数学分析教案_(华东师大版)第十七章__多元函数微分学

时间:2019-05-13 21:36:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学分析教案_(华东师大版)第十七章__多元函数微分学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学分析教案_(华东师大版)第十七章__多元函数微分学》。

第一篇:数学分析教案_(华东师大版)第十七章__多元函数微分学

《数学分析》教案

第十七章 多元函数微分学

教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。

教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。教学时数:18学时

§ 1 可微性

一. 可微性与全微分:

1.可微性: 由一元函数引入.亦可写为 , 时

2.全微分:

.例1 考查函数

二.偏导数:

在点

处的可微性.P107例1 1.偏导数的定义、记法:

2.偏导数的几何意义: P109 图案17—1.《数学分析》教案

不存在.三.可微条件:

1.必要条件:

Th 1 设为函数定义域的内点.在点可微 , 和

存在 , 且

.(证)由于 , 微分记为

.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件 , 但不充分.例10

考查函数

在原点的可微性.[1]P110 例5.2.充分条件:

《数学分析》教案

因此 , 即 , 在点 可微 ,.但

时, 有

, 沿方向

不存在,沿方向

极限

不存在;又 ,因此, 续.由 关于 和 对称,也在点

不存在 ,时,在点

处不连

处不连续.四.中值定理:

Th 4 设函数 在点 该邻域 , 则存在 , 使得 的某邻域内存在偏导数.若 和 ,属于.(证)例1

2设在区域D内

.证明在D内

.五.连续、偏导数存在及可微之间的关系:

六.可微性的几何意义与应用:

《数学分析》教案

简介二元复合函数 :

.以下列三种情况介绍复合线路图

;,;

.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数

在点

在点

可微, 且

在点 D可微 , 函数

可微 , 则复合函数

,.(证)P118

称这一公式为链导公式.该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括.对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串 联乘”的原则可写出相应的链导公式.《数学分析》教案

.P120例2 例7

设函数

可微 ,.求证

.二.复合函数的全微分: 全微分和全微分形式不变性.例8

.P122 例5

.利用全微分形式不变性求 , 并由此导出

§ 3 方向导数和梯度

一. 方向导数:

1. 方向导数的定义:

定义 设三元函数 在点 为从点 以表示 出发的射线.的某邻域 为 上且含于

内有定义.内的任一点 , 与 两点间的距离.若极限

存在 , 则称此极限为函数、.在点

沿方向 的方向导数 , 记为

《数学分析》教案

2.方向导数的计算:

Th 若函数 在点 方向导数都存在 , 且

可微 , 则 在点

处沿任一方向 的 +

+ , 其中、和 ,为 的方向余弦.(证)P125

+, 其中 和 对二元函数 是 的方向角.註

由 = 可见 , 为向量

+

+

,= , , , , , ,在方向 上的投影.例2(上述例1)解 ⅰ> 的方向余弦为

= , = , =.=1 , =

+., =

.因此 , =

+

=

《数学分析》教案

ⅰ>

.ⅱ>(+)=

+

.ⅲ>()=

+

.ⅳ>.ⅴ>

()=

.证ⅳ> ,..§ 4 Taylor公式和极值问题

一、高阶偏导数: 1.高阶偏导数的定义、记法:

例9 求二阶偏导数和

.P128

例10.求二阶偏导数.P1282.关于混合偏导数: P129—131.3

《数学分析》教案

解 ,.=

+

+

+

= = +2

+

.=

+

+

+

= =

+

+

.=

+ +

.因此 ,+(+.令 , 或

.或 ……, 此时方程

化简为

二. 中值定理和泰肋公式:

凸区域.5

《数学分析》教案

例2 P136例5 2. 极值的必要条件:与一元函数比较.Th 3 设 =为函数 的极值点.则当

和存在时 , 有

.(证)函数的驻点、不可导点,函数的可疑点.3.极值的充分条件:

代数准备: 给出二元(实)二次型 矩阵为

.其.ⅰ> 是正定的, 顺序主子式全 ,是半正定的, 是负定的,顺序主子式全;ⅱ> , 其中

为 阶顺序主子式.是半负定的,.ⅲ> < 0时, 是不定的.7

《数学分析》教案

ⅰ>

时 , 时 ,为极小值点;ⅱ> 为极大值点;ⅲ> 时 , 不是极值点;ⅳ> 时 , 可能是极值点 , 也可能不是极值点.例3—7 P138—140 例6—10.四. 函数的最值:

例8 求函数

在域D = 上的最值.解 令

解得驻点为

..在边界

;

上 , , 驻点为 , 在边界

在边界 驻点为 ,上 , , 没有驻点;

上 , ,.9

第二篇:多元函数微分学

多元函数的极限与连续

一、平面点集与多元函数

(一)平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.1.常见平面点集:

⑴ 全平面和半平面: {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa}, {(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆, 闭圆, 圆环.圆的个部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域:X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.(二)点集的基本概念: 1.内点、外点和界点:集合E的全体内点集表示为intE, 边界表示为E.集合的内点E, 外点E, 界点不定.2.聚点和孤立点: 孤立点必为界点.例1 确定集E{(x,y)|3.开集和闭集: 1(x1)2(y2)24 }的内点、外点集、边界和聚点.intEE时称E为开集,E的聚点集E时称E为闭集.存在非开非闭集.R2和空集为既开又闭集.4.开区域、闭区域、区域:以上常见平面点集均为区域.5.有界集与无界集: 6.点集的直径d(E):两点的距离(P1 , P2).7.三角不等式:

|x1x2|(或|y1y2|)(x1x2)2(y1y2)2 |x1x2||y1y2|.(三)二元函数: 1.二元函数的定义、记法、图象: 2.定义域: 例4 求定义域:

ⅰ> f(x,y)3.有界函数: 4.n元函数: 9x2y2x2y21;ⅱ> f(x,y)lny.ln(yx21)

二、二元函数的极限

(一).二元函数的极限: 1.二重极限limf(P)A的定义: 也可记为PP0PD(x,y)(x0,y0)limf(x,y)A或xx0yy0limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.[1]P94 E1.xy20.例2 用“”定义验证极限 lim2x0xy2y0x2y2,(x,y)(0,0),xy例3 设f(x,y)x2y

20 ,(x,y)(0,0). 证明(x,y)(0,0)limf(x,y)0.(用极坐标变换)

PP0PETh 1 limf(P)A对D的每一个子集E ,只要点P0是E的聚点,就有limf(P)A.PP0PD推论1 设E1D,P0是E1的聚点.若极限limf(P)不存在, 则极限limf(P)也不存在.PP0PE1PP0PD推论2 设E1,E2D,P0是E1和E2的聚点.若存在极限limf(P)A1,limf(P)A2,PP0PE1PP0PE2但A1A2,则极限limf(P)不存在.PP0PD推论3 极限limf(P)存在对D内任一点列{ Pn },PnP0但PnP0,数列{f(Pn)}PP0PD xy ,(x,y)(0,0),22收敛 例4 设f(x,y)xy 证明极限limf(x,y)不存在.(x,y)(0,0)0 ,(x,y)(0,0).(考虑沿直线ykx的方向极限).例5 设f(x,y)1,0,当0yx2,x时,证明极限limf(x,y)不

(x,y)(0,0)其余部分.存在.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxyf(x,y)的定义: 3. 极限(x,y)(x0,y0)lim其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3yEx

[1]P99—100 1⑴—⑹,4,5.(二)累次极限:

1.累次极限的定义: 定义.例8 设f(x,y)xy, 求在点(0 , 0)的两个累次极限.22xyx2y2例9 设f(x,y)2, 求在点(0 , 0)的两个累次极限.2xy例10 设f(x,y)xsin11ysin, 求在点(0 , 0)的两个累次极限与二重极限.yx 2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)

⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1y在点(0 , 0)的情况.⑶ 二重极限存在时, 两个累次极限可以不存在.(例10)

⑷ 两个累次极限存在(甚至相等)二重极限存在.(参阅例4和例8).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在,则

xx0yy0必相等.推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在全面极限不存在.参阅⑵的例.三、二元函数的连续性

(一)二元函数的连续概念:

xy22 , xy0 ,22xy例1 设f(x,y)

m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例1 设f(x,y)

([1]P101)0 , 其他.证明函数f(x,y)在点(0 , 0)不全面连续但在点(0 , 0)f对x和y分别连续.2.函数的增量: 全增量、偏增量.用增量定义连续性.3.函数在区域上的连续性.4.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.

第三篇:多元函数微分学复习

第六章 多元函数微分学及其应用

6.1 多元函数的基本概念 一、二元函数的极限

定义 f(P)= f(x,y)的定义域为D, oP0(x0,y0)是D的聚点.对常数A,对于任意给定的正数,总存在正数,使得当点P(x,y)∈D U(P0,),即

0|P0P|

(xx0)(yy0)22

时,都有

|f(P)–A|=|f(x,y)–A|<

成立,那么就称常数A为函数f(x,y)当(x,y)→(x0,(x,y)(x0,y0)y0)时的极限,记作

y0)), lim f(x,y)A或f(x,y)→A((x,y)→(x0,也记作

PP0limf(P)A

f(P)→A(P→P0)为了区别于一元函数的极限,上述二元函数的极限也称做二重极限.二、二元函数的连续性

(x,y)(x0,y0)limf(x,y)f

(x0,y0),(x,y)(0,0)limz0

如果函数f(x , y)在D的每一点都连续,那么就称函数f(x , y)在D上连续,或者称f(x , y)是D上的连续函数.如果函数f(x , y)在点P0(x0,y0)不连续,则称P0(x0,y0)为函数f(x , y)的间断点.多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。一切多元初等函数在其定义区域内是连续的.多元初等函数的极限值就是函数在该点的函数值,即

pp0limf(P)f(P0).有界性与最大值最小值定理 在有界闭区域D上的多元连续函数,必定在D上有界,且能取得它的最大值和最小值.介值定理 在有界闭区域D上的多元连续函数必取复介于最大值和最小值之间的任何值。

三、例题 例1 设f(x,y)xyg(xy),已知f(x,0)xf(x,0)xg(x)x222,求

f(x,y)的表达式。

2解 由题设,有g(x)xx2,于是

。f(x,y)xy[(xy)(xy)],即 f(x,y)(xy)2y例2 证明极限limxyxy623不存在。

x0y0 证 当(x,y)沿三次抛物线ykx

3趋于(0,0)时,有

limxyxyxyxy。

623623x0y0limxkx62336x0y0xkxlimk1k2

x0y0其值随k去不同值而取不同值。故极限lim不存在。

x0y0 例3 求极限limxy11xy2222x0y0 解

原式limxy2222x0y0xy1xy11zx2212limxx0y022y22xy0

6.2 偏导数与高阶导数 6.2.1 偏导数

一、概念

说明对x求导视zf(x,y),ylimf(xx,y)f(x,y)x

x0为常数,几何意义也说明了这个问题

二元函数z=f(x , y)在点M0(偏导数数

x0,y0)的偏导数有下述几何意义.0fx(x0,y0),就是曲面zf(x,y)与平面yy0的交线在点M0处的切线M0Tx对x轴的斜率.同样,偏导fy(x0,y0)的几何意义是曲面zf(x,y)与平面x=x0的交线在点M 2 基于如上理由,求

处的切线M0Ty对y轴的斜率.zx(x0,y0)时,(因此可能简化函数)再对xy0可先代入,求导

例 f(x,y)xarctany(xarctany(xarctany)),求fx(1,0)。

n重 解 f(x,0)x,fx(x,0)1,fx(1,0)1

二、可微,偏导数存在,连续的关系

偏导数存在可微连续

三、高阶偏导数

设函数z=f(x , y)在区域D内具有偏导数,偏导数连续可微,fxy和

fyx都连续,则

fxy=

fyx;

zx2fx(x,y),zyfy(x,y),则这两个函数的偏导数称为函数z=f(x , y)的二阶

2偏导数。按照对变量求导次序的不同有下列四个二阶偏导数:

zzzzf(x,y),fxy(x,y),xx2xxxyxxyzxyzf(x,y),yxyyx2zyzfyy(x,y).2y2

四、偏导数,微分运算公式 1.z 2.dz f(x,y),uu(x,y),vv(x,y)

zxfuuxfvvx

zyfuuyfvvy

fudufvdvfu(udxuydy)fv(vdxvydy)xx(fuufvv)dx(fuuyfvvy)dyxx

d(uv)dudvd(uv)udvvduzx2

uvduudvd2vv

3.F(x,y,z)0 确定zz(x,y),FxFz;

zy2FyFz6.2.2 求偏导数算例 例1(1)zarctanxy1xy,求

zx,zy,zx22,zxy。

解 zx1xy11xy11y221(1xy)(xy)(y)(1xy)11x2

由对称性 zy2,zx2222x(1x),求

22;

2zxy220;(2)ulnxyz2ux22uy2uz2。

解ux122x222xyzxxyz22,2 ux由对称性 222xyzx2x(xyz)22222222222xyz2222222222(xyz)22

uy222xyz222,uz1222(xyz)uy22xyz2(xyz)2

故 ux2uz22xyz222。

(3)xy22f(x,y)xy0x022xy0,求

fx(0,0),fy(0,0)

xy022 解 fx(0,0)limx0x0x220,同理fy(0,0)0;

ux,例2 uyf(xy,xy),求

uxy2。

解 ux22yf12xf2y2xyf1yf2

uxy

(2y)f12x2yf2y2f21(2y)f22x 2xf12xyf1122x2yf122yf22y3f21xy2f22 2xf14xyf11

例3

zyzf(xy,)g,求

xyxxy2

yyf1yf22g2xxx2z

11y1xf12f1yf11ffxf2222221xyxxxxy1yy12f23f222gf12ff1xyf11xxxxxy),求du。例4 uf(xy,xy,x解(1)z1xx2gg

yx2g1x

y3 duuxdxuydy

u1yuf1f2(1)f3f1f2f32;xxxy

y1duf1f22f3dxf1f2f3dy xxxdyydxd(xy)f2d(xy)f3解(2)duf12x

f1(dxdy)f2(dxdy)f3[f1f2yx2xdyydxx1x2

f3]dx[f1f2f3]dy

例5 设zz(x,y)由方程F(xzy,yzx)0,确定,F有连续一阶偏导数,求

zx,zy。

解(1)方程两边对x求导

zzxz0 F11xF2x2yxzyzF12F2xyF1F2zxx11xxF1yF2F1F2yx;

方程两边对y求导

zyz1zyFF11220 yxyzxzFFFxyF2122zyy 11yxF1yF2F1F2yxzy)F2d(yzx2;

解(2)方程两边取微分 F1d(x)0)F2(dyzy2F1(dxydzzdyyzx2xdzzdxx2)0

(F1

F2)dx(1yF11xF1F2)dy dzF2xyF1yzF2; 则 zxF11yF1zx12F2F2xyF1yzxxF1yF2F2;

zxxxF1yF2dydxx 例6 设yf(x,t),tt(x,y)由F(x,y,t)0确定F,f可微,求。

解(1)对方程取微分

(1)dyfxdxftdtFxdxFydyFtdt0(2)dyfxdxft0

由(1)解得dt代入(2)得 FxdxFydyFt

则 FxFtfx/ftFxftFtfxdydxdxFtFfFytFyft解(2)

dy,即

dxFxftFtfxFyftF

yf(x,t(x,y))

dyttdyfxftdxxydx

dydxfxft1ftt 而xtyxtxFxFt;

tyux22FyFt,则

dydxFxftFtfxFyftF2

y, 例7 证明:当y时,方程x22xyuxy2y2uy20可化成标准形式

u220,其中uu(x,y)二阶偏导数连续。

证明:将u看成由u(,),而yx,y复合成x,y的函数,uu((x,y),(y))

则 ux2ux2uuu1uuyu2;

xyyyx22yu1u22;

2xyxxx

ux222uyuy2223xxu21u

u22221u1uu1u1

222yxxx2则 xux222xyuxy2y2u22y2u220u220

小结

① 显函数(复合)二阶混合偏导数

② 隐函数求偏导,会用微分法,用复合法习题 1.zf(u),u由方程u(u)

xyp(t)dt确定的x,y的函数,f,可微,P,连续,(u)1,求P(y)zxP(x)zy

(答案:0)(蔡 P146)

22.zz(x,y)由zexyz确定,求

zxy;

23.F(xy,yz)1确定了隐函数zz(x,y),Fyy(x),zz(x)是由方程zxf(xy)和

具有连续二阶偏导数求

zyx

4.设5.t6.zF(x,y,z)0确定,f,F有连续偏导数,求

dzdx。

0,f可微且满足

kf(tx,ty,tz)tf(x,y,z),证明 xfxyfyzfzkf。

。f(x,y)于(1,1)点可微,且f(1,1)1,fx(1,1)23x1。,fy(1,1)3。(x)f(x,f(x,x))求ddx[(x)]ux2y7.设变换vxay8.设可把方程6zx22zxy2zyx220化简为

zuvzx22202,求常数a的值。(a=3)。

f(u)u有连续二阶导数,而uzf(esiny)满足

zy2ez2x,求

f(u)。(f(u)c1ec2e)

6.2 偏导数应用

偏导数应用注意四个方面:空间曲面曲线切平面、法线、切线、法平面;方向导数;梯度、散度、旋度;极值与条件极值。

6.3.1 内容小结

1. 空间曲线切线与法平面

xx(t)1)yy(t)

zz(t)切向量v(xt,yt,zt)

切线方程:

xx0xtyy0ytzz0zt

(x法平面方程:xtx0)yt(yy0)zt(zz0)0

xxyy(x)yy(x)2)zz(x)zz(x)切线方程:

v(1,y,z)类似的

xx01yy0yzz0z

法平面方程:xx0y(yy0)z(zz0)0

Fzz0F(x,z,y)0xxFxFyy3)v(1,y,z)xxG(x,y,z)0GxGyyxGzzx02. 空间曲面切平面与法线

1)F(x,y,z)0,n(Fx,Fy,Fz)|P0切平面:Fx|p0法线:

(xx0)Fy|p0(yy0)Fz|p0(zz0)0xx0Fx|p0yy0Fy|p0zz0Fz|p0

2)zf(x,y)Ff(x,y)zn(fx,fy,1)

切平面:类似地

fx(xx0)fy(yy0)(zz0)0

法线:xx0fxyy0fyzz01

xx(u,v)3)*yy(u,v)

zz(u,v)(参数方程形式)

切线 ,yu,zu),v2(xv,yv,zv)v1(xuixvjyuyvnv1v2xu(y,z)(z,x)(x,y)zu(u,v),(u,v),(u,v)zvk

3. 方向导数

uu(x,y,z)uluxcosuycosuzcosgradul(梯度在l方向投影)

4. 梯度、散度、旋度

,

xyzuuugraduu,xyz

divAAPxQyRz

rotAAixPjyQkzR

6.3.2 例题

例1 求曲线xt,yt,zt223上与平面x2yz4平行的切线方程。

解 切向量2(1,2t,3t),n(1,2,1)由n,则n0,即,14t3t0t11,t2当t1时 (1,2,3),x11,y11,z11,切线方程为13x11y12z13

当t时 2(1,21111,),x2,y1,z1333927,x切线方程为13y11923z13127

22xy10例2 求空间曲线22xz10在点(3,1,1)处的切线方程和法平面方程。

解 22xy1022xz10确定了

yy(x),zz(x),对x求导2x2yy02x2zz0x3y13,yzz13

xyxz

于

1法平面方程为x33(y1)3(z1)0,即x3y3z30 例3 求曲面x2M(3,1,1)点:y3,z3,v(1,3,3)切线方程为 yzx的切平面。使之与平面xy22z22垂直,同时也与xyz2垂直。

解 切平面法向量n(2x1,2y,2z),n1(1,1,12),n2(1,1,1),依题意

n1n0

既有2x 12yz0

(1)

(2)n2n0 2x12y12z0

联立(1)(2)和原方程 22x42得解y4z022x42,y4z0

 n012222,0,n02,,0 2222切平面22(x242)22(y24)0

xyxy121222

22222x(y)0 2424x2y3z222即

例4 求u解 令

在(1,1,1)点沿x2yz3的外法线方向的方向导数。

22222F(x,y,z)xyz3,Fx2x,Fy2y,Fz2z于P(1,1,1)点n(2,2,2),n(13,13,13)

unuxcosuycosuzcos111122x4y6z|43(1,1,1)3333

例5 设f(x,y)在fL3|p0fx1111p0点可微,L1,,L222227。,fL11,fL20

试确定L3使52fycos11,fL2fxcos2fycos20,则 解 fL1cos1 fxfx12fy121fx12y,f12

1f10y22 设L3(cos3,cos3)

从而fL3fxcos375fxcos375235 即

1245cos3 此时cos12cos345或cos752

cos3sin3,解得cos3或cos33335

34即L3,55例6 或L3243, 552 ulnxyz2,求div2(gradu)。

解 div(gradu)(u)u12ln(xyz)222ux22uy222uz22。

u,2ux22xxyz222222,2222ux22xyzx2x(xyz)xyz222(xyz)

由对称性 uy22xyz222222(xyz)2,uz22xyz222222(xyz)2

从而 div(gradu)1xyz222

例7 设a, b, c为常数,F证明(u,v)有连续一阶偏导数。

证 xayb,)0上任一点切平面都通过某定点。zczc11xayb,FyF2,FFFxF1Fz1222zczc(zc)(zc)F(则切平面方程为 F1取1zc(Xx)F21zc(Yy)1(zc)2F(xa)F2(yb)(zy)0

xa,Yb,Zc,则对任一的(x,y,z)点上式均满足,即过任一点的切平面都过(a,b,c)点。

。(xaz,ybz)0上任一点切平面都通过某定直线平行(F具有连续偏导数)

例8 设a,b为常数,证明曲面F证

FxF1,FyF2,FzaF1bF2,即n(F1,F2,aF1bF2),取l(a,b,1),则nl0,nl,曲面平行l,取直线

xx0ayy0bzz01,则曲面上任一点的切平面都与上述直线平行。例9 求二元函数u5方向导数最大?这个最大的方向导数值是多少?u沿那个方向减少得最快,沿哪个方向u的值不变?

解 xxyy22在点M(1,1)沿方向n1(2,1)的方向导数,并指出u在该点沿哪个方向的gradu|(1,1)(2xy,2yx)|(1,1)(3,3),uM在点M(1,1)沿n方向的方向导数为

un132(gradu)n|M(3,3),555,方向导数取得最大值的方向为梯度方向,其最大值为为求使u变化的变化率为零的方向,令l

gradu|M32,u沿负梯度方向减少最快。

(cos,sin),则,ululM(gradu|M)l3cos3sin32sin44或令0,得4,故在点(1,1)处沿4和4函数u得值不变化。

例10 一条鲨鱼在发现血腥味时,总是沿血腥味最浓的方向追寻。在海上进行试验表明,如果血源在海平面上,建立坐标系味:坐标原点在血源处,xOy2坐标面为海平面,Oz轴铅直向下,则点(x,224y,z)处血源的浓度C(每百万份水中所含血的份数)的近似值Ce(xy2z)/10。

(1)求鲨鱼从点1,1,1(单位为海里)出发向血源前进的路线2的方程;

(2)若鲨鱼以40海里/小时的速度前进,鲨鱼从1,1,1点出发需要用多少时间才能到达血源处? 2解(1)鲨鱼追踪最强的血腥味,所以每一瞬时它都将按血液浓度变化最快,即C的梯度方向前进。由梯度的计算公式,得

2224CCC4(xy2z)/10gradC,10e(2x.2y,4z)xyz设曲线的方程为xx(t),yy(t),zz(t),则的切线向量(dx,dy,dz)必与gradC平行,从而有 dx2xdy2ydz4z

解初始值问题

dydx2y2xy|1x1dzdx2x4zz|1x12

yx

解初始值问题

z12x2,所以所求曲线的方程为

xx,yx,z 12(2)曲线的长度 x2(0x1)s101yzdxxxln(31)2210x2xdx22x2ln(x2x1)

03212ln2(海里)

31)1。ln2(小时)

2因此到达血源处所用的时间为T6.4 多元函数的极值

13ln(402

一、无条件极值 限于二元函数zf(x,y)

1. z0x求驻点z0y驻点P

2. 于驻点P处计算Azx22,Bzxy2,Czy22。B2AC0是极值点,A0可取得极小值,A0可取极大值。

3. 条件极值:minuf(x,y,z)S.t.(x,y,z)0,令

Lf(x,y,z)(x,y,z)求无条件极值。

例1 求内接于椭球面,且棱平行对称轴的体积最大的长方体。

解 设椭球面方程为 xa22yb22zc221,长方体于第一卦限上的点的坐标为(x,y,z),则

V8xyz,s.t.xa 22yb22zc221,令

2xa222x2yz L8xyz1a2b2c28yzLxL8xzy8xyLz及0(1)0(2)0(3)2yb2zc22xa22yb22zc221

由(1)(2)(3)得xa22b3yb22zc22tc3,代入(3)得t13,从而 xa3,y2,z22,此时V8abc33839abc。

例2 求由方程2x2yz8xzz80所确定的二元函数zf(x,y)的极值。解

方程两边对x,y求偏导数得:

4x2zzx8z8xzxzx0

„(1)

4y2zzy8xzyzy0

„(2)

4x8z016和原方程联立得驻点(2,0),(,0)0,得x74y0y方程(1)对x,y再求偏导,方程(2)对y求偏导 令z0,z。

zzzzzz42888x0 2z222xxxxxx2zzyx2z22222„(3)

zxy282zy8x2zxy22zxy20

„(4)

zzzz

422z8x0

222yyyy将驻点(2,0)代入(此时z1)

„(5)

42A16AA0

AC415415

2B16BB0

B0

242C16CC0

BAC0,z1是极小值(因A>0)

将驻点8(4)(5)(此时z,0代入(3)

7716),同上过程有

A 415,B0,C415,2BAC0,A0,z87是极大值。

习题: 1 设uF(x,y,z)在条件(x,y,z)0和(x,y,z)0限制下,在P0(x0,y0,z0)处取得极值mFx1Lx20xx

。证明F(x,y,z)m,(x,y,z)0,(x,y,z)0在P0点法线共面。

正:L F(x,y,z)m12LFy120yyy

Fz1Lz20 zzFxxyzx0yzxyz5r2222由于(1,1,2)0,从而原方程有非零解,及系数矩阵为0FyFz,即三法向量共面。

2. 设f(x,y,z)lnxlny3lnz。点

3(x,y,z)在第一卦限球面

3上,①求f(x,y,z)的最大值。②证明 对任意正数a,b,c成立abc

abc275。

习题课

ye例1 设f(xy,lnx)1,求f(x,y)yxxeln(x)解 令xyu,lnxv。

yef(u,v)f(xy,lnx)1yxxeln(x)

xxxyxueveu2vexyxlnx(xy)ee2lnxxylnx

所以

f(x,y)xeyex2y.例2 讨论limxyxy是否存在.x0y0 解

当点 P(x,y)沿直线ykx趋向(0,0)时,limxyxy2ykxx0limxkxxkxx0limkx1kx00

(k1),当点P(x,y)沿直线yxxlim2xyxy趋向(0,0)时,yxxx0lim2x(xx)x(xx)22lim(x1)1yxxx0x01,所以limxyxy不存在.x0y0 例3 22(xy)sinzf(x,y)0在(0,0)处是否连续?

1xy22(xy0),22(xy0),22(1)(2)(3)(4)fx(0,0),fy(0,0)是否存在?

偏导数fx(x,y),fy(x,y)在(0,0)处是否连续?

f(x,y)在(0,0)处是否可微?

f(x,y)在(0,0)处是否连续,只要看limf(x,y)=f(0,0)是否成立.因为

x0y0解

(1)函数 limf(x,y)lim(xy)sinx0y0221xy22

x0y0

limsin0210f(0,0).所以

f(x,y)在(0,0)处连续.(2)如同一元函数一样,分段函数在分界点处的偏导数应按定义来求.因为

(x)sinx021(x)x1(x)220 limf(x,0)f(0,0)xlimx0limxsinx00,所以

(3)fx(0,0)0,类似地可求得fy(0,0)0.当(x,y)(0,0)时

fx(x,y)2xsin

1xy1xy2222(xy)cosxxy22221xy221222xx2y23

2xsincos1xy2.因为 limfx(x,y)lim2xsinx0x0y0y01xy22xxy22cos不存在.22xy1所以 fx(x,y)在(0,0)处不连续。同理fy(x,y)在(0,0)处也不连续

(4)由于由fx(x,y),fy(x,y)在(0,0)处不连续,所以只能按定义判别f(x,y)在(0,0)处是否可微.fx(0,0)0,fy(0,0)0,故

x0y0limz[fx(0,0)xfy(0,0)y](x)(y)222

[(x)(y)]sinlimx0y02221(x)(y)220(x)(y)(x)(y)sin122 lim1(x)(y)22

x0y0limsinx0y00由全微分定义知f(x,y)在(0,0)处可微,且df(0,0)0.f(x,y,z),zg(x,y),yh(x,t),t 例4 设u(x),求

dudx.解

对于复合函数求导来说,最主要的是搞清变量之间的关系.哪些是自变量,哪些是中间变量,可借助于“树图”来分析.图9-1 由上图可见,u最终是x的函数,y,z,t都是中间变量.所以

dudxfxfxfhhdfgghhdyxtdxzxyxtdxfhyxfhdytdxfgzxfghzyx.fghdzytdx 从最后结论可以看出:若对x求导数(或求偏导数),有几条线通到”树梢”上的x,结果中就应有几项,而每一项又都是一条线上的函数对变量的导数或偏导数的乘积.简言之,按线相乘,分线相加 例5 z12xfxy1f2,f 可导,求zx.解 zx1f2x.y

例6 已知yetyx,而t是由方程ytx1确定的x,y的函数,求

ty222dydx.解

将两个方程对x求导数,得

ye(tyyt)12yy2tt2x0

解方程可得

2dydxtxye2ty2tyt(yt)e.例7 求曲面x2y3z21平行于平面x4y6z0的切平面方程.解

曲面在点(x,y,z)的法向量为 n =(Fx,Fy,Fz)(2x,4y,6z),2x14y42已知平面的法向量为n1=(1,4,6),因为切平面与已知平面平行,所以n//n1,从而有

6z6(1)

又因为点在曲面上,应满足曲面方程

x2y3z212

(2)

由(1)、(2)解得切点为(1,2,2)及(1,2,2), 所求切平面方程为:

或(x1)4(y2)6(z2)0(x1)4(y2)6(z2)012,1,1)。

这里特别要指出的是不要将n//n1不经意的写成n=n1,从而得出切点为(例8 在椭球面2x222的错误结论.2222yz1上求一点,使函数f(x,y,z)xyzel在该点沿l=(1,–1,0)方向的方向导数最大.11,,0,22所以 fl fx12fy12fz20

2(xy)2(xy)在条件2x由题意,要考查函数

2yz1下的最大值,为此构造拉格朗日函数

222F(x,y,z)2(xy)(2x2yz1),14

Fx24x0,Fy24y0, Fz2z0,2222x2yz1.解得可能取极值的点为 11,,0 22 及

11,0.222,因为所要求的最大值一定存在,比较

fl11,,022fl11,02222知12,1,02为所求的点.例9 求函数zxy222在圆(x22)(y22)9上的最大值与最小值.0,zy0,解得点(0,0).显然z(0,0)=0为最小值.解

先求函数z再求z2xy2在圆内的可能极值点.为此令zxxy在圆上的最大、最小值.为此做拉格朗日函数

22F(x,y)xy[(x2)(y22)9],2Fx2x2(x2)0,Fy2y2(y2)0,22(x2)(y2)9.,代入(3)解得

(1)(2)(3)由(1)、(2)可知xy xy522,和

xy22,5252z,2225221.z,222)(y25252,22为z25,最小值为z0.比较z(0,0)、z

22、z三值可知:在(x,222)92上,最大值

第四篇:多元函数的微分学内容小结(本站推荐)

第二章 多元函数的微分学内容小结

多元函数微分学是一元函数微分学的推广和发展,两者的处理方法有很多相似之处.由于

自变量个数的增加,多元函数的微分学又产生了很多新内容,如偏导数、全微分、方向导数、条

件极值等.本章以二元函数为主讲述有关内容.

一、多元函数的定义、极限、连续及其性质

二、偏导数与全微分

3.全微分 三、二元函数的极值

四、多元微分学的几何应用

五、方向导数与梯度

第五篇:数学分析教案 (华东师大版)第十六章多元函数的极限与连续

《数学分析》教案

第十六章 多元函数的极限与连续

教学目的:1.明确认识多元函数与一元函数的相同和不同之处,进而掌握多元函数研究问题的手法与特点;2.明确研究多元函数的目的及多元函数的用途。教学重点难点:本章的重点是平面点集的有关概念与二元函数的连续性;难点是二元函数极限的讨论。教学时数:16学时

§ 1平面点集与多元函数

一.平面点集:平面点集的表示:1.常见平面点集:

⑴ 全平面和半平面 : , , ,满足的条件}.余集

.等.⑵ 矩形域: , }.⑶ 圆域: 开圆 , 闭圆 , 圆环.圆的个部分.极坐标表示, 特别是

和.型域..⑷ 角域: ⑸ 简单域:

型域和

2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集

: 两点的距离

.《数学分析》教案

(或),..三.点列的极限: 设 定义 的定义(用邻域语言).例4

为点集., ,.例

5设 的一个聚点.则存在

中的点列 , 使

四.中的完备性定理:

1.Cauchy收敛准则:

先证{

}为Cauchy列

均为Cauchy列.2.闭集套定理: P116.3.聚点原理: 列紧性 , Weierstrass聚点原理.4.有限复盖定理: 五.二元函数:

1.二元函数的定义、记法、图象:

2.定义域:

例6

求定义域:

ⅰ>

;ⅱ>

.《数学分析》教案

例3

证明.(用极坐标变换)P94例2.2.相对极限及方向极限:

相对极限

和方向极限的定义.3.全面极限与相对极限的关系:

Th 1 ,对D的每一个子集E ,只要点

是E的聚点 , 就有.推论1 设 则极限也不存在.,是 的聚点.若极限

不存在 , 推论2 设 , , 但

是 的聚点.若存在极限, 则极限不存在.对D内任一点列,但

推论3 极限,数列

通常为证明极限

收敛.存在,不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限不相等, 或证明方向极限与方向有关.但应注意 , 沿任何方向的极限存在且相等

全面极限存在(以下例5).的两个累次极限.《数学分析》教案

2.全面极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)

⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数

在点 的情况.⑶ 全面极限存在时, 两个累次极限可以不存在.例如例8中的函数,全面极限存在 , 但两个累次极限均不存在.⑷ 两个累次极限存在(甚至相等)

全面极限存在.(参阅例7).综上 , 全面极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限

和累次极限

(或另一次序)都存在 , 则必相等.(证)P98.推论1 全面极限和两个累次极限三者都存在时 , 三者相等.系1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 全面极限不存在.但两个累次极限中一个存在 , 另一个不存在

全面极限不存在.§ 3 二元函数的连续性

一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:

《数学分析》教案

2.一致连续性.(证)3.介值性与零点定理.(证)

下载数学分析教案_(华东师大版)第十七章__多元函数微分学word格式文档
下载数学分析教案_(华东师大版)第十七章__多元函数微分学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2016考研:多元函数微分学大纲解析解读[精选合集]

    2016考研:多元函数微分学大纲解析 (1多元函数微分学考察方式 针对 2015年对多元函数微分学的考察方式,结合 2016大纲,同学们在 2016年考研备考中 应该注意下面问题 1. 结合......

    数学分析教案 (华东师大版)第一章实数集与函数

    临沂师范学院《数学分析》教案 第一章 实数集与函数 导言 数学分析课程简介 ( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算sin32、实......

    2015考研数学暑期复习:高等数学之多元函数微分学

    暑期,是考研黄金复习期。同学们要多利用这段时间夯实基础,千万不要眼高手低,无论是哪本数学复习书,大家一定要去做,去看。不要一份试题放到你面前,你根本就不知道无从下手。高数中......

    数学分析教案 (华东师大版)第八章 不定积分

    《数学分析》教案 第八章 不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运......

    多元函数的基本概念教案

    §8 1 多元函数的基本概念 一、平面点集n维空间 1.平面点集 由平面解析几何知道 当在平面上引入了一个直角坐标系后平面上的点P与有序二元实数组(x y)之间就建立了一一对应......

    多元函数(五篇范文)

    第二节 多元函数的基本概念分布图示★ 领域★平面区域的概念★ 多元函数的概念★ 例1★ 例2★ 二元函数的图形★ 二元函数的极限★ 例3★ 例4★ 例5★ 例6★ 例7★ 二元函......

    数学分析教案 (华东师大版)第五章 导数和微分

    《数学分析》教案 第五章 导数和微分 教学目的: 1.使学生准确掌握导数与微分的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分; 2.弄清函数可导与可微......

    华东师大2006数学分析考研真题

    华东师范大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析 一(30)判别题(正确证明,错误举反例或说理由) 1.设数列{an}满足条件:0,N,使nN,|anaN|,,则{an}收敛。 2.设f(x)在(a......