第一篇:2013教师资格面试题.二次函数的应用 Microsoft Word 文档
二次函数的应用
教学目标:
1.能够表示实际问题中变量之间的二次函数关系,并理解顶点与最值的关系
2.学会用二次函数知识解决有关最值的实际问题。
3.掌握数学建模的思想,体会到数学来源于生活,又服务于生活。教学重难点
重点:利用二次函数求最值问题
难点:运用二次函数的知识解决实际问题,实际问题中要考虑自变量取值范围 教学过程:
(一)复习引入
教师提问:1.抛物线在什么位置取最值? 2.(1)求函数y=x2+2x-3的最值。
(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)
学生思考:回顾顶点坐标与二次函数最值的联系。
设计意图:(1)学生求最值容易想到顶点,无论是配方、还是利用公式都能解决;
(2)学生求最值时往往忽略自变量取值范围的限制,设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件,因为任何实际问题的定义域都受现实条件的制约。
(二)探究新知
陈 俊 3424...10064515
函数最值是二次函数的一个重要性质,现在,我们来解决22.1节一开始提出的实践问题
例1.在问题22.1中,某水产养殖户用长40m的围网,在水库中围一块矩形的水面,投放鱼苗,要使围成的水面面积最大,那么它的长应是多少米?它的最大面积是多少?
解 要解决上面的问题就需研究围成的矩形水面面积与其长指甲的关系,设围成的矩形水面的长是x米,那么矩形面积的宽为(20-x)米,它的面积是S则 S=x(20-x)=-(x-10)2+100 显然,这个函数的图像是一条开口向下的抛物线,它的顶点坐标是(10,100),所以x=10时函数取得最大值S最大值=100(m2)
也就是说,当围成的矩形水面长为10m,宽为10m时,矩形水面面积最大,最大面积是100m2
(三)触类旁通
设计思路:通过类比求最大面积的方法探究利用函数知识解决问题的一套思路和方法,触类旁通,不是为了做题而做题,为以后的学习奠定思想方法基础。
例2.某炮弹从炮口射出后飞行的高度h(m)与飞行的时间t(s)之间的函数关系式为h=300t-5t2,炮弹飞行的最大高度?
解 h=300t-5t2=-5(t-30)2+4500 所以最大高度为4500m
(四)知识迁移
设计思路:类比求最大面积的研究方法,解决求最大高度。
陈 俊 3424...10064515
例3.上抛物体在不计空气阻力的情况下,有如下关系式 h=v0t-1/2gt2 其中h是物体上升的高度,v0是物体被上抛时竖直向上的初始速度,g是重力加速度,通常取g=10m/s2,t是物体抛出后经历的时间。
在一次排球比赛中,球从靠近地面处被垫起时竖直向上的初始速度为10 m/s(1)问排球上升的最大高度是多少?
(2)已知某运动员在2.5m高度时扣球效果最佳,如果他要打快攻,问该运动员在排球被垫起后多长时间扣球最佳?(精确到0.1s)
解(1)根据题意,得
h=v0t-1/2gt2=10t-(1/2)*10*t2 =-5(t-1)2+5 因为抛物线开口向下,顶点坐标(1,5),所以,排球上升的最大高度为5m(2)在h=10t-5t2中,当h=2.5时,有10t-5t2=2.5 解方程,得 t1≈0.3(s),t2≈1.7(s)
排球在上升和下落中,各有一次经过2.5m高度,但 设计思路:类比求最大面积的研究方法,解决求最大利润。
例4.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解 设销售价为x元(x≥30元), 利润为y元,则
yx2040020x2020x2140x2000020x354500.2 当x=35元时,利润y最大=4500元
(五)课堂总结
1.通过对以上问题的研究,我们知道可以利用二次函数有关 知识求得最值,要注意函数的自变量取值范围。
2.用函数知识求解实际问题,需要把实际问题转化为数学问题 再建立函数模型求解,解要符合实际题意,要注意数与形结合。
(六)作业练习 1.P31练习 2.P36习题2.3题
陈 俊 3424...10064515
第二篇:二次函数的应用教案
30.4二次函数应用(第一课时)
教学目标
知
识
与
技
能
通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。过
程
与
方
法
通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。情感、态度与价值观
通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
教学重点:利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求面积最值问题
教学难点:(1)正确构建数学模型
(2)对函数图象顶点、端点与最值关系的理解与应用
一、复习引入
1、二次函数y=ax2+bx+c(a≠0)图象的顶点坐标、对称轴和最值。
2、(1)求函数y=x2+2x-3的最值。
(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)
3、抛物线在何位置取最值?
二、新课讲授
1、讲解例题教师提出问题,引导学生观察思考,学生独立研究解决方案、展示
师生共同分析解决问题,引导学生讨论、交流、归纳,深入参与讨论,重点关注是否准确建立函数关系及讨论自变量取值范围 汇报、展示
师生共同小结并反思,加深理解
2、归纳总结复习提问让学生回忆二次函数图象、顶点与最值,求最值方法;实际问题中,提醒学生注意求解函数问题不能离开自变量取值范围这个条件的制约才有意义,做完练习后及时让学生总结出了取最值的点的位置往往在顶点和两个端点之间选择,为学习新课做好知识铺垫。
例题及练习的设计是寻找了学生熟悉的家门口的生活背景,从学生身边较熟悉的事情
入手,让学生初步体会数学不能脱离生活实际,加深对知识的理解,做到数与形的完美结合,从而提炼出解题方法。让学生对自变量的意义有更深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
小结过程中让学生体会到数学思想与方法。
三、练习
四、小结、作业
第三篇:6.4二次函数应用教案
课 题: §6.3二次函数的应用(2)教学目标:
1.能根据揭示实际问题中数量变化关系的图象特征,用相关的二次函数知识解决实际问题; 2.会用二次函数的相关知识解决现实生活中一些有关抛物线的问题
教学重点:运用二次函数的相关知识解决现实生活中一些有关抛物线的问题 教学难点:揭示实际问题中数量变化关系的图象特征 教学程序设计:
一、情境创设
打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度y(单位:米)与飞行距离x(单位:百米)满足二次函数:y=-5x2+20x.(1)这个球飞行的水平距离最远是多少米?(2)这个球飞行的最大高度是多少米?
y(米)30 20 10 师生活动设计:师:出示问题,让学生思考后尝试解答
生:思考并尝试解答情境中的两个问题
设计意图:该情境属于简单、常见的问题,根据已有的知识立刻可以知道该如何去做,从而为本节课做一个很好的铺垫,也符合学生的认知规律
二、探索活动 活动:
(1)如何求这个球飞行时最远的水平距离?
(2)如何求出飞行路线与x轴的两个交点坐标呢?(3)如何求这个球飞行的最大高度?(4)如何求出抛物线的顶点坐标?
师生活动设计:生1:求这个球飞行时最远的水平距离就是求落地点与原点的距离,因此只要求出飞行路线与x轴的两个交点坐标.生2:只要令y=0,求出相应x的值,就可求出飞行路线与x轴的两个交点坐标.生3:只要求出抛物线的顶点坐标.生4:把解析式配成顶点式或利用顶点公式.师:根据学生的回答依次板演解答过程.设计意图:通过活动的引导,让学生理解解决二次函数图象问题时,数形结合是重要的方法,而在解决问题的过程中,求抛物线上某点的坐标是关键
三、例题教学 O 1 2 3 4
例1:某喷灌设备的喷头B高出地面1.2m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+2.求水流落地点D与喷头底部A的距离(精确到0.1m)
B O(A)D
答案:
∵水流抛物线对应的二次函数为y=a(x-4)2+2,且该抛物线经过点B(0,1.2)∴把x=0、y=1.2代入y=a(x-4)2+2,得1.2=a(0-4)2+2,解得a=-0.05 ∴y=-0.05(x-4)2+2,把y=0代入y=-0.05(x-4)2+2,得-0.05(x-4)2+2=0,解得x1≈-2.3(舍去),x2≈10.3 答:水流落地点D与喷头底部A的距离约为10.3m.例2:如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
y 0.5米 2.5米 O 2米 1米 x 师生活动设计师:出示例1 生:先思考尝试解答.师:请学生回答并说出解答过程,教师根据学生的回答板书 师:出示例2 生:独立思考后小组交流.师:请同学谈谈自己的做法,然后师生共同总结.设计意图:例1与例2是两个基本的二次函数的图象问题.例1相对简单,关键是确定二次函数的解析式,并求出二次函数的图象上某点的坐标去解决;而例2有所深化,要综合分析题意后思考解决.四、课堂小结
本节课学到了什么?
本节课主要探索由“形(函数图象)”到“数(函数关系式)”的实际问题,如喷泉、喷灌等喷出的抛物线形水流及体育运动中一些呈抛物线状的运动轨迹等.确定这些“隐性”函数图象对应的函数关系式,并进行有效调控,可以使有关实际问题获得理想的解决.师生活动设计:生:总结本节课的内容,并发言,其它学生补充。师:在学生完成小结后给出完善的小结。
设计意图:帮助学生深化知识理解,完善认知结构,领悟思想方法,强化情感体验,提高学生元认知的能力
五、当堂反馈(见导学案当堂反馈)
师生活动设计:独立思考并完成。
设计意图:通过当堂反馈,巩固和复习本节课的内容。
六、课后作业(见导学案课后作业)
设计意图:既照顾全体,又关注个别,真正体现全面关注所有学生的发展,并巩固学生所学习的知识.七、教学反思
第四篇:6.4 二次函数的应用
§6.4 二次函数的应用(2)
教学目标:
了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 教学重点: 是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型. 教学难点: 本节难点在于能正确理解题意,找准数量关系.建立直角坐标系。教学方法: 在教师的引导下自主教学。教学过程:
一、情境创设
1、在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系12满足y=-x+10x. 5(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落在地上爆炸?
二、例题教学
1、解决书27页问题二:
学生自主学习,相互探究解决问题的方案。
2、如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?
3、某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
4.一个涵洞成抛物线形,它的截面如图现测得,当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,涵洞宽ED是多少?
三、5.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.
第五篇:二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:
二、教学过程
(一)提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)
(二)、观察;概括
(1)函数关系式(1)和(2)的自变量各有几个?
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点?
三、课堂练习
1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P25练习第1,2,3题。
四、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
五.堂堂清
下列函数中,哪些是二次函数?
(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1