域内都是连续的 定义4设函数f(x y)的定义域为D P0(x0 y0)是D的聚点 如果函数f(x y)在点P0(x0 y0)不连续 则称P0(x0 y0)为函数f(x y)的间断点 例如 xy22 xy02 函数f(x,y)xy2 220 xy0其定义域DR2 O(0 0)是D的聚点 f(x y)当(x y)(0 0)时的极限不存在 所以点O(0 0)是该函数的一个间断点 又如 函数zsin1 其定义域为D{(x y)|x2y21} 圆周C{(x y)|x2y21}上的点2xy12都是D的聚点 而f(x y)在C上没有定义 当然f(x y)在C上各点都不连续 所以圆周C上各点都是该函数的间断点 注 间断点可能是孤立点也可能是曲线上的点 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 可以证明 多元连续函数的和、差、积仍为连续函数 连续函数的商在分母不为零处仍连续 多元连续函数的复合函数也是连续函数 多元初等函数 与一元初等函数类似 多元初等函数是指可用一个式子所表示的多元函数 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的 例如xx2y21y2 sin(xy) ex2y2z2都是多元初等函数 一切多元初等函数在其定义区域内是连续的 所谓定义区域是指包含在定义域内的区域或闭区域 由多元连续函数的连续性 如果要求多元连续函数f(P)在点P0处的极限 而该点又在此函数的定义区域内 则 lim 例7 求pp0f(P)f(P0) lim(x,y)(1,2)xy xy 解 函数f(x,y)xyxy是初等函数 它的定义域为 D{(x y)|x0 y0} P0(1 2)为D的内点 故存在P0的某一邻域U(P0)D 而任何邻域都是区域 所以U(P0)是f(x y)的一个定义区域 因此 lim(x,y)(1,2)f(x,y)f(1,2)3 2一般地 求limf(P)时 如果f(P)是初等函数 且P0是f(P)的定义域的内点 则f(P)在点P0PP0处连续 于是 limf(P)f(P0) PP0 例8 求lim(x,y)(0, 0)xy11xy (xy11)(xy11)xy(xy11)解 lim(x,y)(0, 0)xy11xylim(x,y)(0, 0)lim(x,y)(0, 0)1xy111 多元连续函数的性质 性质1(有界性与最大值最小值定理)在有界闭区域D上的多元连续函数 必定在D上有界 且能取得它的最大值和最小值 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 性质1就是说 若f(P)在有界闭区域D上连续 则必定存在常数M0 使得对一切PD 有|f(P)|M 且存在P1、P 2D 使得 f(P1)max{f(P)|PD} f(P2)min{f(P)|PD} 性质2(介值定理)在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值 §8 2 偏导数 一、偏导数的定义及其计算法 对于二元函数zf(x y) 如果只有自变量x 变化 而自变量y固定 这时它就是x的一元函数 这函数对x的导数 就称为二元函数zf(x y)对于x的偏导数 定义 设函数zf(x y)在点(x0 y0)的某一邻域内有定义 当y固定在y0而x在x0处有增量x时 相应地函数有增量 f(x0x y0)f(x0 y0) 如果极限 limx0f(x0x,y0)f(x0,y0)x 存在 则称此极限为函数zf(x y)在点(x0 y0)处对x的偏导数 记作 zxxx0yy0 fxxx0yy0 zxxx0yy0 或fx(x0,y0) 例如 fx(x0,y0)limf(x0x,y0)f(x0,y0)x x0类似地 函数zf(x y)在点(x0 y0)处对y 的偏导数定义为 limy0f(x0,y0y)f(x0,y0)y 记作 zyxx0yy0 fyxx0yy0 zyxx0yy0 或fy(x0 y0) 偏导函数 如果函数zf(x y)在区域D内每一点(x y)处对x的偏导数都存在 那么这个偏导数就是x、y的函数 它就称为函数zf(x y)对自变量x的偏导函数 记作 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 偏导函数的定义式 fx(x,y)limfz zx 或fx(x,y) xxf(xx,y)f(x,y)x0x 类似地 可定义函数zf(x y)对y的偏导函数 记为 fz zy 或fy(x,y) yyf(x,yy)f(x,y) y偏导函数的定义式 fy(x,y)lim 求导数 fxy0时 只要把y暂时看作常量而对x求导数 求 fy时 只要把x暂时看作常量而对y求 讨论 下列求偏导数的方法是否正确? fx(x0,y0)fx(x,y)xx0 fy(x0,y0)fy(x,y)xx0 yy0yy0 fx(x0,y0)[ddf(x0,y)]yy fy(x0,y0)[f(x,y0)]0xx0dydx 偏导数的概念还可推广到二元以上的函数例如三元函数uf(x y z)在点(x y z)处对x的偏导数定义为 fx(x,y,z)limx0f(xx,y,z)f(x,y,z) x其中(x y z)是函数uf(x y z)的定义域的内点 它们的求法也仍旧是一元函数的微分法问题 例1 求zx3xyy在点(1 2)处的偏导数 解 zzz3x2y 2x3y yxxx121328 y22 2zyx1y231227 例2 求zx2sin 2y的偏导数 解 zz2x2cos2y 2xsin2y yxxz1z2z yxlnxy 例3 设zxy(x0,x1) 求证 证 zyxxy1 zxylnxy 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 xz1zxyxyxlnxyyy11xylnxxyxy2z lnx 例4 求rx2y2z2的偏导数 解 rxxxyz222xr yryxyz222yr 例5 已知理想气体的状态方程为pV=RT(R为常数) 求证 pVT1 VTppRTRT 2 VVVRTVR V pTp 证 因为p TpVTV pRR所以pVTRTRVRT21 VTppRpVV 例5 说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商 二元函数zf(x y)在点(x0 y0)的偏导数的几何意义 fx(x0 y0)[f(x y0)]x是截线zf(x y0)在点M0处切线Tx对x轴的斜率 fy(x0 y0)[f(x0 y)]y是截线zf(x0 y)在点M0处切线Ty对y轴的斜率 偏导数与连续性 对于多元函数来说 即使各偏导数在某点都存在 也不能保证函数在该点连续 例如 xy x 2 y2022 f(x,y)xy 2 y200 x在点(0 0)有 fx(0 0)0 fy(0 0)0 但函数在点(0 0)并不连续 提示 f(x, 0)0 f(0, y)0 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 d[f(0, y)]0 fx(0, 0)d[f(x, 0)]0 fy(0, 0)dxdy 当点P(x y)沿x轴趋于点(0 0)时 有 lim(x,y)(0,0)f(x,y)limf(x, 0)lim00 x0x0 当点P(x y)沿直线ykx趋于点(0 0)时 有 lim(x,y)(0,0)ykxxyx2y2limx0kx2k 2222xkx1k因此 lim(x,y)(0,0)f(x,y)不存在 故函数f(x y)在(0 0)处不连续 类似地 可定义函数zf(x y)对y的偏导函数 记为 fz zy 或fy(x,y) yyf(x,yy)f(x,y) y偏导函数的定义式 fy(x,y)lim 二 高阶偏导数 y0 设函数zf(x y)在区域D内具有偏导数 zzfy(x,y) fx(x,y) yx那么在D内fx(x y)、fy(x y)都是x y 的函数 如果这两个函数的偏导数也存在 则称它们是函数zf(x y)的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数zf(x y)在区域D内的偏导数fx(x y)、fy(x y)也具有偏导数 则它们的偏导数称为函数zf(x y)的二阶偏导数 按照对变量求导次序的 不同有下列四个二阶偏导数 z2zz2z()fxy(x,y) ()2fxx(x,y) yxxyxxxz2zz2z()fyx(x,y) ()2fyy(x,y) xyyxyyy z2zz2z()fxy(x,y)()fyx(x,y)称为混合偏导数 其中yxxyxyyx 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 z2zz2zz2zz2z ()()()2()2 yxxyxyyxyyxxxy 同样可得三阶、四阶、以及n 阶偏导数 二阶及二阶以上的偏导数统称为高阶偏导数 2z2z2z3z 例6 设zxy3xyxy1 求2、3、和 yxxyxx323z2x3y9xy2x 解 z3x2y23y3y xy2z3z 6xy 6y2 32xx2z2z226xy9y1 6x2y9y21 xyyx 2z2z由例6观察到的问题 yxxy2z2z 定理 如果函数zf(x y)的两个二阶混合偏导数及在区域D内连续 那么在该区 yxxy域内这两个二阶混合偏导数必相等 类似地可定义二元以上函数的高阶偏导数 例7 验证函数zln2z2zxy满足方程220 xy22 证 因为zlnx2y21ln(x2y2) 所以 2 yzzx2 xxy2yx2y222y2x22z(xy)x2x 2x2(x2y2)2(xy2)2 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 22x2y22z(xy)y2y 2y2(x2y2)2(xy2)2x2y2y2x22z2z因此 22220 2222xy(xy)(xy)2u2u2u 例8.证明函数u1满足方程2220 rxyz其中rx2y2z2 证 u12r12xx3 xrxrrr 2u13xr13x25 2343xxrrrr22u13z22u13y同理 35 35 z2rry2rr22u2u2u13x213y13z2因此222(35)(35)(35) xyzrrrrrr22233(xyz)33r2 3350 rr5rr提示 ux()x2xr32r3x3r(r)r3x3r2xx r6r6 §8 3全微分及其应用 一、全微分的定义 根据一元函数微分学中增量与微分的关系有 偏增量与偏微分 f(xx y)f(x y)fx(x y)x f(xx y)f(x y)为函数对x的偏增量 f x(x y)x为函数对x的偏微分 f(x yy)f(x y)fy(x y)y 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 f(x yy)f(x y)为函数)对y的偏增量 f y(x y)y为函数对y的偏微分 全增量 z f(xx yy)f(x y) 计算全增量比较复杂 我们希望用x、y的线性函数来近似代替之 定义 如果函数zf(x y)在点(x y)的全增量 z f(xx yy)f(x y)可表示为 zAxByo()((x)2(y)2) 其中A、B不依赖于x、y 而仅与x、y 有关 则称函数zf(x y)在点(x y)可微分 而称AxBy为函数zf(x y)在点(x y)的全微分 记作dz 即 dzAxBy 如果函数在区域D内各点处都可微分 那么称这函数在D内可微分 可微与连续 可微必连续 但偏导数存在不一定连续 这是因为 如果zf(x y)在点(x y)可微则 z f(xx yy)f(x y)AxByo()于是 limz0 0从而 lim(x,y)(0,0)f(xx,yy)lim[f(x,y)z]f(x,y) 0因此函数zf(x y)在点(x y)处连续 可微条件 定理1(必要条件) 如果函数zf(x y)在点(x y)可微分 则函数在该点的偏导数y)在点(x y)的全微分为 dzzzxy xyzz、必定存在 且函数zf(x yx 证 设函数zf(x y)在点P(x y)可微分 于是 对于点P的某个邻域内的任意一点P (xx yy) 有zAxByo() 特别当y0时有 f(xx y)f(x y)Axo(|x|) 上式两边各除以x 再令x0而取极限 就得 lim从而偏导数 x0f(xx,y)f(x,y)A xzzzzB 所以 A同理可证偏导数存在 且存在 且 yyxx高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 dzzzxy xy 简要证明设函数zf(x y)在点(x y)可微分 于是有zAxByo() 特别当y0时有 f(xx y)f(x y)Axo(|x|) 上式两边各除以x 再令x0而取极限 就得 limx0f(xx,y)f(x,y)o(|x|)lim[A]A xxx0从而zzzzzzB 所以dzxy 存在 且存在 且A同理yyxyxxzz、存在是可微分的必要条件 但不是充分条件yx 偏导数 例如xy x2y20 函数f(x,y)x2y2在点(00)处虽然有f x(0 0)0及f y(0 0)0但函数在0 x2y20(00)不可微分即z[fx(0 0)xfy(0 0)y]不是较高阶的无穷小 这是因为当(x y)沿直线yx趋于(0 0)时 定理2(充分条件) 如果函数zf(x y)的偏导数 zz、在点(x y)连续 则函数在该点可微分 yxz[fx(0, 0)xfy(0, 0)y]xy(x)2(y)2xx10 222(x)(x) 定理1和定理2的结论可推广到三元及三元以上函数 按着习惯x、y分别记作dx、dy 并分别称为自变量的微分则函数zf(x y)的全微分可写作 dzzzdxdy xy 二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理 叠加原理也适用于二元以上的函数 例如函数uf(x y z)的全微分为 duuuudxdydz xyz 例1 计算函数zx2y y2的全微分 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 解 因为zzx22y 2xy yx所以dz2xydx(x22y)dy 例2 计算函数zexy在点(2 1)处的全微分 解 因为zzxexy yexy yx zxx2y12e2 2zyx2y12e2 所以 dzedx2edy 例3 计算函数uxsinyeyz的全微分解 因为yu1uucoszeyz yeyz 1 y22zxy1所以 dudx(coszeyz)dyyeyzdz 2* 二、全微分在近似计算中的应用 当二元函数zf(x y)在点P(x y)的两个偏导数f x(x y) f y(x y)连续 并且|x| |y|都较小时 有近似等式 z dz f x(x y)xf y(x y)y 即 f(xx yy) f(x y)f x(x y)xf y(x y)y 我们可以利用上述近似等式对二元函数作近似计算 例4 有一圆柱体 受压后发生形变 它的半径由20cm增大到20 05cm 高度由100cu减少到99cm 求此圆柱体体积变化的近似值 解 设圆柱体的半径、高和体积依次为r、h和V 则有 V r 2h 已知r20 h100 r0 05 h1 根据近似公式 有 VdVVrrVhh2rhrr2h 2201000 0520(1)200(cm) 即此圆柱体在受压后体积约减少了200 cm3 例5 计算(1 04)202的近似值 解 设函数f(x y)x y 显然 要计算的值就是函数在x104 y202时的函数值f(104 202) 取x1 y2 x004 y002 由于 高等数学课程建设组 23高等数学教案 §8 多元函数微分法及其应用 f(xx yy) f(x y)f x(x y)xf y(x y)y xyxxxln x y 所以 (104)20212212100412ln1002108 例6 利用单摆摆动测定重力加速度g的公式是 g42l 2T y yy现测得单摆摆长l与振动周期T分别为l=100±0.1cm、T=2±0.004s.问由于测定l与T的误差而引起g的绝对误差和相对误差各为多少? 解 如果把测量l与T所产生的误差当作|Δl|与|ΔT|, 则利用上述计算公式所产生的误差就是42l二元函数g2的全增量的绝对值|Δg|.由于|Δl||ΔT|都很小因此我们可以用dg来近似地代替TΔg这样就得到g的误差为 |g||dg|| |glgllgTgTT| |l||T 42(12lT) lT2T3其中l与T为l与T的绝对误差 把l=100 T=2, l=0.1, δT=0.004代入上式 得g的绝对误差约为 g42(0.121000.004)2320.524.93(cm/s2).0.520.500 2g410022g从上面的例子可以看到对于一般的二元函数z=f(x, y), 如果自变量x、y 的绝对误差分别为x、y, 即 |Δx |x,|Δy |y,则z的误差 |z||dz|| | zzxy| xyzz||x||||y| xy高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 |从而得到z的绝对误差约为 zz|x||y xy z|z的相对误差约为 zz|x||y xyzzyy zxx|z|zz §8 4 多元复合函数的求导法则 设zf(u v) 而u(t) v(t) 如何求dz? dt 设zf(u v) 而u(x y) v(x y) 如何求 zz和? yx 1 复合函数的中间变量均为一元函数的情形 定理1 如果函数u(t)及v(t)都在点t可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(t) (t)]在点t可导 且有 dzzduzdv dtudtvdt 简要证明1 因为zf(u v)具有连续的偏导数 所以它是可微的 即有 dzzzdudv uv又因为u(t)及v(t)都可导 因而可微 即有 du代入上式得 dz从而 zduzdvzduzdvdtdt()dt udtvdtudtvdtdudvdt dvdt dtdtdzzduzdv dtudtvdt 简要证明2 当t取得增量t时 u、v及z相应地也取得增量u、v及z 由zf(u v)、u(t)及v(t)的可微性 有 z zzzduzdvuvo()[to(t)][to(t)]o()uvudtvdt高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 (zduzdvzz)t()o(t)o() udtvdtuvzzduzdvzzo(t)o() ()tudtvdtuvtt令t0 上式两边取极限 即得 dzzduzdv dtudtvdtlimt0注limt0o()to()(u)2(v)2t0(du2dv)()20 dtdt推广 设zf(u v w) u(t) v(t) w(t) 则zf[(t) (t) (t)]对t 的导数为 dzzduzdvzdw dtudtvdtwdt上述dz称为全导数 dt 2 复合函数的中间变量均为多元函数的情形 定理2 如果函数u(x y) v(x y)都在点(x y)具有对x及y的偏导数 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf [(x y) (x y)]在点(x y)的两个偏导数存在 且有 zzuzvzzuzv xuxvxyuyvyzzuzvzwzzuzvzw yuyvywyxuxvxwx 推广 设zf(u v w) u(x y) v(x y) w(x y) 则 讨论 (1)设zf(u v) u(x y) v(y) 则 提示 zz? ? yxzzuzdvzzu yuyvdyxux (2)设zf(u x y) 且u(x y) 则 zz? ? yx 提示 zfufzfuf yuyyxuxx这里ffzz与是不同的 是把复合函数zf[(x y) x y]中的y看作不变而对x的偏导数 xxxx 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 是把f(u x y)中的u及y看作不变而 对x的偏导数 fz与也朋类似的区别 yy 3.复合函数的中间变量既有一元函数 又有多元函数的情形 定理3 如果函数u(x y)在点(x y)具有对x及对y的偏导数 函数v(y)在点y可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(x y) (y)]在点(x y)的两个偏导数存在 且有 zzuzdv zzu xuxyuyvdy 例1 设zeusin v uxy vxy 求z和 xz y 解 zzuzv xuxx yvx eusin vyeucos v1 e[y sin(xy)cos(xy)] zzuzv yuyvyuu esin vxecos v1 exy[x sin(xy)cos(xy)] 例2 设uf(x,y,z)ex 解 uffz xxzx22y2z2 而zx2siny 求 uu和 yx 2xexy2z22zex2y2z22xsiny 2x(12x2sin2y)exuffz yyzy222y2x4siny 2yexy2z22zex2y2z2x2cosy 2(yx4sinycosy)ex22y2x4siny dz dt 例3 设zuvsin t 而uet vcos t 求全导数 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 解 dzzduzdvz dtudtvdtt vetu(sin t)cos t etcos te tsin tcos t e(cos tsin t)cos t 2ww 例4 设wf(xyz xyz) f具有二阶连续偏导数 求及 xzxt 解 令uxyz vxyz 则wf(u v) 引入记号 f1 f(u,v)u f12f(u,v)uvf22等 同理有f2f11wfufvf1yzf2 xuxvxff2w (f1yzf2)1yf2yz2 xzzzzxyf12yf2yzf21xy2zf22 f11y(xz)f12yf2xy2zf22 f1 1注 f1f1uf1vffuf2vxyf12 22xyf22 f11f21zuzvzzuzvz 例5 设uf(x y)的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式 u2u22u2u(1)()() (2)22 xyxy解 由直角坐标与极坐标间的关系式得 uf(x y)f(cosθ sinθ)F( θ) 其中xcosθ ysinθ 应用复合函数求导法则 得 uuuuuysinuxuycos xxx2uucosuuuuyuxsin yyy2x2y2 arctanyx 两式平方后相加 得 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 (u)2(u)2(u)212(u)2 xy再求二阶偏导数 得 2uuu ()()x2xxxx uusin(cos)cos uusinsin(cos) 2u2usincos2usin2 2cos2222u2sincosusin2 2同理可得 2u2u2usincos2ucos22 sin22222y2u2sincosucos 2两式相加 得 2u2u2u112u 22222xy1u2u 2[()] 2 全微分形式不变性 设zf(u v)具有连续偏导数 则有全微分 dzzzdudv uv如果zf(u v)具有连续偏导数 而u(x y) v(x y)也具有连续偏导数 则 dz zzdxdy xy高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 (zuzvzuzv)dx()dy uxvxuyvyzuuzvv(dxdy)(dxdy) uxyvxy zduzdv uv由此可见 无论z 是自变量u、v的函数或中间变量u、v的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性 例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分 解 dzzduzdv e usin vdu e ucos v dv uv e usin v(y dxx dy) e ucos v(dxdy) (ye usin v e ucos v)dx(xe usin v e ucos v)dy e xy [y sin(xy)cos(xy)]dx e xy [x sin(xy)cos(xy)]dy §8隐函数的求导法则 一、一个方程的情形 隐函数存在定理1 设函数F(x y)在点P(x0 y0)的某一邻域内具有连续偏导数 F(x0 y0)0 Fy(x0 y0)0 则方程F(x y)0在点(x0 y0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yf(x) 它满足条件y0f(x0) 并有 dydxFxFy 求导公式证明 将yf(x)代入F(x y)0 得恒等式 F(x f(x))0 等式两边对x求导得 FFdy0 xydx由于F y连续 且Fy(x0 y0)0 所以存在(x0 y0)的一个邻域 在这个邻域同Fy 0 于是得 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 dydxFxFy 例1 验证方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x) 并求这函数的一阶与二阶导数在x0的值 解 设F(x y)xy1 则Fx2x Fy2y F(0 1)0 Fy(0 1)20 因此由定理1可知 方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x) dydxFxFy22dyx ydx0 x0 d2ydx2d2ydx2yxyy2yx(y2x)yy2x2y31 3y 1 x0 隐函数存在定理还可以推广到多元函数 一个二元方程F(x y)0可以确定一个一元隐函数 一个三元方程F(x y z)0可以确定一个二元隐函数 隐函数存在定理2 设函数F(x y z)在点P(x0 y0 z0)的某一邻域内具有连续的偏导数 且F(x0 y0 z0)0 Fz(x0 y0 z0)0 则方程F(x y z)0在点(x0 y0 z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zf(x y) 它满足条件z0f(x0 y0) 并有 FyFxzz yFzxFz 公式的证明 将zf(x y)代入F(x y z)0 得F(x y f(x y))0 将上式两端分别对x和y求导 得 FxFzzz0 0 FyFzyx因为F z连续且F z(x0 y0 z0)0 所以存在点(x0 y0 z0)的一个邻域 使F z0 于是得 FyFxzz yFzxFz 例2.设x2y2z24z0 求 2z 2x高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 解 设F(x y z) xyz4z 则Fx2x Fy2z4 Fz2xx xxFz2z42z22 2z2x(2x)xzx(2x)x()22x2z(2x)x (2z)2(2z)2(2z) 3二、方程组的情形 在一定条件下 由个方程组F(x y u v)0 G(x y u v)0可以确定一对二元函数uu(x y) vv(x y) 例如方程xuyv0和yuxv1可以确定两个二元函数uyx2y2 vx x2y2 事实上 xuyv0 vyxxuyuxu1u yyx2y2vyxx 2yxy2x2y 2如何根据原方程组求u v的偏导数? 隐函数存在定理隐函数存在定理3 设F(x y u v)、G(x y u v)在点P(x0 y0 u0 v0)的某一邻域内具有对各个变量的连续偏导数 又F(x0 y0 u0 v0)0 G(x0 y0 u0 v0)0 且偏导数所组成的函数行列式 F(F,G)u JG(u,v)uFv Gv在点P(x0 y0 u0 v0)不等于零 则方程组F(x y u v)0 G(x y u v)0在点P(x0 y0 u0 v0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uu(x y) vv(x y) 它们满足条件u0u(x0 y0) v0v(x0 y0) 并有 u1(F,G) xJ(x,v)FuFvGuGvFxFvGxGv 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 v1(F,G) xJ(u,x)FuFvGuGvFyFvGyGvFuFxGuGx u1(F,G) yJ(y,v)FuFvGuGvFuFyGuGy v1(F,G) yJ(u,y)FuFvGuGv 隐函数的偏导数: 设方程组F(x y u v)0 G(x y u v)0确定一对具有连续偏导数的 二元函数uu(x y) vv(x y) 则 FFuFv0,uvxuvxx 偏导数 由方程组确定 uvxxGv0.GxGuxxFFuFv0,uvyyyuv 偏导数 由方程组确定 uvyyGv0.GyGuyy 例3 设xuyv0 yuxv1 求 vuuv 和 yyxx 解 两个方程两边分别对x 求偏导 得关于 uv和的方程组 xxuxuyv0xx uvvx0yxx当x2y2 0时 解之得xuyvvyuxvu 2xx2y2xxy2 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 两个方程两边分别对x 求偏导 得关于 uv和的方程组 yyxuvyv0yy uvx0uyyy当x2y2 0时 解之得uyxvyux2y2xuyv v 22yxy 另解 将两个方程的两边微分得 udxxduvdyydv0xduydvvdyudx 即 udyyduvdxxdv0yduxdvudyvdx解之得 duxuyvx2y2dxxvyux2y2dy dvyuxvxy22dxxuyvxy22dy xuyvuxvyu于是 u2 222xxyyxy xuyvvyuxvv 222xxy2yxy 例 设函数xx(u v) yy(u v)在点(u v)的某一领域内连续且有连续偏导数 又 (1)证明方程组 xx(u,v) yy(u,v)(x,y)(u,v)0 在点(x y u v)的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uu(x y) vv(x y) (2)求反函数uu(x y) vv(x y)对x y的偏导数 解(1)将方程组改写成下面的形式 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 F(x,y,u,v)xx(u,v)0 G(x,y,u,v)yy(u,v)0则按假设 J(F,G)(u,v)(x,y)(u,v)0.由隐函数存在定理3 即得所要证的结论 (2)将方程组(7)所确定的反函数uu(x y)vv(x y)代入(7) 即得 xx[u(x,y),v(x,y)] yy[u(x,y),v(x,y)]将上述恒等式两边分别对x求偏导数得 1xuxv uxvx yuyv0uxvx由于J0 故可解得 同理 可得 §8 6多元函数微分学的几何应用 一 空间曲线的切线与法平面 设空间曲线的参数方程为 x(t) y(t) z(t)这里假定(t) (t) (t)都在[ ]上可导 在曲线上取对应于tt0的一点M0(x0 y0 z0)及对应于tt0t的邻近一点M(x0+x y0+y z0+z) 作曲线的割线MM0 其方程为 xx0xyy0yzz0zu1xv1x yJvyJuu1yv1y xJuxJv 当点M沿着趋于点M0时割线MM0的极限位置就是曲线在点M0处的切线 考虑 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 xx0yy0zz0 xyzttt当MM0 即t0时 得曲线在点M0处的切线方程为 xx0yy0zz0 (t0)(t0)(t0) 曲线的切向量 切线的方向向量称为曲线的切向量 向量 T((t0) (t0) (t0))就是曲线在点M0处的一个切向量 法平面 通过点M0而与切线垂直的平面称为曲线在点M0 处的法平面 其法平面方程为 (t0)(xx0)(t0)(yy0)(t0)(zz0)0 例1 求曲线xt yt2 zt3在点(1 1 1)处的切线及法平面方程 解 因为xt1 yt2t zt3t2 而点(1 1 1)所对应的参数t1 所以 T (1 2 3) 于是 切线方程为 法平面方程为 (x1)2(y1)3(z1)0 即x2y3z6 讨论 1 若曲线的方程为 y(x) z(x) 问其切线和法平面方程是什么形式 提示 曲线方程可看作参数方程 xx y(x) z(x) 切向量为T(1 (x) (x)) 2 若曲线的方程为 F(x y z)0 G(x y z)0 问其切线和法平面方程又是什么形式 提示 两方程确定了两个隐函数 y(x) z(x) 曲线的参数方程为 xx y(x) z(x) x1y1z1 123 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 dydzFxFyFz0dydxdx由方程组可解得和dz dydxdxdzGxGyGz0dxdx切向量为T(1, dydz,) dxdx22 2例2 求曲线xyz6 xyz0在点(1 2 1)处的切线及法平面方程 解 为求切向量 将所给方程的两边对x求导数 得 dydz2x2y2z0dxdx dydz10dxdx解方程组得dydxzxdzxy yzdxyzdydx0 dz1 dx在点(1 2 1)处 从而T (1 0 1) 所求切线方程为 法平面方程为 (x1)0(y2)(z1)0 即xz0 解 为求切向量 将所给方程的两边对x求导数 得 dydz2x2y2z0dxdx dydz10dxdxx1y2z1 101方程组在点(1 2 1)处化为 dydz21dxdx dydz1dxdx解方程组得dydx0 dz1 dx从而T (1 0 1) 所求切线方程为 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 法平面方程为 x1y2z1 10(x1)0(y2)(z1)0 即xz0 二 曲面的切平面与法线 设曲面的方程为 F(x y z)0 M0(x0 y0 z0)是曲面上的一点 并设函数F(x y z)的偏导数在该点连续且不同时为零 在曲面上 通过点M0任意引一条曲线 假定曲线的参数方程式为 x(t) y(t) z(t) tt0对应于点M0(x0 y0 z0) 且(t0) (t0) (t0)不全为零 曲线在点的切向量为 T ((t0) (t0) (t0)) 考虑曲面方程F(x y z)0两端在tt0的全导数 Fx(x0 y0 z0)(t0)Fy(x0 y0 z0)(t0)Fz(x0 y0 z0)(t0)0 引入向量 n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0)) 易见T与n是垂直的 因为曲线是曲面上通过点M0的任意一条曲线 它们在点M0的切线都与同一向量n垂直 所以曲面上通过点M0的一切曲线在点M0的切线都在同一个平面上 这个平面称为曲面在点M0的切平面 这切平面的方程式是 Fx(x0 y0 z0)(xx0)Fy(x0 y0 z0)(yy0)Fz(x0 y0 z0)(zz0)0 曲面的法线 通过点M0(x0 y0 z0)而垂直于切平面的直线称为曲面在该点的法线 法线方程为 xx0Fx(x0, y0, z0)yy0Fy(x0, y0, z0)zz0Fz(x0, y0, z0) 曲面的法向量 垂直于曲面上切平面的向量称为曲面的法向量 向量 n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0))就是曲面在点M0处的一个法向量 例3 求球面xyz14在点(1 2 3)处的切平面及法线方程式 解 F(x y z) xyz14 Fx2x Fy2y Fz2z Fx(1 2 3)2 Fy(1 2 3)4 Fz(1 2 3)6 高等数学课程建设组 222222高等数学教案 §8 多元函数微分法及其应用 法向量为n(2 4 6) 或n(1 2 3) 所求切平面方程为 2(x1)4(y2)6(z3)0 即x2y3z140 法线方程为x1y2z3 12 3讨论 若曲面方程为zf(x y) 问曲面的切平面及法线方程式是什么形式 提示 此时F(x y z)f(x y)z n(fx(x0 y0) fy(x0 y0) 1) 例4 求旋转抛物面zx2y21在点(2 1 4)处的切平面及法线方程 解 f(x y)xy1 n(fx fy 1)(2x 2y 1) n|(2 1 4)(4 2 1) 所以在点(2 1 4)处的切平面方程为 4(x2)2(y1)(z4)0 即4x2yz60 法线方程为 §8 7 方向导数与梯度 一、方向导数 现在我们来讨论函数zf(x y)在一点P沿某一方向的变化率问题 设l是xOy平面上以P0(x0 y0)为始点的一条射线 el(cos cos )是与l同方向的单位向量 射线l的参数方程为 xx0t cos yy0t cos (t0) 设函数zf(x y)在点P0(x0 y0)的某一邻域U(P0)内有定义 P(x0t cos y0t cos )为l上另一点 且PU(P0) 如果函数增量f(x0t cos y0t cos )f(x0 y0)与P到P0的距离|PP0|t的比值 f(x0tcos, y0tcos)f(x0,y0)tx2y1z4 4212 2当P沿着l趋于P0(即tt0)时的极限存在 则称此极限为函数f(x y)在点P0沿方向l的方向导数 记作fl(x0,y0) 即 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 fllim(x0,y0)t0f(x0tcos, y0tcos)f(x0,y0)t 从方向导数的定义可知 方向导数率 方向导数的计算 fl(x0,y0)就是函数f(x y)在点P0(x0 y0)处沿方向l的变化 定理 如果函数zf(x y)在点P0(x0 y0)可微分 那么函数在该点沿任一方向l 的方向导数都存在 且有 flfx(x0,y0)cosfy(x0,y0)cos (x0,y0)其中cos cos 是方向l 的方向余弦 简要证明 设xt cos yt cos 则 f(x0tcos y0tcos)f(x0 y0)f x(x0 y0)tcosf y(x0 y0)tcoso(t) 所以 limf(x0tcos, y0tcos)f(x0,y0)tt0fx(x0,y0)cosfy(x0,y0)sin 这就证明了方向导数的存在 且其值为 flfx(x0,y0)cosfy(x0,y0)cos(x0,y0)提示 f(x0x,y0y)f(x0,y0)fx(x0,y0)xfy(x0,y0)yo((x)2(y)2) xt cos yt cos (x)2(y)2t 讨论 函数zf(x y)在点P 沿x轴正向和负向 沿y轴正向和负向的方向导数如何? 提示 沿x轴正向时 cos cos0 沿x轴负向时 cos1 cos0 flfx ff lx 例1 求函数zxe2y在点P(1 0)沿从点P(1 0)到点Q(2 1)的方向的方向导数 解 这里方向l即向量PQ(1, 1)的方向 与l同向的单位向量为 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 el(12, 12) 因为函数可微分 且所以所求方向导数为 zl112zx(1,0)e2y(1,0)1 zy(1,0)2xe2y(1,0)2(1,0)2(12)2 2 对于三元函数f(x y z)来说 它在空间一点P0(x0 y0 z0)沿el(cos cos cos )的方向导数为 fllim(x0,y0,z0)f(x0tcos, y0tcos,z0tcos)f(x0,y0,z0)tt0 如果函数f(x y z)在点(x0 y0 z0)可微分 则函数在该点沿着方向el(cos cos cos 的方向导数为 fl(x0,y0,z0)fx(x0 y0 z0)cosfy(x0 y0 z0)cosfz(x0 y0 z0)cos 例2求f(x y z)xyyzzx在点(1 1 2)沿方向l的方向导数 其中l的方向角分别为60 45 60 解 与l同向的单位向量为 el(cos60 cos 45 cos60(, 因为函数可微分且 fx(1 1 2)(yz)|(1 1 2)3 fy(1 1 2)(xz)|(1 1 2)3 fz(1 1 2)(yx)|(1 1 2)2 所以 二 梯度 设函数zf(x y)在平面区域D内具有一阶连续偏导数 则对于每一点P0(x0 y0)D 都可确定一个向量 高等数学课程建设组 1221,)22fl1211332(532) 2222(1,1,2)高等数学教案 §8 多元函数微分法及其应用 fx(x0 y0)ify(x0 y0)j 这向量称为函数f(x y)在点P0(x0 y0)的梯度 记作grad f(x0 y0) 即 grad f(x0 y0) fx(x0 y0)ify(x0 y0)j 梯度与方向导数 如果函数f(x y)在点P0(x0 y0)可微分 el(cos cos )是与方向l同方向的单位向量 则 flfx(x0,y0)cosfy(x0,y0)cos (x0,y0) grad f(x0 y0)el | grad f(x0 y0)|cos(grad f(x0 y0)el) 这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系 特别 当向量el与grad f(x0 y0)的夹角0 即沿梯度方向时 方向导数 fl^ 取得最大值 这个最大值就是梯度 (x0,y0)的模|grad f(x0 y0)| 这就是说 函数在一点的梯度是个向量 它的方向是函数在这点的方向导数取得最大值的方向 它的模就等于方向导数的最大值 讨论 fl的最大值 结论 函数在某点的梯度是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值 我们知道 一般说来二元函数zf(x y)在几何上表示一个曲面 这曲面被平面zc(c是常数)所截得的曲线L的方程为 zf(x,y) zc这条曲线L在xOy面上的投影是一条平面曲线L* 它在xOy平面上的方程为 f(x y)c 对于曲线L*上的一切点 已给函数的函数值都是c 所以我们称平面曲线L*为函数zf(x y)的等值线 若f x f y不同时为零 则等值线f(x y)c上任一点P0(x0 y0)处的一个单位法向量为 n1fx2(x0,y0)fy2(x0,y0)(fx(x0,y0),fy(x0,y0)) 这表明梯度grad f(x0 y0)的方向与等值线上这点的一个法线方向相同 而沿这个方向的方向导数 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 f就等于|grad f(x0 y0)| 于是 n gradf(x0,y0)fn n 这一关系式表明了函数在一点的梯度与过这点的等值线、方向导数间的关系 这说是说 函数在一点的梯度方向与等值线在这点的一个法线方向相同 它的指向为从数值较低的等值线指向数值较高的等值线 梯度的模就等于函数在这个法线方向的方向导数 梯度概念可以推广到三元函数的情形 设函数f(x y z)在空间区域G内具有一阶连续偏导数 则对于每一点P0(x0 y0 z0)G 都可定出一个向量 fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k 这向量称为函数f(x y z)在点P0(x0 y0 z0)的梯度 记为grad f(x0 y0 z0) 即 grad f(x0 y0 z0)fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k 结论 三元函数的梯度也是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值 如果引进曲面 f(x y z)c 为函数的等量面的概念 则可得函数f(x y z)在点P0(x0 y0 z0)的梯度的方向与过点P0的等量面 f(x y z)c在这点的法线的一个方向相同 且从数值较低的等量面指向数值较高的等量面 而梯度的模等于函数在这个法线方向的方向导数 例3 求grad 1 xy22 解 这里f(x,y)1 xy2 2因为 ff2y2x 2xy(xy2)2(x2y2)22y2x1ij 222222x2y2(xy)(xy)所以 grad 例4 设f(x y z)x2y2z2 求grad f(1 1 2) 解 grad f(fx fy fz)(2x 2y 2z) 于是 grad f(1 1 2)(2 2 4) 数量场与向量场 如果对于空间区域G内的任一点M 都有一个确定的数量f(M) 则称在这空间区域G内确定了一个数量场(例如温度场、密度场等) 一个数量场可用一个数量函数f(M)来 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 确定 如果与点M相对应的是一个向量F(M) 则称在这空间区域G内确定了一个向量场(例如力场、速度场等) 一个向量场可用一个向量函数F(M)来确定 而 F(M)P(M)iQ(M)jR(M)k 其中P(M) Q(M) R(M)是点M的数量函数 利用场的概念 我们可以说向量函数grad f(M)确定了一个向量场——梯度场 它是由数量场f(M)产生的 通常称函数f(M)为这个向量场的势 而这个向量场又称为势场 必须注意 任意一个向量场不一定是势场 因为它不一定是某个数量函数的梯度场 例5 试求数量场m所产生的梯度场 其中常数m>0 rrx2y2z2为原点O与点M(x y z)间的距离 rmx 解 (m)m 23xrrxrmymmmz()3 同理 ()3 yrrzrrymmxz从而 grad2(ijk) rrrrryxz记erijk 它是与OM同方向的单位向量 则rrr gradmrmer r 2上式右端在力学上可解释为 位于原点O 而质量为m 质点对位于点M而质量为l的质点的引力 这引力的大小与两质点的质量的乘积成正比、而与它们的距平方成反比 这引力的方向由点M指向原点 因此数量场 §8 多元函数的极值及其求法 一、多元函数的极值及最大值、最小值 定义 设函数zf(x y)在点(x0 y0)的某个邻域内有定义 如果对于该邻域内任何异于(x0 y0)的点(x y) 都有 f(x y) 高等数学课程建设组 mmm的势场即梯度场grad称为引力场 而函数称为引力势 rrr高等数学教案 §8 多元函数微分法及其应用 则称函数在点(x0 y0)有极大值(或极小值)f(x0 y0) 极大值、极小值统称为极值 使函数取得极值的点称为极值点 例1 函数z3x24y2在点(0 0)处有极小值 当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极小值 例2 函数zx2y2在点(0 0)处有极大值 当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极大值 例3 函数zxy在点(0 0)处既不取得极大值也不取得极小值 因为在点(0 0)处的函数值为零 而在点(0 0)的任一邻域内 总有使函数值为正的点 也有使函数值为负的点 以上关于二元函数的极值概念 可推广到n元函数 设n元函数uf(P)在点P0的某一邻域内有定义 如果对于该邻域内任何异于P0的点P 都有 f(P) 则称函数f(P)在点P0有极大值(或极小值)f(P0) 定理1(必要条件)设函数zf(x y)在点(x0 y0)具有偏导数 且在点(x0 y0)处有极值 则有 fx(x0 y0)0 fy(x0 y0)0 证明 不妨设zf(x y)在点(x0 y0)处有极大值 依极大值的定义 对于点(x0 y0)的某邻域内异于(x0 y0)的点(x y) 都有不等式 f(x y) 特殊地 在该邻域内取yy0而xx0的点 也应有不等式 f(x y0) 这表明一元函数f(x y0)在xx0处取得极大值 因而必有 fx(x0 y0)0 类似地可证 fy(x0 y0)0 从几何上看 这时如果曲面zf(x y)在点(x0 y0 z0)处有切平面 则切平面 zz0fx(x0 y0)(xx0) fy(x0 y0)(yy0)成为平行于xOy坐标面的平面zz0 类似地可推得 如果三元函数uf(x y z)在点(x0 y0 z0)具有偏导数 则它在点(x0 y0 z0)具有极值的必要条件为 fx(x0 y0 z0)0 fy(x0 y0 z0)0 fz(x0 y0 z0)0 仿照一元函数 凡是能使fx(x y)0 fy(x y)0同时成立的点(x0 y0)称为函数zf(x y)的驻点 从定理1可知 具有偏导数的函数的极值点必定是驻点 但函数的驻点不一定是极值点 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 例如 函数zxy在点(0 0)处的两个偏导数都是零 函数在(0 0)既不取得极大值也不取得极小值 定理2(充分条件) 设函数zf(x y)在点(x0 y0)的某邻域内连续且有一阶及二阶连续偏导数 又fx(x0 y0)0 fy(x0 y0)0 令 fxx(x0 y0)A fxy(x0 y0)B fyy(x0 y0)C 则f(x y)在(x0 y0)处是否取得极值的条件如下 (1)ACB2>0时具有极值 且当A<0时有极大值 当A>0时有极小值 (2)ACB2<0时没有极值 (3)ACB0时可能有极值 也可能没有极值 在函数f(x y)的驻点处如果 fxx fyyfxy2>0 则函数具有极值 且当fxx<0时有极大值 当fxx>0时有极小值 极值的求法 第一步 解方程组 fx(x y)0 fy(x y)0 求得一切实数解 即可得一切驻点 第二步 对于每一个驻点(x0 y0) 求出二阶偏导数的值A、B和C 第三步 定出ACB的符号 按定理2的结论判定f(x0 y0)是否是极值、是极大值 还是极小值 例4 求函数f(x y)x3y33x23y29x 的极值 fx(x,y)3x26x90 解 解方程组 2f(x,y)3y6y0y22求得x1 3 y0 2 于是得驻点为(1 0)、(1 2)、(3 0)、(3 2) 再求出二阶偏导数 fxx(x y)6x6 fxy(x y)0 fyy(x y)6y6 在点(1 0)处 ACB2126>0 又A>0 所以函数在(1 0)处有极小值f(1 0)5 在点(1 2)处 ACB212(6)<0 所以f(1 2)不是极值 在点(3 0)处 ACB126<0 所以f(3 0)不是极值 在点(3 2)处 ACB212(6)>0 又A<0 所以函数的(3 2)处有极大值f(3 2)31 应注意的问题 不是驻点也可能是极值点 高等数学课程建设组 2高等数学教案 §8 多元函数微分法及其应用 例如 函数zx2y2在点(0 0)处有极大值 但(0 0)不是函数的驻点 因此 在考虑函数的极值问题时 除了考虑函数的驻点外 如果有偏导数不存在的点 那么对这些点也应当考虑 最大值和最小值问题 如果f(x y)在有界闭区域D上连续 则f(x y)在D上必定能取得最大值和最小值 这种使函数取得最大值或最小值的点既可能在D的内部 也可能在D的边界上 我们假定 函数在D上连续、在D内可微分且只有有限个驻点 这时如果函数在D的内部取得最大值(最小值) 那么这个最大值(最小值)也是函数的极大值(极小值) 因此 求最大值和最小值的一般方法是 将函数f(x y)在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较 其中最大的就是最大值 最小的就是最小值 在通常遇到的实际问题中 如果根据问题的性质 知道函数f(x y)的最大值(最小值)一定在D的内部取得 而函数在D内只有一个驻点 那么可以肯定该驻点处的函数值就是函数f(x y)在D上的最大值(最小值) 例5 某厂要用铁板做成一个体积为8m3的有盖长方体水箱 问当长、宽、高各取多少时 才能使用料最省 解 设水箱的长为xm 宽为ym 则其高应为A2(xyy8m 此水箱所用材料的面积为 xy8888x)2(xy)(x0, y0) xyxyxy令Ax2(y88 A2(x)0 得x2 y2)0y22yx 根据题意可知 水箱所用材料面积的最小值一定存在 并在开区域D{(x y)|x>0 y>0}内取得 因为函数A在D内只有一个驻点 所以 此驻点一定是A的最小值点 即当水箱的长为2m、宽为2m、高为 因此A在D内的唯一驻点(2 2)处取得最小值 即长为2m、宽为2m、高为 从这个例子还可看出 在体积一定的长方体中 以立方体的表面积为最小 例6 有一宽为24cm的长方形铁板 把它两边折起来做成一断面为等腰梯形的水槽 问怎样折法才能使断面的面积最大? 解 设折起来的边长为xcm 倾角为 那末梯形断面的下底长为242x 上底长为242xcos 高为xsin 所以断面面积 高等数学课程建设组 82m时 水箱所用的材料最省 2282m时 所用材料最省 22高等数学教案 §8 多元函数微分法及其应用 A1(242x2xcos242x)xsin 2即A24xsin2x2sinx2sin cos(0 可见断面面积A是x和的二元函数 这就是目标函数 面求使这函数取得最大值的点(x ) 令Ax24sin4xsin2xsin cos0 A24xcos2x2 cosx2(cos2sin2)0 由于sin 0 x0 上述方程组可化为 122xxcos0 222xcosx(cossin)024cos解这方程组 得60 x8cm 根据题意可知断面面积的最大值一定存在 并且在D{(x y)|0 二、条件极值 拉格朗日乘数法 对自变量有附加条件的极值称为条件极值 例如 求表面积为a而体积为最大的长方体的体积问题 设长方体的三棱的长为x y z 则体积Vxyz 又因假定表面积为a2 所以自变量x y z还必须满足附加条件2(xyyzxz)a 这个问题就是求函数Vxyz在条件2(xyyzxz)a2下的最大值问题 这是一个条件极值问题 对于有些实际问题 可以把条件极值问题化为无条件极值问题 例如上述问题 由条件2(xyyz Vxz)a22 2 解得za22xy2(xy) 于是得 xya22xy() 2(xy)只需求V的无条件极值问题 在很多情形下 将条件极值化为无条件极值并不容易 需要另一种求条件极值的专用方法 这就是拉格朗日乘数法 现在我们来寻求函数zf(x y)在条件(x y)0下取得极值的必要条件 如果函数zf(x y)在(x0 y0)取得所求的极值 那么有 (x0 y0)0 假定在(x0 y0)的某一邻域内f(x y)与(x y)均有连续的一阶偏导数 而y(x0 y0)0 由隐函数存在定理 由方程(x y)0确定一个连续且具有连续导数的函数y(x) 将其代入目标函数zf(x y) 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 得一元函数 zf [x (x)] 于是xx0是一元函数zf [x (x)]的极值点 由取得极值的必要条件 有 dzdxxx0fx(x0,y0)fy(x0,y0)dydxxx00 即 fx(x0,y0)fy(x0,y0)x(x0,y0)0 y(x0,y0)从而函数zf(x y)在条件(x y)0下在(x0 y0)取得极值的必要条件是 fx(x0,y0)fy(x0,y0)x(x0,y0)0与(x0 y0)0同时成立 y(x0,y0) 设fy(x0,y0)y(x0,y0) 上述必要条件变为 fx(x0,y0)x(x0,y0)0 fy(x0,y0)y(x0,y0)0 (x,y)000 拉格朗日乘数法 要找函数zf(x y)在条件(x y)0下的可能极值点 可以先构成辅助函数 F(x y)f(x y)(x y) 其中为某一常数 然后解方程组 Fx(x,y)fx(x,y)x(x,y)0 Fy(x,y)fy(x,y)y(x,y)0 (x,y)0由这方程组解出x y及 则其中(x y)就是所要求的可能的极值点 这种方法可以推广到自变量多于两个而条件多于一个的情形 至于如何确定所求的点是否是极值点 在实际问题中往往可根据问题本身的性质来判定 例7 求表面积为a而体积为最大的长方体的体积 解 设长方体的三棱的长为x y z 则问题就是在条件 2(xyyzxz)a2 下求函数Vxyz的最大值 构成辅助函数 F(x y z)xyz(2xy 2yz 2xz a2) 解方程组 高等数学课程建设组 2高等数学教案 §8 多元函数微分法及其应用 Fx(x,y,z)yz2(yz)0Fy(x,y,z)xz2(xz)0 Fz(x,y,z)xy2(yx)022xy2yz2xza得xyz6a 6这是唯一可能的极值点 因为由问题本身可知最大值一定存在 所以最大值就在这个可能的值点处取得 此时V 高等数学课程建设组 63a 36高等数学教案 §8 多元函数微分法及其应用 高等数学课程建设组 高等数学教案 §8 多元函数微分法及其应用 高等数学课程建设组 多元函数的极限与连续 一、平面点集与多元函数 (一)平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.1.常见平面点集: ⑴ 全平面和半平面: {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa}, {(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆, 闭圆, 圆环.圆的个部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域:X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集 {(x,y)|0|xx0| , 0|yy0|}的区别.(二)点集的基本概念: 1.内点、外点和界点:集合E的全体内点集表示为intE, 边界表示为E.集合的内点E, 外点E, 界点不定.2.聚点和孤立点: 孤立点必为界点.例1 确定集E{(x,y)|3.开集和闭集: 1(x1)2(y2)24 }的内点、外点集、边界和聚点.intEE时称E为开集,E的聚点集E时称E为闭集.存在非开非闭集.R2和空集为既开又闭集.4.开区域、闭区域、区域:以上常见平面点集均为区域.5.有界集与无界集: 6.点集的直径d(E):两点的距离(P1 , P2).7.三角不等式: |x1x2|(或|y1y2|)(x1x2)2(y1y2)2 |x1x2||y1y2|.(三)二元函数: 1.二元函数的定义、记法、图象: 2.定义域: 例4 求定义域: ⅰ> f(x,y)3.有界函数: 4.n元函数: 9x2y2x2y21;ⅱ> f(x,y)lny.ln(yx21) 二、二元函数的极限 (一).二元函数的极限: 1.二重极限limf(P)A的定义: 也可记为PP0PD(x,y)(x0,y0)limf(x,y)A或xx0yy0limf(x,y)A 例1 用“”定义验证极限 (x,y)(2,1)lim(x2xyy2)7.[1]P94 E1.xy20.例2 用“”定义验证极限 lim2x0xy2y0x2y2,(x,y)(0,0),xy例3 设f(x,y)x2y 20 ,(x,y)(0,0). 证明(x,y)(0,0)limf(x,y)0.(用极坐标变换) PP0PETh 1 limf(P)A对D的每一个子集E ,只要点P0是E的聚点,就有limf(P)A.PP0PD推论1 设E1D,P0是E1的聚点.若极限limf(P)不存在, 则极限limf(P)也不存在.PP0PE1PP0PD推论2 设E1,E2D,P0是E1和E2的聚点.若存在极限limf(P)A1,limf(P)A2,PP0PE1PP0PE2但A1A2,则极限limf(P)不存在.PP0PD推论3 极限limf(P)存在对D内任一点列{ Pn },PnP0但PnP0,数列{f(Pn)}PP0PD xy ,(x,y)(0,0),22收敛 例4 设f(x,y)xy 证明极限limf(x,y)不存在.(x,y)(0,0)0 ,(x,y)(0,0).(考虑沿直线ykx的方向极限).例5 设f(x,y)1,0,当0yx2,x时,证明极限limf(x,y)不 (x,y)(0,0)其余部分.存在.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxyf(x,y)的定义: 3. 极限(x,y)(x0,y0)lim其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3yEx [1]P99—100 1⑴—⑹,4,5.(二)累次极限: 1.累次极限的定义: 定义.例8 设f(x,y)xy, 求在点(0 , 0)的两个累次极限.22xyx2y2例9 设f(x,y)2, 求在点(0 , 0)的两个累次极限.2xy例10 设f(x,y)xsin11ysin, 求在点(0 , 0)的两个累次极限与二重极限.yx 2.二重极限与累次极限的关系: ⑴ 两个累次极限存在时, 可以不相等.(例9) ⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1y在点(0 , 0)的情况.⑶ 二重极限存在时, 两个累次极限可以不存在.(例10) ⑷ 两个累次极限存在(甚至相等)二重极限存在.(参阅例4和例8).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在,则 xx0yy0必相等.推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在全面极限不存在.参阅⑵的例.三、二元函数的连续性 (一)二元函数的连续概念: xy22 , xy0 ,22xy例1 设f(x,y) m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例1 设f(x,y) ([1]P101)0 , 其他.证明函数f(x,y)在点(0 , 0)不全面连续但在点(0 , 0)f对x和y分别连续.2.函数的增量: 全增量、偏增量.用增量定义连续性.3.函数在区域上的连续性.4.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性. 第六章 多元函数微分学及其应用 6.1 多元函数的基本概念 一、二元函数的极限 定义 f(P)= f(x,y)的定义域为D, oP0(x0,y0)是D的聚点.对常数A,对于任意给定的正数,总存在正数,使得当点P(x,y)∈D U(P0,),即 0|P0P| (xx0)(yy0)22 时,都有 |f(P)–A|=|f(x,y)–A|< 成立,那么就称常数A为函数f(x,y)当(x,y)→(x0,(x,y)(x0,y0)y0)时的极限,记作 y0)), lim f(x,y)A或f(x,y)→A((x,y)→(x0,也记作 PP0limf(P)A 或 f(P)→A(P→P0)为了区别于一元函数的极限,上述二元函数的极限也称做二重极限.二、二元函数的连续性 (x,y)(x0,y0)limf(x,y)f (x0,y0),(x,y)(0,0)limz0 如果函数f(x , y)在D的每一点都连续,那么就称函数f(x , y)在D上连续,或者称f(x , y)是D上的连续函数.如果函数f(x , y)在点P0(x0,y0)不连续,则称P0(x0,y0)为函数f(x , y)的间断点.多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。一切多元初等函数在其定义区域内是连续的.多元初等函数的极限值就是函数在该点的函数值,即 pp0limf(P)f(P0).有界性与最大值最小值定理 在有界闭区域D上的多元连续函数,必定在D上有界,且能取得它的最大值和最小值.介值定理 在有界闭区域D上的多元连续函数必取复介于最大值和最小值之间的任何值。 三、例题 例1 设f(x,y)xyg(xy),已知f(x,0)xf(x,0)xg(x)x222,求 f(x,y)的表达式。 2解 由题设,有g(x)xx2,于是 。f(x,y)xy[(xy)(xy)],即 f(x,y)(xy)2y例2 证明极限limxyxy623不存在。 x0y0 证 当(x,y)沿三次抛物线ykx 3趋于(0,0)时,有 limxyxyxyxy。 623623x0y0limxkx62336x0y0xkxlimk1k2 x0y0其值随k去不同值而取不同值。故极限lim不存在。 x0y0 例3 求极限limxy11xy2222x0y0 解 原式limxy2222x0y0xy1xy11zx2212limxx0y022y22xy0 6.2 偏导数与高阶导数 6.2.1 偏导数 一、概念 说明对x求导视zf(x,y),ylimf(xx,y)f(x,y)x x0为常数,几何意义也说明了这个问题 二元函数z=f(x , y)在点M0(偏导数数 x0,y0)的偏导数有下述几何意义.0fx(x0,y0),就是曲面zf(x,y)与平面yy0的交线在点M0处的切线M0Tx对x轴的斜率.同样,偏导fy(x0,y0)的几何意义是曲面zf(x,y)与平面x=x0的交线在点M 2 基于如上理由,求 处的切线M0Ty对y轴的斜率.zx(x0,y0)时,(因此可能简化函数)再对xy0可先代入,求导 例 f(x,y)xarctany(xarctany(xarctany)),求fx(1,0)。 n重 解 f(x,0)x,fx(x,0)1,fx(1,0)1 二、可微,偏导数存在,连续的关系 偏导数存在可微连续 三、高阶偏导数 设函数z=f(x , y)在区域D内具有偏导数,偏导数连续可微,fxy和 fyx都连续,则 fxy= fyx; zx2fx(x,y),zyfy(x,y),则这两个函数的偏导数称为函数z=f(x , y)的二阶 2偏导数。按照对变量求导次序的不同有下列四个二阶偏导数: zzzzf(x,y),fxy(x,y),xx2xxxyxxyzxyzf(x,y),yxyyx2zyzfyy(x,y).2y2 四、偏导数,微分运算公式 1.z 2.dz f(x,y),uu(x,y),vv(x,y) zxfuuxfvvx zyfuuyfvvy fudufvdvfu(udxuydy)fv(vdxvydy)xx(fuufvv)dx(fuuyfvvy)dyxx d(uv)dudvd(uv)udvvduzx2 uvduudvd2vv 3.F(x,y,z)0 确定zz(x,y),FxFz; zy2FyFz6.2.2 求偏导数算例 例1(1)zarctanxy1xy,求 zx,zy,zx22,zxy。 解 zx1xy11xy11y221(1xy)(xy)(y)(1xy)11x2 由对称性 zy2,zx2222x(1x),求 22; 2zxy220;(2)ulnxyz2ux22uy2uz2。 解ux122x222xyzxxyz22,2 ux由对称性 222xyzx2x(xyz)22222222222xyz2222222222(xyz)22 uy222xyz222,uz1222(xyz)uy22xyz2(xyz)2 故 ux2uz22xyz222。 (3)xy22f(x,y)xy0x022xy0,求 fx(0,0),fy(0,0) xy022 解 fx(0,0)limx0x0x220,同理fy(0,0)0; ux,例2 uyf(xy,xy),求 uxy2。 解 ux22yf12xf2y2xyf1yf2 uxy (2y)f12x2yf2y2f21(2y)f22x 2xf12xyf1122x2yf122yf22y3f21xy2f22 2xf14xyf11 例3 zyzf(xy,)g,求 xyxxy2 解 yyf1yf22g2xxx2z 11y1xf12f1yf11ffxf2222221xyxxxxy1yy12f23f222gf12ff1xyf11xxxxxy),求du。例4 uf(xy,xy,x解(1)z1xx2gg yx2g1x y3 duuxdxuydy u1yuf1f2(1)f3f1f2f32;xxxy 故 y1duf1f22f3dxf1f2f3dy xxxdyydxd(xy)f2d(xy)f3解(2)duf12x f1(dxdy)f2(dxdy)f3[f1f2yx2xdyydxx1x2 f3]dx[f1f2f3]dy 例5 设zz(x,y)由方程F(xzy,yzx)0,确定,F有连续一阶偏导数,求 zx,zy。 解(1)方程两边对x求导 zzxz0 F11xF2x2yxzyzF12F2xyF1F2zxx11xxF1yF2F1F2yx; 方程两边对y求导 zyz1zyFF11220 yxyzxzFFFxyF2122zyy 11yxF1yF2F1F2yxzy)F2d(yzx2; 解(2)方程两边取微分 F1d(x)0)F2(dyzy2F1(dxydzzdyyzx2xdzzdxx2)0 (F1 F2)dx(1yF11xF1F2)dy dzF2xyF1yzF2; 则 zxF11yF1zx12F2F2xyF1yzxxF1yF2F2; zxxxF1yF2dydxx 例6 设yf(x,t),tt(x,y)由F(x,y,t)0确定F,f可微,求。 解(1)对方程取微分 (1)dyfxdxftdtFxdxFydyFtdt0(2)dyfxdxft0 由(1)解得dt代入(2)得 FxdxFydyFt 则 FxFtfx/ftFxftFtfxdydxdxFtFfFytFyft解(2) dy,即 dxFxftFtfxFyftF yf(x,t(x,y)) dyttdyfxftdxxydx dydxfxft1ftt 而xtyxtxFxFt; tyux22FyFt,则 dydxFxftFtfxFyftF2 y, 例7 证明:当y时,方程x22xyuxy2y2uy20可化成标准形式 u220,其中uu(x,y)二阶偏导数连续。 证明:将u看成由u(,),而yx,y复合成x,y的函数,uu((x,y),(y)) 则 ux2ux2uuu1uuyu2; xyyyx22yu1u22; 2xyxxx ux222uyuy2223xxu21u u22221u1uu1u1 222yxxx2则 xux222xyuxy2y2u22y2u220u220 小结 ① 显函数(复合)二阶混合偏导数 ② 隐函数求偏导,会用微分法,用复合法习题 1.zf(u),u由方程u(u) xyp(t)dt确定的x,y的函数,f,可微,P,连续,(u)1,求P(y)zxP(x)zy (答案:0)(蔡 P146) 22.zz(x,y)由zexyz确定,求 zxy; 23.F(xy,yz)1确定了隐函数zz(x,y),Fyy(x),zz(x)是由方程zxf(xy)和 具有连续二阶偏导数求 zyx 4.设5.t6.zF(x,y,z)0确定,f,F有连续偏导数,求 dzdx。 0,f可微且满足 kf(tx,ty,tz)tf(x,y,z),证明 xfxyfyzfzkf。 。f(x,y)于(1,1)点可微,且f(1,1)1,fx(1,1)23x1。,fy(1,1)3。(x)f(x,f(x,x))求ddx[(x)]ux2y7.设变换vxay8.设可把方程6zx22zxy2zyx220化简为 zuvzx22202,求常数a的值。(a=3)。 f(u)u有连续二阶导数,而uzf(esiny)满足 zy2ez2x,求 f(u)。(f(u)c1ec2e) 6.2 偏导数应用 偏导数应用注意四个方面:空间曲面曲线切平面、法线、切线、法平面;方向导数;梯度、散度、旋度;极值与条件极值。 6.3.1 内容小结 1. 空间曲线切线与法平面 xx(t)1)yy(t) zz(t)切向量v(xt,yt,zt) 切线方程: xx0xtyy0ytzz0zt (x法平面方程:xtx0)yt(yy0)zt(zz0)0 xxyy(x)yy(x)2)zz(x)zz(x)切线方程: v(1,y,z)类似的 xx01yy0yzz0z 法平面方程:xx0y(yy0)z(zz0)0 Fzz0F(x,z,y)0xxFxFyy3)v(1,y,z)xxG(x,y,z)0GxGyyxGzzx02. 空间曲面切平面与法线 1)F(x,y,z)0,n(Fx,Fy,Fz)|P0切平面:Fx|p0法线: (xx0)Fy|p0(yy0)Fz|p0(zz0)0xx0Fx|p0yy0Fy|p0zz0Fz|p0 2)zf(x,y)Ff(x,y)zn(fx,fy,1) 切平面:类似地 fx(xx0)fy(yy0)(zz0)0 法线:xx0fxyy0fyzz01 xx(u,v)3)*yy(u,v) zz(u,v)(参数方程形式) 切线 ,yu,zu),v2(xv,yv,zv)v1(xuixvjyuyvnv1v2xu(y,z)(z,x)(x,y)zu(u,v),(u,v),(u,v)zvk 3. 方向导数 uu(x,y,z)uluxcosuycosuzcosgradul(梯度在l方向投影) 4. 梯度、散度、旋度 , xyzuuugraduu,xyz divAAPxQyRz rotAAixPjyQkzR 6.3.2 例题 例1 求曲线xt,yt,zt223上与平面x2yz4平行的切线方程。 解 切向量2(1,2t,3t),n(1,2,1)由n,则n0,即,14t3t0t11,t2当t1时 (1,2,3),x11,y11,z11,切线方程为13x11y12z13 当t时 2(1,21111,),x2,y1,z1333927,x切线方程为13y11923z13127 22xy10例2 求空间曲线22xz10在点(3,1,1)处的切线方程和法平面方程。 解 22xy1022xz10确定了 yy(x),zz(x),对x求导2x2yy02x2zz0x3y13,yzz13 xyxz 于 1法平面方程为x33(y1)3(z1)0,即x3y3z30 例3 求曲面x2M(3,1,1)点:y3,z3,v(1,3,3)切线方程为 yzx的切平面。使之与平面xy22z22垂直,同时也与xyz2垂直。 解 切平面法向量n(2x1,2y,2z),n1(1,1,12),n2(1,1,1),依题意 n1n0 既有2x 12yz0 (1) (2)n2n0 2x12y12z0 联立(1)(2)和原方程 22x42得解y4z022x42,y4z0 n012222,0,n02,,0 2222切平面22(x242)22(y24)0 即 xyxy121222 得 22222x(y)0 2424x2y3z222即 例4 求u解 令 在(1,1,1)点沿x2yz3的外法线方向的方向导数。 22222F(x,y,z)xyz3,Fx2x,Fy2y,Fz2z于P(1,1,1)点n(2,2,2),n(13,13,13) unuxcosuycosuzcos111122x4y6z|43(1,1,1)3333 例5 设f(x,y)在fL3|p0fx1111p0点可微,L1,,L222227。,fL11,fL20 试确定L3使52fycos11,fL2fxcos2fycos20,则 解 fL1cos1 fxfx12fy121fx12y,f12 1f10y22 设L3(cos3,cos3) 从而fL3fxcos375fxcos375235 即 1245cos3 此时cos12cos345或cos752 cos3sin3,解得cos3或cos33335 34即L3,55例6 或L3243, 552 ulnxyz2,求div2(gradu)。 解 div(gradu)(u)u12ln(xyz)222ux22uy222uz22。 u,2ux22xxyz222222,2222ux22xyzx2x(xyz)xyz222(xyz) 由对称性 uy22xyz222222(xyz)2,uz22xyz222222(xyz)2 从而 div(gradu)1xyz222 例7 设a, b, c为常数,F证明(u,v)有连续一阶偏导数。 证 xayb,)0上任一点切平面都通过某定点。zczc11xayb,FyF2,FFFxF1Fz1222zczc(zc)(zc)F(则切平面方程为 F1取1zc(Xx)F21zc(Yy)1(zc)2F(xa)F2(yb)(zy)0 xa,Yb,Zc,则对任一的(x,y,z)点上式均满足,即过任一点的切平面都过(a,b,c)点。 。(xaz,ybz)0上任一点切平面都通过某定直线平行(F具有连续偏导数) 例8 设a,b为常数,证明曲面F证 FxF1,FyF2,FzaF1bF2,即n(F1,F2,aF1bF2),取l(a,b,1),则nl0,nl,曲面平行l,取直线 xx0ayy0bzz01,则曲面上任一点的切平面都与上述直线平行。例9 求二元函数u5方向导数最大?这个最大的方向导数值是多少?u沿那个方向减少得最快,沿哪个方向u的值不变? 解 xxyy22在点M(1,1)沿方向n1(2,1)的方向导数,并指出u在该点沿哪个方向的gradu|(1,1)(2xy,2yx)|(1,1)(3,3),uM在点M(1,1)沿n方向的方向导数为 un132(gradu)n|M(3,3),555,方向导数取得最大值的方向为梯度方向,其最大值为为求使u变化的变化率为零的方向,令l gradu|M32,u沿负梯度方向减少最快。 (cos,sin),则,ululM(gradu|M)l3cos3sin32sin44或令0,得4,故在点(1,1)处沿4和4函数u得值不变化。 例10 一条鲨鱼在发现血腥味时,总是沿血腥味最浓的方向追寻。在海上进行试验表明,如果血源在海平面上,建立坐标系味:坐标原点在血源处,xOy2坐标面为海平面,Oz轴铅直向下,则点(x,224y,z)处血源的浓度C(每百万份水中所含血的份数)的近似值Ce(xy2z)/10。 (1)求鲨鱼从点1,1,1(单位为海里)出发向血源前进的路线2的方程; (2)若鲨鱼以40海里/小时的速度前进,鲨鱼从1,1,1点出发需要用多少时间才能到达血源处? 2解(1)鲨鱼追踪最强的血腥味,所以每一瞬时它都将按血液浓度变化最快,即C的梯度方向前进。由梯度的计算公式,得 2224CCC4(xy2z)/10gradC,10e(2x.2y,4z)xyz设曲线的方程为xx(t),yy(t),zz(t),则的切线向量(dx,dy,dz)必与gradC平行,从而有 dx2xdy2ydz4z 解初始值问题 dydx2y2xy|1x1dzdx2x4zz|1x12 得 yx 解初始值问题 得 z12x2,所以所求曲线的方程为 xx,yx,z 12(2)曲线的长度 x2(0x1)s101yzdxxxln(31)2210x2xdx22x2ln(x2x1) 03212ln2(海里) 31)1。ln2(小时) 2因此到达血源处所用的时间为T6.4 多元函数的极值 13ln(402 一、无条件极值 限于二元函数zf(x,y) 1. z0x求驻点z0y驻点P 2. 于驻点P处计算Azx22,Bzxy2,Czy22。B2AC0是极值点,A0可取得极小值,A0可取极大值。 3. 条件极值:minuf(x,y,z)S.t.(x,y,z)0,令 Lf(x,y,z)(x,y,z)求无条件极值。 例1 求内接于椭球面,且棱平行对称轴的体积最大的长方体。 解 设椭球面方程为 xa22yb22zc221,长方体于第一卦限上的点的坐标为(x,y,z),则 V8xyz,s.t.xa 22yb22zc221,令 2xa222x2yz L8xyz1a2b2c28yzLxL8xzy8xyLz及0(1)0(2)0(3)2yb2zc22xa22yb22zc221 由(1)(2)(3)得xa22b3yb22zc22tc3,代入(3)得t13,从而 xa3,y2,z22,此时V8abc33839abc。 例2 求由方程2x2yz8xzz80所确定的二元函数zf(x,y)的极值。解 方程两边对x,y求偏导数得: 4x2zzx8z8xzxzx0 „(1) 4y2zzy8xzyzy0 „(2) 4x8z016和原方程联立得驻点(2,0),(,0)0,得x74y0y方程(1)对x,y再求偏导,方程(2)对y求偏导 令z0,z。 zzzzzz42888x0 2z222xxxxxx2zzyx2z22222„(3) zxy282zy8x2zxy22zxy20 „(4) zzzz 422z8x0 222yyyy将驻点(2,0)代入(此时z1) „(5) 42A16AA0 AC415415 2B16BB0 B0 242C16CC0 BAC0,z1是极小值(因A>0) 将驻点8(4)(5)(此时z,0代入(3) 7716),同上过程有 A 415,B0,C415,2BAC0,A0,z87是极大值。 习题: 1 设uF(x,y,z)在条件(x,y,z)0和(x,y,z)0限制下,在P0(x0,y0,z0)处取得极值mFx1Lx20xx 。证明F(x,y,z)m,(x,y,z)0,(x,y,z)0在P0点法线共面。 正:L F(x,y,z)m12LFy120yyy Fz1Lz20 zzFxxyzx0yzxyz5r2222由于(1,1,2)0,从而原方程有非零解,及系数矩阵为0FyFz,即三法向量共面。 2. 设f(x,y,z)lnxlny3lnz。点 3(x,y,z)在第一卦限球面 3上,①求f(x,y,z)的最大值。②证明 对任意正数a,b,c成立abc abc275。 习题课 ye例1 设f(xy,lnx)1,求f(x,y)yxxeln(x)解 令xyu,lnxv。 yef(u,v)f(xy,lnx)1yxxeln(x) xxxyxueveu2vexyxlnx(xy)ee2lnxxylnx 所以 f(x,y)xeyex2y.例2 讨论limxyxy是否存在.x0y0 解 当点 P(x,y)沿直线ykx趋向(0,0)时,limxyxy2ykxx0limxkxxkxx0limkx1kx00 (k1),当点P(x,y)沿直线yxxlim2xyxy趋向(0,0)时,yxxx0lim2x(xx)x(xx)22lim(x1)1yxxx0x01,所以limxyxy不存在.x0y0 例3 22(xy)sinzf(x,y)0在(0,0)处是否连续? 1xy22(xy0),22(xy0),22(1)(2)(3)(4)fx(0,0),fy(0,0)是否存在? 偏导数fx(x,y),fy(x,y)在(0,0)处是否连续? f(x,y)在(0,0)处是否可微? f(x,y)在(0,0)处是否连续,只要看limf(x,y)=f(0,0)是否成立.因为 x0y0解 (1)函数 limf(x,y)lim(xy)sinx0y0221xy22 x0y0 limsin0210f(0,0).所以 f(x,y)在(0,0)处连续.(2)如同一元函数一样,分段函数在分界点处的偏导数应按定义来求.因为 (x)sinx021(x)x1(x)220 limf(x,0)f(0,0)xlimx0limxsinx00,所以 (3)fx(0,0)0,类似地可求得fy(0,0)0.当(x,y)(0,0)时 fx(x,y)2xsin 1xy1xy2222(xy)cosxxy22221xy221222xx2y23 2xsincos1xy2.因为 limfx(x,y)lim2xsinx0x0y0y01xy22xxy22cos不存在.22xy1所以 fx(x,y)在(0,0)处不连续。同理fy(x,y)在(0,0)处也不连续 (4)由于由fx(x,y),fy(x,y)在(0,0)处不连续,所以只能按定义判别f(x,y)在(0,0)处是否可微.fx(0,0)0,fy(0,0)0,故 x0y0limz[fx(0,0)xfy(0,0)y](x)(y)222 [(x)(y)]sinlimx0y02221(x)(y)220(x)(y)(x)(y)sin122 lim1(x)(y)22 x0y0limsinx0y00由全微分定义知f(x,y)在(0,0)处可微,且df(0,0)0.f(x,y,z),zg(x,y),yh(x,t),t 例4 设u(x),求 dudx.解 对于复合函数求导来说,最主要的是搞清变量之间的关系.哪些是自变量,哪些是中间变量,可借助于“树图”来分析.图9-1 由上图可见,u最终是x的函数,y,z,t都是中间变量.所以 dudxfxfxfhhdfgghhdyxtdxzxyxtdxfhyxfhdytdxfgzxfghzyx.fghdzytdx 从最后结论可以看出:若对x求导数(或求偏导数),有几条线通到”树梢”上的x,结果中就应有几项,而每一项又都是一条线上的函数对变量的导数或偏导数的乘积.简言之,按线相乘,分线相加 例5 z12xfxy1f2,f 可导,求zx.解 zx1f2x.y 例6 已知yetyx,而t是由方程ytx1确定的x,y的函数,求 ty222dydx.解 将两个方程对x求导数,得 ye(tyyt)12yy2tt2x0 解方程可得 2dydxtxye2ty2tyt(yt)e.例7 求曲面x2y3z21平行于平面x4y6z0的切平面方程.解 曲面在点(x,y,z)的法向量为 n =(Fx,Fy,Fz)(2x,4y,6z),2x14y42已知平面的法向量为n1=(1,4,6),因为切平面与已知平面平行,所以n//n1,从而有 6z6(1) 又因为点在曲面上,应满足曲面方程 x2y3z212 (2) 由(1)、(2)解得切点为(1,2,2)及(1,2,2), 所求切平面方程为: 或(x1)4(y2)6(z2)0(x1)4(y2)6(z2)012,1,1)。 这里特别要指出的是不要将n//n1不经意的写成n=n1,从而得出切点为(例8 在椭球面2x222的错误结论.2222yz1上求一点,使函数f(x,y,z)xyzel在该点沿l=(1,–1,0)方向的方向导数最大.11,,0,22所以 fl fx12fy12fz20 2(xy)2(xy)在条件2x由题意,要考查函数 2yz1下的最大值,为此构造拉格朗日函数 222F(x,y,z)2(xy)(2x2yz1),14 Fx24x0,Fy24y0, Fz2z0,2222x2yz1.解得可能取极值的点为 11,,0 22 及 11,0.222,因为所要求的最大值一定存在,比较 fl11,,022fl11,02222知12,1,02为所求的点.例9 求函数zxy222在圆(x22)(y22)9上的最大值与最小值.0,zy0,解得点(0,0).显然z(0,0)=0为最小值.解 先求函数z再求z2xy2在圆内的可能极值点.为此令zxxy在圆上的最大、最小值.为此做拉格朗日函数 22F(x,y)xy[(x2)(y22)9],2Fx2x2(x2)0,Fy2y2(y2)0,22(x2)(y2)9.,代入(3)解得 (1)(2)(3)由(1)、(2)可知xy xy522,和 xy22,5252z,2225221.z,222)(y25252,22为z25,最小值为z0.比较z(0,0)、z 22、z三值可知:在(x,222)92上,最大值 暑期,是考研黄金复习期。同学们要多利用这段时间夯实基础,千万不要眼高手低,无论是哪本数学复习书,大家一定要去做,去看。不要一份试题放到你面前,你根本就不知道无从下手。高数中,多元部分较为重要。高等数学中有多元函数微分学,多元函数积分学。从本质上讲多元是一元的升华,相应的理论和方法也可以从一元那里类比过来。但是多元部分也有自己的特点,它与一元部分也有所区别。 1.深刻理解概念 前面我说了多元与一元有联系,但也有区别。所以在这里,我说的深刻理解概念就是要说清楚多元函数微分学与一元函数微分学的区别以及大家需要注意的地方。那么,在多元函数微分学的知识体系中,最重要的就是对基本概念的理解。也就是要理解多元函数的极限,连续,可导与可微。首先,大家对极限的理解很关键。它与一元部分是有区别的。以二元函数为例,大家要清楚逼近方式的任意性,而一元函数中就两个方向。所以一般考研考二元函数极限就是问大家这个极限是否存在,那么大家就选取两个方向来说明就够了。至于连续,把极限搞清楚了,连续就不是问题了。然后,可导的概念。还是以二元函数为例。二元函数有两个变量,那么可导就是说的偏导数。基本思想是:求一个变量的导数那么就固定另外一个变量。所以实质上还是求一元函数的导数。至于可微的思想可以直接平移一元的。虽然有些变化,但是基本的形式是一样的。最后,三者关系。这是相当重要的一个点。具体来说,可微可以推出可导和连续,而反之不成立。希望大家不仅要记住结论,还要知道为什么是这样的关系。大家通过自己推一推就可以准确的把握这三个概念了。在大家深刻理解了这些概念后,后面的内容就偏向计算了。 2.培养计算能力 在前面,我说了对基本概念理解的重要性。那么,说完概念,这章考查的重点还是计算。计算实质上就是多元函数微分学的应用。它主要包括偏导数的计算;方向导数与梯度;二元函数极值(无条件与条件)。其实考查计算对大家来说是最容易的考法。因为大家只要懂方法就够了,不用理解方法怎么来的。具体来说,计算偏导数,特别是高阶偏导数,大家只要掌握了链式法则就够了。同时掌握下高阶导数与求导次序无关的条件。至于计算方向导数与梯度,大家就需要知道它的含义,然后记住两个公式就行了。最后是二元函数的极值。它分为无条件极值和有条件极值。先说无条件极值。大家可以把它跟一元函数极值做个类比。这样会学的轻松些。至于条件极值,大家只要会了拉格朗日乘数法就行了。所以,这章对大家的计算能力要求很高。大家一定要沉下心仔细体会方法,然后多做练习就够了。 3.适量习题 在大家理解了基本概念以及明确了计算方法后,接下来就需要做题巩固了。在这里,我尤其反对题海战术,因为大家的时间有限并且题海战术在没理解知识点之前是没用的。现在社会做事情都讲究高效,我希望大家能够事半功倍。那么针对多元函数微分学这章,大家先针对我说的重点知识进行做题巩固,关键是每做一个题就要理解,要反思,要多想想考察了知识点那些方面。然后对次重点知识辅助做一些题,了解就够了。 第二章 多元函数的微分学内容小结 多元函数微分学是一元函数微分学的推广和发展,两者的处理方法有很多相似之处.由于 自变量个数的增加,多元函数的微分学又产生了很多新内容,如偏导数、全微分、方向导数、条 件极值等.本章以二元函数为主讲述有关内容. 一、多元函数的定义、极限、连续及其性质 二、偏导数与全微分 3.全微分 三、二元函数的极值 四、多元微分学的几何应用 五、方向导数与梯度第二篇:多元函数微分学
第三篇:多元函数微分学复习
第四篇:2015考研数学暑期复习:高等数学之多元函数微分学
第五篇:多元函数的微分学内容小结(本站推荐)