同济第六版《高等数学》教案WORD版-第12章 微分方程

时间:2019-05-13 21:46:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《同济第六版《高等数学》教案WORD版-第12章 微分方程》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《同济第六版《高等数学》教案WORD版-第12章 微分方程》。

第一篇:同济第六版《高等数学》教案WORD版-第12章 微分方程

高等数学教案

§12 微分方程

第十二章

微分方程

教学目的:

1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)5. 理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:

1、可分离的微分方程及一阶线性微分方程的解法

(n)

2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)

3、二阶常系数齐次线性微分方程;

4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;

教学难点:

1、齐次微分方程、伯努利方程和全微分方程;

2、线性微分方程解的性质及解的结构定理;

3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

4、欧拉方程

§12 1 微分方程的基本概念

函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程

例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程

解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)

dy2x

(1)

dx此外 未知函数yy(x)还应满足下列条件

x1时 y2 简记为y|x12

(2)把(1)式两端积分 得(称为微分方程的通解)

y2xdx 即yx2C

(3)其中C是任意常数

把条件“x1时 y2”代入(3)式 得

212C

由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)

yx21

例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?

解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式

d2s0.4

(4)dt2内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

此外 未知函数ss(t)还应满足下列条件

t0时 s0 vds20 简记为s|=0 s|=20

(5)

t0t0dt

把(4)式两端积分一次 得

vds0.4tC

(6)1dt再积分一次 得

s02t2 C1t C2

(7)这里C1 C2都是任意常数

把条件v|t020代入(6)得

20C1

把条件s|t00代入(7)得0C2

把C1 C2的值代入(6)及(7)式得

v04t 20

(8)

s02t220t

(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间

t2050(s)

0.4再把t50代入(9) 得到列车在制动阶段行驶的路程

s025022050500(m)

解 设列车在开始制动后t秒时行驶了s米

s04 并且s|t0=0 s|t0=20

把等式s04两端积分一次 得

s04tC1 即v04tC1(C1是任意常数)

再积分一次 得

s02t2 C1t C2(C1 C2都C1是任意常数)

由v|t020得20C1 于是v04t 20

由s|t00得0C2 于是s02t220t

令v0 得t50(s) 于是列车在制动阶段行驶的路程

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

s025022050500(m)

几个概念

微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程

常微分方程 未知函数是一元函数的微分方程 叫常微分方程

偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程

微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶

x3 yx2 y4xy3x2 

y(4)4y10y12y5ysin2x

y(n)10

一般n阶微分方程

F(x y y

    y(n))0

y(n)f(x y y

    y(n1))

微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上

F[x (x) (x)    (n)(x)]0

那么函数y(x)就叫做微分方程F(x y y    y(n))0在区间I上的解

通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解

初始条件 用于确定通解中任意常数的条件 称为初始条件 如

xx0 时 yy0  y y0 

一般写成



yxx0y0 yxx0y0

特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解

初值问题 求微分方程满足初始条件的解的问题称为初值问题

如求微分方程yf(x

y)满足初始条件yxx0y0的解的问题 记为

yf(x,y)

 yxx0y0内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线

例3 验证 函数

xC1cos ktC2 sin kt 是微分方程

d2xk2x0

dt2的解

解 求所给函数的导数

dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)

1212dt2d2x将2及x的表达式代入所给方程 得 dt

k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0

d2xk2x0

这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解

dtd2xk2x0

例4 已知函数xC1cosktC2sinkt(k0)是微分方程2的通解 求满足初始条件

dt

x| t0 A x| t0 0 的特解

由条件x| t0 A及xC1 cos ktC2 sin kt 得

C1A

再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得

C20

把C1、C2的值代入xC1cos ktC2sin kt中 得

xAcos kt

§12 2 可分离变量的微分方程

观察与分析

1 求微分方程y2x的通解 为此把方程两边积分 得

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

yx2C

一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)

2 求微分方程y2xy2 的通解

因为y是未知的 所以积分2xy2dx无法进行 方程两边直

接积分不能求出通解

为求通解可将方程变为

1dy2xdx 两边积分 得

y21x2C1  或y2yxC可以验证函数y1是原方程的通解

x2C

一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx

形式 则两边积分可得一个不含未知函数的导数的方程

G(y)F(x)C

由方程G(y)F(x)C所确定的隐函数就是原方程的通解

对称形式的一阶微分方程

一阶微分方程有时也写成如下对称形式

P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的

若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有

dyP(x,y)

dxQ(x,y)dxQ(x,y)

dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有

可分离变量的微分方程

如果一个一阶微分方程能写成

g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

方程就称为可分离变量的微分方程

讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy

是 y1dy2xdx (2)3x25xy0

是 dy(3x25x)dx(3)(x2y2)dxxydy=0

不是

(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy

是 10ydy10xdx(6)yxy

不是

yx

可分离变量的微分方程的解法

第一步

分离变量 将方程写成g(y)dy f(x)dx的形式

第二步

两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C

第三步

求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C  y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解

例1 求微分方程dy2xy的通解

dx

此方程为可分离变量方程 分离变量后得

1dy2xdx

y1两边积分得

ydy2xdx

2即

ln|y|x2C1

从而

yexC1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解

yCex

此方程为可分离变量方程 分离变量后得

21dy2xdx

y内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

两边积分得

1dy2xdx

y即

ln|y|x2lnC 从而

yCex

例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律

解 铀的衰变速度就是M(t)对时间t的导数2dM

dt

由于铀的衰变速度与其含量成正比 故得微分方程

dMM

dtdM0

dt其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为

M|t0M0

将方程分离变量得

dMdt

MdM()dt

M两边积分 得即

lnMtlnC 也即MCet

由初始条件 得M0Ce0C

所以铀含量M(t)随时间t变化的规律MM0et 

例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系

设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为

mdvmgkv

dt内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

初始条件为

v|t00

方程分离变量 得

dvdt

mgkvm两边积分 得mgkvm

tC

m1dvdt

ln(mgkv)1kkC1ktmgCem(Ce即

v)

kkmg将初始条件v|t00代入通解得C

kktmg(1em)

于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解

例4 求微分方程dx

解 方程可化为

dy(1x)(1y2)

dx分离变量得

1dy(1x)dx

1y21dy(1x)dx 即1x2xC

arctany1y22两边积分得

于是原方程的通解为ytan(x2xC)

例4 有高为1m的半球形容器 水从它的底部小孔流出 小孔横截面面积为1cm2 开始时容器内盛满了水 求水从小孔流出过程中容器里水面高度h随时间t变化的规律

解 由水力学知道 水从孔口流出的流量Q可用下列公式计算

Q12dV0.62S2gh

dt内蒙古财经大学统计与数学学院公共数学教研室 其中0 62为流量系数 S为孔口横截面面积 g为重力加速度 现在孔口横截面面积S1cm2 故 高等数学教案

§12 微分方程

dV0.622gh 或dV0.622ghdt

dt

另一方面 设在微小时间间隔[t tdt]内 水面高度由h降至hdh(dh0) 则又可得到

dVr2dh

其中r是时刻t的水面半径 右端置负号是由于dh0而dV0的缘故 又因

r1002(100h)2200hh2

所以

dV(200hh2)dh

通过比较得到

0.622ghdt(200hh2)dh

这就是未知函数hh(t)应满足的微分方程

此外 开始时容器内的水是满的 所以未知函数hh(t)还应满足下列初始条件

h|t0100

将方程0.622ghdt(200hh2)dh分离变量后得

dt两端积分 得

t0.622g132(200hh2)dh

0.622g13(200h2h2)dh

t(400h22h2)C

50.622g3其中C是任意常数

由初始条件得

t(400100221002)C

50.622gC3535(400000200000)14105

350.622g0.622g15内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

因此

t0.622g(7105353210h3h2)

上式表达了水从小孔流出的过程中容器内水面高度h与时间t之间的函数关系

§12 3 齐次方程

齐次方程

如果一阶微分方程dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程

xx

下列方程哪些是齐次方程?

dyyy2x2dyyy

(1)xyyyx0是齐次方程()21

dxxdxxx22dy1y

2(2)1xy1y不是齐次方程

dx1x222dyx2y2dyxy

(3)(xy)dxxydy0是齐次方程 dxxydxyx22

(4)(2xy4)dx(xy1)dy0不是齐次方程

(5)(2xshdy2xy4

dxxy1yyy3ych)dx3xchdy0是齐次方程

xxxyy2xsh3ychdyxxdy2thyy 

ydxdx3xx3xchx

齐次方程的解法

在齐次方程

ydyy()中 令u 即yux 有 dxxx内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

ux分离变量 得

du(u)

dxdudx (u)uxdudx(u)ux 两端积分 得

求出积分后 再用y代替u 便得所给齐次方程的通解

xdydyxy

dxdx

1解方程y2x2

原方程可写成

y2()dyyx

dxxyx2y1x2因此原方程是齐次方程 令

yux 于是原方程变为

2duu

ux

dxu1yu 则 xdyuxdu

dxdx即

xduu

dxu1分离变量 得

(1)du1udx

x两边积分 得uln|u|Cln|x|

或写成ln|xu|uC

以y代上式中的u 便得所给方程的通解 x

ln|y|yC

x内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程

解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM

因为

OAAPOPPMcotOP而

OMx2y2

于是得微分方程

yx

yyxx2y2 y整理得dxx(x)21 这是齐次方程

dyyydxx(x)21

dyyy

问题归结为解齐次方程

令即

yxvdvvv21 即xyv 得vy

dyydvv21 dy分离变量 得dvdy

v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21y22yv1

C2C以yvx代入上式 得y22C(xC)

2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为

y2z22C(xC) 2这就是所求的旋转曲面方程

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

例3 设河边点O的正对岸为点A 河宽OAh 两岸为平行直线 水流速度为a 有一鸭子从点A游向点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点 O 求鸭子游过的迹线的方程

例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程

解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度

v(vx, vy)(dx, dy) 故有dxvx

dyvydtdtx, y) v(abx, by)

x2y2x2y2x2y2x2y2另一方面 vab(a, 0)b(因此dxvxa(x)21x 即dxa(x)21x

dybyydyvybyydxa(x)21x

dybyy

问题归结为解齐次方程

yxu 即xyu 得 yduau21 dyb分离变量 得duady

u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]

将u代入上式并整理 得xy2C以x|yh0代入上式 得Caa1 故鸭子游过的轨迹方程为

haay1by1bh()] 0yh

x[()2hh内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

将ux代入arshu(lnylnC)后的整理过程

yabarshxb(lnylnC)yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bby1b1b1aaax[(Cy)(Cy)]x[(Cy)(Cy)a]

2C2bbb

§12.4 线性微分方程

一、线性方程

线性方程

方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程

dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0  则方程称为齐次线性方程 否则方程称为非齐次线性方程

方程

下列方程各是什么类型方程?

(1)(x2)

(2)3x25x5y0y3x25x  是非齐次线性方程

(3)yy cos xesin x  是非齐次线性方程

(4)dy10xy 不是线性方程 dx23dy3(y1)2dydxxx00或

(5)(y1) 不是线性方程

dxdydx(y1)2x

3齐次线性方程的解法

齐次线性方程

dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx

y内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

两边积分 得

ln|y|P(x)dxC1

P(x)dx(CeC1)

yCe这就是齐次线性方程的通解(积分中不再加任意常数)

1求方程(x2)dyy的通解

dx

这是齐次线性方程 分离变量得

dydx

yx2两边积分得

ln|y|ln|x2|lnC

方程的通解为

yC(x2)

非齐次线性方程的解法

将齐次线性方程通解中的常数换成x的未知函数u(x) 把

P(x)dx

yu(x)e

设想成非齐次线性方程的通解 代入非齐次线性方程求得

P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)

u(x)e化简得

u(x)Q(x)eP(x)dx

u(x)Q(x)eP(x)dxdxC

于是非齐次线性方程的通解为

P(x)dxP(x)dx[Q(x)edxC]

yeP(x)dxP(x)dxP(x)dx或

yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

5dy2y(x1)2的通解

例2 求方程dxx1

这是一个非齐次线性方程

先求对应的齐次线性方程分离变量得

dy2y0的通解

dxx1dy2dx

yx1两边积分得

ln y2ln(x1)ln C

齐次线性方程的通解为

yC(x1)2

用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得

52u(x1)2(x1)2

u(x1)2u(x1)x1 1u(x1)2

两边积分 得 u(x1)2C

3再把上式代入yu(x1)2中 即得所求方程的通解为 32

y(x1)[(x1)2C]

3232 Q(x)(x1)2

解 这里P(x)x12)dx2ln(x1) 因为

P(x)dx(x1P(x)dxe2ln(x1)(x1)2

e5P(x)dxdx(x1)2(x1)2dx(x1)2dx2(x1)2

Q(x)e3513所以通解为

yeP(x)dxP(x)dx[Q(x)edxC](x1)2[2(x1)2C]

33内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)

由电学知道 当电流变化时 L上有感应电动势L

EL即

di 由回路电压定律得出

dtdiiR0

dtdiRiE

dtLLdiRiEmsin t

dtLL

把EEmsin t代入上式 得

初始条件为

i|t00

diRiEmsin t为非齐次线性方程 其中

dtLLER t

P(t) Q(t)msinLL

方程由通解公式 得

i(t)eP(t)dt[Q(t)eP(t)dtdtC]RdteL(RdtEmLsin teLdtC)

RttEmRLe(sinteLdtC)

LRtEm(Rsin t Lcos t)CeL

222RL其中C为任意常数

将初始条件i|t00代入通解 得C因此 所求函数i(t)为

t LEmREmLe(Rsin t Lcos t)

i(t)2R2L2R22L2 LEm

R22L

2二、伯努利方程

伯努利方程 方程

dyP(x)yQ(x)yn(n0 1)dx内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

叫做伯努利方程

下列方程是什么类型方程?

(1)

(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy

1(3)y yyxy1 是伯努利方程 yxx

(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx

伯努利方程的解法 以yn除方程的两边 得

yn令z y1n  得线性方程

dz(1n)P(x)z(1n)Q(x)

dxdyya(lnx)y2的通解

例4 求方程dxx

解 以y2除方程的两端 得

y2dy11yalnx

dxxd(y1)11yalnx

dxx令zy1 则上述方程成为

dz1zalnx

dxxa2这是一个线性方程 它的通解为

zx[C(lnx)2]

以y1代z  得所求方程的通解为

yx[C(lnx)2]1

经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程 a2内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

例5 解方程dy1

dxxy

若把所给方程变形为

dxxy

dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程

令xyu 则原方程化为

du11 即duu1

dxudxuududx

u1分离变量 得

两端积分得

uln|u1|xln|C|

以uxy代入上式 得

yln|xy1|ln|C| 或xCeyy1

§12 5 全微分方程

全微分方程 一个一阶微分方程写成 P(x, y)dxQ(x, y)dy0

形式后 如果它的左端恰好是某一个函数uu(x, y)的全微分

du(x, y)P(x, y)dxQ(x, y)dy

那么方程P(x, y)dxQ(x, y)dy0就叫做全微分方程 这里

uP(x,y) uQ(x,y)

yx而方程可写为

du(x, y)0

全微分方程的判定 若P(x, y)、Q(x, y)在单连通域G内具有一阶连续偏导数 且

PQ

yx内蒙古财经大学统计与数学学院公共数学教研室 则方程P(x, y)dxQ(x, y)dy0是全微分方程 高等数学教案

§12 微分方程

全微分方程的通解

若方程P(x, y)dxQ(x, y)dy0是全微分方程 且

du(x, y)P(x, y)dxQ(x, y)dy 则

u(x, y)C

xx0P(x,y)dxQ(x0,y)dxC((x0,y0)G)

y0y是方程P(x, y)dxQ(x, y)dy0的通解

例1 求解(5x43xy2y3)dx(3x2y3xy2y2)dy0

解 这里

P6xy3y2Q

yxxy所以这是全微分方程 取(x0, y0)(0, 0) 有

u(x,y)0(5x43xy2y3)dxy2dy

0

x5x2y2xy3y3

于是 方程的通解为

x5x2y2xy3y3C

积分因子 若方程P(x, y)dxQ(x, y)dy0不是全微分方程 但存在一函数

(x, y)((x, y)0) 使方程

(x, y)P(x, y)dx(x, y)Q(x, y)dy0 是全微分方程 则函数(x, y)叫做方程P(x, y)dxQ(x, y)dy0的积分因子

例2 通过观察求方程的积分因子并求其通解:

(1)ydxxdy0

(2)(1xy)ydx(1xy)xdy0

解(1)方程ydxxdy0不是全微分方程

因为

d()32133213xyydxxdy

y2内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

所以1是方程ydxxdy0的积分因子 于是

y2ydxxdyxC是全微分方程 所给方程的通解为

0yy

2(2)方程(1xy)ydx(1xy)xdy0不是全微分方程

将方程的各项重新合并 得

(ydxxdy)xy(ydxxdy)0

再把它改写成 d(xy)x2y2(这时容易看出dxdy)0

xy1为积分因子 乘以该积分因子后 方程就变为(xy)2

d(xy)dxdy0

2xy(xy)积分得通解

1xx

ln||lnC 即Cexy

xyyy

我们也可用积分因子的方法来解一阶线性方程yP(x)yQ(x)

可以验证(x)e两边乘以(x)e

ye即

ye亦即

[yeP(x)dx1是一阶线性方程yP(x)yQ(x)的一个积分因子 在一阶线性方程的P(x)dx得

P(x)dxP(x)dxyP(x)ey[eQ(x)eP(x)dx

P(x)dxP(x)dxP(x)dx]Q(x)e

P(x)dxP(x)dx]Q(x)e

两边积分 便得通解

yeP(x)dxQ(x)eP(x)dxdxC

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

P(x)dxP(x)dx或

ye[Q(x)edxC] 

例3用积分因子求dy2xy4x的通解

dx

解 方程的积分因子为

(x)e22xdxex 2方程两边乘以ex得

yex2xexy4xex 即(exy)4xex

于是

exy4xexdx2exC 22222222因此原方程的通解为y4xexdx2Cex 22

§12 6 可降阶的高阶微分方程

一、y(n)f(x)型的微分方程

解法 积分n 次

y(n1)f(x)dxC1 

y(n2)[f(x)dxC1]dxC2 

  

例1 求微分方程ye2xcos x 的通解

解 对所给方程接连积分三次 得

ye2xsinxC1

ye2xcosxC1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

内蒙古财经大学统计与数学学院公共数学教研室 12141812高等数学教案

§12 微分方程

ye2xsinx2C1

ye2xcosx2C1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律

解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为

2dx

m2F(t)

dt121418由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而

F(t)F0(1)

于是质点运动的微分方程又写为 tTd2xF0(1t)

2mTdtdx|0 其初始条件为x|t00

dtt0

把微分方程两边积分 得

dxF0(tt2)C

1

dtm2T再积分一次 得

xF012t3(t)C1tC2

m26T由初始条件x|t00 得C1C20 dx|0

dtt0于是所求质点的运动规律为

F012t x(t) 0tT

m26T

解 设xx(t)表示在时刻t时质点的位置

根据牛顿第二定律 质点运动的微分方程为

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

mxF(t)

由题设 F(t)是线性函数 且过点(0 F0)和(T 0)

F(t)t1 即F(t)F0(1t) F0TTF0(1t)

mT于是质点运动的微分方程又写为

x其初始条件为x|t00 x|t00

把微分方程两边积分 得

x2F0(tt)C1 m2T再积分一次 得

F012t3

x(t)C2

m26T由初始条件x|t00 x|t00

得C1C20

于是所求质点的运动规律为

x

二、y f(x y)型的微分方程

解法 设yp则方程化为

pf(x p)

设pf(x p)的通解为p(xC1) 则

F012t3(t) 0tT m26Tdy(x,C1)

dx原方程的通解为

y(x,C1)dxC2

例3 求微分方程

(1x2)y2xy 满足初始条件

y|x01 y|x03 的特解

解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有 内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

dp2xdx

p1x2两边积分 得

ln|p|ln(1x2)C

pyC1(1x2)(C1eC)

由条件y|x03 得C13

所以

y3(1x2)

两边再积分 得 yx33xC2

又由条件y|x01 得C21

于是所求的特解为

yx33x1

例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?

三、yf(y y)型的微分方程

解法 设yp有

y原方程化为 dpdpdydpp

dxdydxdydpf(y,p)

dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy

p

dy(y,C1)xC2

dp

dy

例5 求微分yyy20的通解

解 设yp 则yp代入方程 得

ypdp2p0

dy

在y0、p0时 约去p并分离变量 得

dpdy

py两边积分得

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

ln|p|ln|y|lnc

pCy或yCy(Cc)

再分离变量并两边积分 便得原方程的通解为

ln|y|Cxlnc1

yC1eCx(C1c1)

例5 求微分yyy20的通解

解 设yp 则原方程化为

ypdp2p0

dy当y0、p0时 有

dp1p0

dyy1ydy于是

peC1y

yC1y0

从而原方程的通解为

yC2e

例6 一个离地面很高的物体受地球引力的作用由静止开始落向地面 求它落 到地面时的速度和所需的时间(不计空气阻力)

§12 7 高阶线性微分方程 一、二阶线性微分方程举例

例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点

给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)

设弹簧的弹性系数为c 则恢复力fcx

又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则

RC1dxC2eC1x

dx

dt

由牛顿第二定律得

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

md2xcxdx

2dtdt

移项 并记2nc k2

mmd2x2ndxk2x0则上式化为

dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程

如果振动物体还受到铅直扰力

FHsin pt 的作用 则有

d2x2ndxk2xhsinpt

dtdt2H其中h 这就是强迫振动的微分方程

m

例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数

设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL  由电学知道

iqdqdi uc ELL

CdtdtdiqRi0

dtC根据回路电压定律 得

ELd2ucducRCucEmsint

LCdtdt2或写成

d2ucducEm22usint

0cdtLCdt2R 1 这就是串联电路的振荡方程 其中02LLC

如果电容器经充电后撤去外电源(E0) 则上述成为

d2ucduc22uc0

0dtdt2内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

二阶线性微分方程 二阶线性微分方程的一般形式为

yP(x)yQ(x)yf(x)

若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的

二、线性微分方程的解的结构

先讨论二阶齐次线性方程

d2ydyQ(x)y0

yP(x)yQ(x)y0 即2P(x)dxdx

定理1 如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0的两个解 那么

yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数

齐次线性方程的这个性质表明它的解符合叠加原理

证明 [C1y1C2y2]C1 y1C2 y2

[C1y1C2y2]C1 y1C2 y2

因为y1与y2是方程yP(x)yQ(x)y0 所以有

y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20

从而

[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]

C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000

这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解

函数的线性相关与线性无关

设y1(x) y2(x)     yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2     kn 使得当xI 时有恒等式

k1y1(x)k2y2(x)

    knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关

判别两个函数线性相关性的方法

对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关

例如 1 cos2x  sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

关的

定理2 如果如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0 的两个线性无关的解 那么

yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解

例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解

解 因为

y1y1cos xcos x0

y2y2sin xsin x0

所以y1cos x与y2sin x都是方程的解

因为对于任意两个常数k1、k2 要使

k1cos xk2sin x0

只有k1k20 所以cos x与sin x在(, )内是线性无关的

因此y1cos x与y2sin x是方程yy0的线性无关解

方程的通解为yC1cos xC2sin x

例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解

解 因为

(x1)y1xy1y10xx0

(x1)y2xy2y2(x1)exxexex0

所以y1x与y2ex都是方程的解

因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的

因此y1x 与y2ex是方程(x1)yxyy0的线性无关解

方程的通解为yC1xC2e x

推论 如果y1(x) y2(x)    yn(x)是方程

y(n)a1(x)y(n1)    an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为

yC1y1(x)C2y2(x)     Cnyn(x)

其中C1 C2    Cn为任意常数

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

二阶非齐次线性方程解的结构

我们把方程

yP(x)yQ(x)y0 叫做与非齐次方程

yP(x)yQ(x)yf(x)对应的齐次方程

定理3 设y*(x)是二阶非齐次线性方程

yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么

yY(x)y*(x)是二阶非齐次线性微分方程的通解

证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]

 [Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]

0 f(x) f(x)

例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此

yC1cos xC2sin xx22 是方程yyx2的通解

定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如

yP(x)yQ(x)yf1(x) f2(x)

而y1*(x)与y2*(x)分别是方程

yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解

证明提示

[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]

[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]

f1(x)f2(x)

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

§12 9 二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程 方程

ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解

我们看看

能否适当选取r 使yerx

满足二阶常系数齐次线性微分方程 为此将yerx代入方程

ypyqy0 得

(r 2prq)erx 0

由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解

特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式

pp24q

r 1,22求出

特征方程的根与通解的关系

(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解

这是因为

函数y1er1x、y2er2xy1er1x(r1r2)xe是方程的解 又不是常数

y2er2x因此方程的通解为

yC1er1xC2er2x

(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

方程的两个线性无关的解

这是因为 y1er1x是方程的解 又

r1xr1x2r1x

(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x

2er1x(2r1p)xe(r1pr1q)0

y2xer1x所以y2xe也是方程的解 且x不是常数

y1er1xr1x

因此方程的通解为

yC1er1xC2xer1x

(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解

函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得

y1e(i)xex(cosxisinx)

y2e(i)xex(cosxisinx)

1y1y22excosx excosx(y1y2)

21y1y22iexsinx exsinx(y1y2)

2i故excosx、y2exsinx也是方程解

可以验证 y1excosx、y2exsinx是方程的线性无关解

因此方程的通解为

yex(C1cosxC2sinx)

求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为

第一步

写出微分方程的特征方程

r2prq0 第二步

求出特征方程的两个根r1、r2

第三步

根据特征方程的两个根的不同情况 写出微分方程的通解

例1 求微分方程y2y3y0的通解

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

解 所给微分方程的特征方程为

r22r30 即(r1)(r3)0

其根r11 r23是两个不相等的实根 因此所求通解为

yC1exC2e3x

例2 求方程y2yy0满足初始条件y|x0

4、y| x02的特解

解 所给方程的特征方程为

r22r10 即(r1)20

其根r1r21是两个相等的实根 因此所给微分方程的通解为

y(C1C2x)ex

将条件y|x04代入通解 得C14 从而

y(4C2x)ex

将上式对x求导 得

y(C24C2x)ex

再把条件y|x02代入上式 得C22 于是所求特解为

x(42x)ex

例 3 求微分方程y2y5y 0的通解

解 所给方程的特征方程为

r22r50

特征方程的根为r112i r212i 是一对共轭复根

因此所求通解为

yex(C1cos2xC2sin2x)

n 阶常系数齐次线性微分方程 方程

y(n)p1y(n1)p2 y(n2)     pn1ypny0

称为n 阶常系数齐次线性微分方程 其中 p1

p2      pn1 pn都是常数

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去

引入微分算子D 及微分算子的n次多项式

L(D)=Dn p1Dn1p2 Dn2      pn1Dpn 则n阶常系数齐次线性微分方程可记作

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

(Dn p1Dn1p2 Dn2      pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy   Dnyy(n)

分析 令yerx 则

L(D)yL(D)erx(rn p1rn1p2 rn2      pn1rpn)erxL(r)erx

因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解

n 阶常系数齐次线性微分方程的特征方程

L(r)rn p1rn1p2 rn2      pn1rpn0 称为微分方程L(D)y0的特征方程

特征方程的根与通解中项的对应

单实根r 对应于一项 Cerx 

一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)

k重实根r对应于k项 erx(C1C2x    Ck xk1)

一对k 重复根r1 2 i 对应于2k项

ex[(C1C2x    Ck xk1)cosx(D1D2x    Dk xk1)sinx]

例4 求方程y(4)2y5y0 的通解

这里的特征方程为

r42r35r20 即r2(r22r5)0

它的根是r1r20和r3 412i

因此所给微分方程的通解为

yC1C2xex(C3cos2xC4sin2x)

例5 求方程y(4) 4y0的通解 其中0

这里的特征方程为

r4 40

它的根为r1,22(1i) r3,42(1i)

因此所给微分方程的通解为

ye

内蒙古财经大学统计与数学学院公共数学教研室 2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x) 高等数学教案

§12 微分方程

§12 10 二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程 方程

ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数

二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和

yY(x) y*(x)

当f(x)为两种特殊形式时 方程的特解的求法

一、f(x)Pm(x)ex 型

当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm 并得所求特解

y*Qm(x)ex

(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m1 次多项式

Q(x)xQm(x)

Qm(x)b0xm b1xm1   

bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1   

 bm 并得所求特解

y*xQm(x)ex

(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m2次多项式

Q(x)x2Qm(x)

Qm(x)b0xmb1xm1    bm1xbm 

内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

通过比较等式两边同次项系数 可确定b0 b1     bm  并得所求特解

y*x2Qm(x)ex

综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如

y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2

例1 求微分方程y2y3y3x1的一个特解

解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)

与所给方程对应的齐次方程为

y2y3y0

它的特征方程为

r22r30

由于这里0不是特征方程的根 所以应设特解为

y*b0xb1

把它代入所给方程 得

3b0x2b03b13x1

比较两端x同次幂的系数 得

3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为

y*x

例2 求微分方程y5y6yxe2x的通解

解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)

与所给方程对应的齐次方程为

y5y6y0

它的特征方程为

内蒙古财经大学统计与数学学院公共数学教研室 1313高等数学教案

§12 微分方程

r25r 60

特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为

YC1e2xC2e3x 

由于2是特征方程的单根 所以应设方程的特解为

y*x(b0xb1)e2x

把它代入所给方程 得

2b0x2b0b1x

比较两端x同次幂的系数 得

2b01 2b01 2b0b10 2bb001由此求得b01 b1 于是求得所给方程的一个特解为 1 y*x(x1)e2x

从而所给方程的通解为

yC1e2xC2e3x(x22x)e2x

提示

y*x(b0xb1)e2x(b0x2b1x)e2x

[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x

[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x

y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x

方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式

应用欧拉公式可得

ex[Pl(x)cosxPn(x)sinx] 1212内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

ex[Pl(x)ei xei xP(x)ei xei x] n22i

[Pe(i)x[Pe(i)x

l(x)iPn(x)]l(x)iPn(x)]

P(x)e(i)xP(x)e(i)x

其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}

设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x

则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解

其中k按i不是特征方程的根或是特征方程的根依次取0或1

于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为

y*xkQm(x)e(i)xxkQm(x)e(i)x

xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)

xk ex[R(1)m(x)cosxR(2)m(x)sinx]

综上所述 我们有如下结论

如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程

ypyqyf(x)的特解可设为

y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]

其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1

例3 求微分方程yyxcos2x的一个特解

解 所给方程是二阶常系数非齐次线性微分方程

且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)

与所给方程对应的齐次方程为

yy0

它的特征方程为

r210

内蒙古财经大学统计与数学学院公共数学教研室 12121212高等数学教案

§12 微分方程

由于这里i2i 不是特征方程的根 所以应设特解为

y*(axb)cos2x(cxd)sin2x

把它代入所给方程 得

(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x

比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x

提示

y*(axb)cos2x(cxd)sin2x

y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x

(2cxa2d)cos2x(2ax2bc)sin2x

y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x

(4ax4b4c)cos2x(4cx4a4d)sin2x

y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x 134

913493a13b4c014由 得a b0 c0 d 3c0394a3d0

§12 12 微分方程的幂级数解法

当微分方程的解不能用初等函数或其积分表达时 我们就要寻求其它解法 常用的有幂级数解法和数值解法 本节我们简单地介绍微分方程的幂级数解法

求一阶微分方程的多项式

f(x y)a00a10(xx0)a01(yy0)    aim(xx0)l(yy0)m

这时我们可以设所求特解可展开为xx0的幂级数

内蒙古财经大学统计与数学学院公共数学教研室 dyf(x,y)满足初始条件y|xx0y0的特解 其中函数f(x y)是(xx0)、(yy0)dx高等数学教案

§12 微分方程

yy0a1(xx0)a2(xx0)2    an(xx0)n    

其中a1 a2     an     是待定的系数 把所设特解代入微分方程中 便得一恒等式 比较这恒等式两端xx0的同次幂的系数 就可定出常数a1 a2     从而得到所求的特解

例1 求方程dyxy2满足y|x00的特解

dx

解 这时x00 y00 故设

ya1xa2x2a3x3a4x4    

把y及y的幂级数展开式代入原方程 得

a12a2x3a3x24a4x35a5x4   

x(a1xa2x2a3x3a4x4   )2

xa12x22a1a2x3(a222a1a3)x4    

由此 比较恒等式两端x的同次幂的系数 得

a10 a2 a30 a40 a5121    

20于是所求解的幂级数展开式的开始几项为

yx2121x5    

定理 如果方程

yP(x)yQ(x)y0 中的系数P(x)与Q(x)可在R

yanxn

n0的解

例2 求微分方程yxy 0的满足初始条件y|x00 y|x01的特解

解 这里P(x)0 Q(x)x在整个数轴上满足定理的条件 因此所求的解可在整个数轴上展开成x的幂级数

ya0a1xa2x2a3x3a4x4    anxn

n0由条件y|x00 得a00 由ya12a2x3a3x24a4x3   及y|x01 得a11 于是

yxa2x2a3x3a4x4    xanxn

n2内蒙古财经大学统计与数学学院公共数学教研室 高等数学教案

§12 微分方程

y12a2x3a3x4a4x    1nanxn1

n223

y2a232a3x43a4x2    n(n1)anxn2 

n2

yxa2xa3xa4x   xanxn 234

n2

y12a2x3a3x4a4x   1nanxn1 23

n2

y2a2x32a3x43a4x    n(n1)anxn2  2

n2

把y及y代入方程yxy 0 得

2a232a3x43a4x2    n(n1)anxn2  

x(xa2x2a3x3a4x4  anxn  )0

2a232a3x(43a41)x2(54a5a 2)x3

(65a6a3)x4    [(n2)(n1)an2an1]xn    0

于是有

a20, a30, a4一般地 an21, a0, a0,    

6435an1(n3 4   )

(n2)(n1)由递推公式可得

aa411, a80, a90, a107,    

76764310910976431一般地 a3m1(m1 2   )

(3m1)(3m)   7643

a7所求的特解为

yx 1x41x71x10    

4376431097643内蒙古财经大学统计与数学学院公共数学教研室

第二篇:高等数学教案Word版(同济)第二章8

习题课

I 教学目的与要求:

1.掌握好导数的定义,会用导数的定义解决函数的可导性;2.熟练掌握复合函数的求导,熟练掌握隐函数的求导方法;3.熟练掌握参数方程的求导方法.II 典型方法与例题: 1.用导数的定义求极限

例1 设 f(x)在xa的某个邻域内有定义,则f(x)在xa处可导的一个充分条件是()

1hhf(a2h)f(ah)(B)lim

h0hf(ah)f(ah)(C)lim

h02hf(a)f(ah)(D)lim

h0h(A)limh[f(a)f(a)]

分析

(D)

2.用导数定义解函数在某点处的导数

例2 设f(x)(abx)(abx),其中的(x)在xa处可导,求f(0)解 知f(0)(a)(a)0

因为只说明的(x)在xa处可导,没说明的(x)在x0处是否可导,解f(0)时必须用导数的定义

f(x)f(0)(abx)(abx)limx0x0x0x0[(abx)(a)][(abx)(a)]limx0x(abx)(a)

lim

bx0bx(abx)(a)limbx0bxb(a)b(a)2b(a)f(0)lim3.用导数定义解函数方程 设f(x)在(0,)的上有定义,且f(1)a(0),又x,y(0,),有f(xy)f(x)f(y),解f(x)

在f(xy)f(x)f(y)让y1,得

f(x)f(x)f(1)

f(1)0

f(xxy)f(x)f(x)f(1y)f(x)limy0y0xyxy

f(1y)f(1y)f(1)11limlimf(1)y0y0xyyxxf(x)lim即

f(x)a(f(1)a)xf(x)alnxC

让x1,得

f(1)aln1C

因此 f(x)alnx

复合函数的导数

复合函数求导的关键是分析复合函数的复合关系,从处层到里层一层一层地求导,既不重复,又不遗漏

1xsin,x0,例4 讨论函数f(x) x0,x0在x0处的连续性与可导性

解 知 limxsinx010f(0)x函数xsin又有 1在x0的处连续的 xf(0)limx0f(x)f(0)x0 1xsin01xlimlimsinx0x0xx而 limsinx01不存在 x函数f(x)在x0处不可导 函数f(x)在x0处连续,不可导

3xacos,例5 求函数 3yasin;dyd2y的一阶导数及二阶导数2

dxdx解 函数的一阶导数dytan dxd2y1sec4csc 函数的二阶导数23adxIII 课外作业:

P124

9(1)11 12 15

第三篇:第七章 微分方程(三峡大学高等数学教案)

高等数学教案

微分方程

第七章

微分方程

教学目的:

1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)

5. 理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:

1、可分离的微分方程及一阶线性微分方程的解法

(n)

2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)

3、二阶常系数齐次线性微分方程;

4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;

教学难点:

1、齐次微分方程、伯努利方程和全微分方程;

2、线性微分方程解的性质及解的结构定理;

3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

三峡大学高等数学课程建设组

高等数学教案

微分方程

§7 1 微分方程的基本概念

函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程

例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程

解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)

dy2x

(1)

dx此外 未知函数yy(x)还应满足下列条件

x1时 y2 简记为y|x12

(2)把(1)式两端积分 得(称为微分方程的通解)

y2xdx 即yx2C

(3)其中C是任意常数

把条件“x1时 y2”代入(3)式 得

212C

由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)

yx21

例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?

解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式 d2s0.

(4)dt2此外 未知函数ss(t)还应满足下列条件

三峡大学高等数学课程建设组

高等数学教案

微分方程

t0时 s0 vds20 简记为s|=0 s|=20

(5)

t0t0dt

把(4)式两端积分一次 得

vds0.4tC

(6)1dt再积分一次 得

s02t2 C1t C2

(7)这里C1 C2都是任意常数

把条件v|t020代入(6)得

20C1

把条件s|t00代入(7)得0C2

把C1 C2的值代入(6)及(7)式得

v04t 20

(8)

s02t220t

(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间

t2050(s)

0.4再把t50代入(9) 得到列车在制动阶段行驶的路程

s025022050500(m)

几个概念

微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程

常微分方程 未知函数是一元函数的微分方程 叫常微分方程

偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程

微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶

x3 yx2 y4xy3x2 

y(4)4y10y12y5ysin2x

y(n)10

一般n阶微分方程

F(x y y

    y(n))0

y(n)f(x y y

    y(n1))

三峡大学高等数学课程建设组

高等数学教案

微分方程

微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上

F[x (x) (x)    (n)(x)]0

那么函数y(x)就叫做微分方程F(x y y    y(n))0在区间I上的解

通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解

初始条件 用于确定通解中任意常数的条件 称为初始条件 如

xx0 时 yy0  y y0 

一般写成



yxx0y0 yxx0y0

特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解

初值问题 求微分方程满足初始条件的解的问题称为初值问题

如求微分方程yf(x

y)满足初始条件yxx0y0的解的问题 记为

yf(x,y)

 yxx0y0

积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线

d2xk2x0

例3 验证 函数 xC1cos ktC2 sin kt是微分方程

的解

dt

2解 求所给函数的导数

dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)

1212dt2d2x将2及x的表达式代入所给方程 得 dt

k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0

d2xk2x0

这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解

dt三峡大学高等数学课程建设组

高等数学教案

微分方程

例4 已知函数xC1cosktC2sinkt(k0)是微分方程

x| t0 A x| t0 0 的特解

由条件x| t0 A及xC1 cos ktC2 sin kt 得

C1A

再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得

C20

把C1、C2的值代入xC1cos ktC2sin kt中 得

xAcos kt

作业:P298:4

d2xk2x0的通解 求满足初始条件 2dt

§7 2 可分离变量的微分方程

观察与分析

1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C

一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)

2 求微分方程y2xy2 的通解

因为y是未知的 所以积分2xy2dx无法进行 方程两边直

接积分不能求出通解

为求通解可将方程变为

 1dy2xdx 两边积分 得

y21x2C1  或y2yxC三峡大学高等数学课程建设组 高等数学教案

微分方程

可以验证函数y1是原方程的通解

x2C

一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx

形式 则两边积分可得一个不含未知函数的导数的方程

G(y)F(x)C

由方程G(y)F(x)C所确定的隐函数就是原方程的通解

对称形式的一阶微分方程

一阶微分方程有时也写成如下对称形式

P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的

若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有

dyP(x,y)

dxQ(x,y)dxQ(x,y)

dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有

可分离变量的微分方程

如果一个一阶微分方程能写成

g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程

讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy

是 y1dy2xdx (2)3x25xy0

是 dy(3x25x)dx(3)(x2y2)dxxydy=0

不是

(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy

是 10ydy10xdx(6)yxy

不是 yx三峡大学高等数学课程建设组

高等数学教案

微分方程

可分离变量的微分方程的解法

第一步

分离变量 将方程写成g(y)dy f(x)dx的形式

第二步

两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C

第三步

求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C  y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解

例1 求微分方程dy2xy的通解

dx

此方程为可分离变量方程 分离变量后得

1dy2xdx

y1dy2xdx

y两边积分得

ln|y|x2C1

从而

yex2C1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解

yCex

例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律

解 铀的衰变速度就是M(t)对时间t的导数2dM

dtdMM

dtdM0

dt

由于铀的衰变速度与其含量成正比 故得微分方程其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为 M|t0M0

将方程分离变量得

dMdt

M三峡大学高等数学课程建设组

高等数学教案

微分方程

两边积分 得dM()dt

M即

lnMtlnC 也即MCet

由初始条件 得M0Ce0C

所以铀含量M(t)随时间t变化的规律MM0et 

例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系

设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为

mdvmgkv

dt初始条件为

v|t00

方程分离变量 得

dvdt

mgkvm两边积分 得mgkvm

tC

m1dvdt

ln(mgkv)1kkC1ktmgCem(Ce即

v)

kkmg将初始条件v|t00代入通解得C

kktmg(1em)

于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解

例4 求微分方程dx

解 方程可化为

dy(1x)(1y2)

dx分离变量得

三峡大学高等数学课程建设组

高等数学教案

微分方程

1dy(1x)dx

1y21dy(1x)dx 即1x2xC

arctany1y22两边积分得

于是原方程的通解为ytan(x2xC)

作业:P304:1(1)(2)(3)(7)(9)(10),2(2)(4),3

§7 3 齐次方程

齐次方程

如果一阶微分方程12dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程

xx

下列方程哪些是齐次方程?

dyyy2x2dyyy

(1)xyyyx0是齐次方程()21

dxxdxxx22dy1y

2(2)1xy1y不是齐次方程

dx1x222dyx2y2dyxy

(3)(xy)dxxydy0是齐次方程 dxxydxyx22

(4)(2xy4)dx(xy1)dy0不是齐次方程

(5)(2xshdy2xy4

dxxy1yyy3ych)dx3xchdy0是齐次方程

xxx三峡大学高等数学课程建设组

高等数学教案

微分方程

yy2xsh3ychdyxxdy2thyy 

ydxdx3xx3xchx

齐次方程的解法

在齐次方程

ux分离变量 得

ydyy()中 令u 即yux 有 dxxxdu(u)

dxdudx (u)uxdudx(u)ux 两端积分 得

求出积分后 再用y代替u 便得所给齐次方程的通解

xdydyxy

dxdx

例1 解方程y2x2

原方程可写成

y2()dyyx

2ydxxyx1x2因此原方程是齐次方程 令

yux 于是原方程变为

ux即

xyu 则 xdyuxdu

dxdxduu2

dxu1duu

dxu1分离变量 得

三峡大学高等数学课程建设组

高等数学教案

微分方程

(1)du1udx

x两边积分 得uln|u|Cln|x|

或写成ln|xu|uC

以y代上式中的u 便得所给方程的通解 x

ln|y|yC

x

例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程

解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM

因为

OAAPOPPMcotOP而

OMx2y2

于是得微分方程

yx

yyxx2y2 y整理得dxx(x)21 这是齐次方程

dyyydxx(x)21

dyyy

问题归结为解齐次方程

令即

yxvdvvv21 即xyv 得vy

dyydvv21 dy分离变量 得dvdy

v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21三峡大学高等数学课程建设组

高等数学教案

微分方程

y22yv1

C2C以yvx代入上式 得y22C(xC)

2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为

y2z22C(xC) 2这就是所求的旋转曲面方程

例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程

解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度

v(vx, vy)(dx, dy) 故有dxvx

dyvydtdtx, y) v(abx, by)

x2y2x2y2x2y2x2y2另一方面 vab(a, 0)b(因此dxvxa(x)21x 即dxa(x)21x

dybyydyvybyydxa(x)21x

dybyy

问题归结为解齐次方程

yxu 即xyu 得 yduau21 dyb分离变量 得duady

u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]

将u代入上式并整理 得xy2C三峡大学高等数学课程建设组

aa高等数学教案

微分方程

以x|yh0代入上式 得C1 故鸭子游过的轨迹方程为 haay1by1bh()] 0yh

x[()2hhb将ux代入arshu(lnylnC)后的整理过程

yaarshxb(lnylnC)

yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bby1b1b1aax[(Cy)(Cy)]x[(Cy)a(Cy)a]

2C2bbb作业:P309:1(1)(3)(5),2

§7.4 线性微分方程

一、线性方程

线性方程

方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程

dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0  则方程称为齐次线性方程 否则方程称为非齐次线性方程

方程

下列方程各是什么类型方程?

(1)(x2)

(2)3x25x5y0y3x25x  是非齐次线性方程

(3)yy cos xesin x  是非齐次线性方程

(4)dy10xy 不是线性方程 dx三峡大学高等数学课程建设组

高等数学教案

微分方程

3dy3(y1)2dydxxx00或

(5)(y1) 不是线性方程

dxdydx(y1)2x

32齐次线性方程的解法

齐次线性方程

dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx

y两边积分 得

ln|y|P(x)dxC1

P(x)dx(CeC1)

yCe这就是齐次线性方程的通解(积分中不再加任意常数)

1求方程(x2)dyy的通解

dx

这是齐次线性方程 分离变量得

dydx

yx2两边积分得

ln|y|ln|x2|lnC

方程的通解为

yC(x2)

非齐次线性方程的解法

将齐次线性方程通解中的常数换成x的未知函数u(x) 把

P(x)dx

yu(x)e

设想成非齐次线性方程的通解 代入非齐次线性方程求得

P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)

u(x)e化简得

u(x)Q(x)eP(x)dx

三峡大学高等数学课程建设组

高等数学教案

微分方程

u(x)Q(x)eP(x)dxdxC

于是非齐次线性方程的通解为

P(x)dxP(x)dx

ye[Q(x)edxC] P(x)dxP(x)dxP(x)dx或

yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和

5dy2y(x1)2的通解

例2 求方程dxx1

这是一个非齐次线性方程

先求对应的齐次线性方程分离变量得

dy2y0的通解

dxx1dy2dx

yx1两边积分得

ln y2ln(x1)ln C

齐次线性方程的通解为

yC(x1)2

用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得

52u(x1)2(x1)2

u(x1)2u(x1)x12

1u(x1)2

两边积分 得 u(x1)2C

3再把上式代入yu(x1)2中 即得所求方程的通解为 32

y(x1)[(x1)2C]

323

例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)

三峡大学高等数学课程建设组

高等数学教案

微分方程

由电学知道 当电流变化时 L上有感应电动势L

EL即

di 由回路电压定律得出 dtdiiR0

dtdiRiE

dtLLdiRiEmsin t

dtLL

把EEmsin t代入上式 得

初始条件为

i|t00

diRiEmsin t为非齐次线性方程 其中

dtLLER t

P(t) Q(t)msinLL

方程由通解公式 得

i(t)eP(t)dtdtdtEP(t)dt[Q(t)edtC]eL(msin teLdtC)

LRRRttEmReL(sinteLdtC)

LRtEm(Rsin t Lcos t)CeL

222RL其中C为任意常数

将初始条件i|t00代入通解 得C因此 所求函数i(t)为

t LEmREmLe(Rsin t Lcos t)

i(t)2R2L2R22L2 LEm

R22L

2二、伯努利方程

伯努利方程 方程

dyP(x)yQ(x)yn(n0 1)dx叫做伯努利方程

三峡大学高等数学课程建设组

高等数学教案

微分方程

下列方程是什么类型方程?

(1)

(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy

1(3)y yyxy1 是伯努利方程 yxx

(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx

伯努利方程的解法 以yn除方程的两边 得

yn令z y1n  得线性方程

dz(1n)P(x)z(1n)Q(x)

dxdyya(lnx)y2的通解

例4 求方程dxx

解 以y2除方程的两端 得

y2dy11yalnx

dxxd(y1)11yalnx

dxx令zy1 则上述方程成为

dz1zalnx

dxxa2这是一个线性方程 它的通解为

zx[C(lnx)2]

以y1代z  得所求方程的通解为

yx[C(lnx)2]1

经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程

5解方程 a2dy1

dxxy三峡大学高等数学课程建设组 高等数学教案

微分方程

若把所给方程变形为

dxxy

dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程

令xyu 则原方程化为

du11 即duu1

dxudxu分离变量 得

ududx

u1两端积分得

uln|u1|xln|C|

以uxy代入上式 得

yln|xy1|ln|C| 或xCeyy1

作业:P315:1(1)(3)(5)(7)(9),2(1)(3)(5),7(1)(2)

§7 5可降阶的高阶微分方程

一、y(n)f(x)型的微分方程

解法 积分n 次

y(n1)f(x)dxC1 

y(n2)[f(x)dxC1]dxC2 

  

例1 求微分方程ye2xcos x 的通解

解 对所给方程接连积分三次 得

ye2xsinxC1

三峡大学高等数学课程建设组

12高等数学教案

微分方程

ye2xcosxC1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

ye2xsinx2C1

ye2xcosx2C1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律

解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为

2dx

m2F(t)

dt141812121418由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而

F(t)F0(1)

于是质点运动的微分方程又写为 tTd2xF0(1t)

Tdt2mdx|0 其初始条件为x|t00

dtt0

把微分方程两边积分 得

dxF0(tt2)C

1

dtm2T再积分一次 得

F012t x(t)C1tC2

m26T由初始条件x|t00 得C1C20

三峡大学高等数学课程建设组

dx|0

dtt0高等数学教案

微分方程

于是所求质点的运动规律为

x

二、y f(x y)型的微分方程

解法 设yp则方程化为

pf(x p)

设pf(x p)的通解为p(xC1) 则

F012t3(t) 0tT

m26Tdy(x,C1)

dx原方程的通解为

y(x,C1)dxC2

例3 求微分方程

(1x2)y2xy 满足初始条件

y|x01 y|x03 的特解

解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有

dp2xdx

p1x2两边积分 得

ln|p|ln(1x2)C

pyC1(1x2)(C1eC)

由条件y|x03 得C13

所以

y3(1x2)

两边再积分 得 yx33xC2

又由条件y|x01 得C21

于是所求的特解为

yx33x1

例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?

三、yf(y y)型的微分方程

解法 设yp有

三峡大学高等数学课程建设组

高等数学教案

微分方程

y原方程化为 dpdpdydpp

dxdydxdydpf(y,p)

dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy

p

dy(y,C1)xC2

dp

dy

例5 求微分yyy20的通解

解 设yp 则yp代入方程 得

ypdp2p0

dy

在y0、p0时 约去p并分离变量 得

dpdy

py两边积分得

ln|p|ln|y|lnc

pCy或yCy(Cc)

再分离变量并两边积分 便得原方程的通解为

ln|y|Cxlnc1

yC1eCx(C1c1)

作业:P323:1(1)(3)(5)(7)(9),2(1)(3)(5)

三峡大学高等数学课程建设组

高等数学教案

微分方程

§7 6 高阶线性微分方程 一、二阶线性微分方程举例

例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点

给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)

设弹簧的弹性系数为c 则恢复力fcx

又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则

Rdx

dt

由牛顿第二定律得

md2xcxdx

2dtdt

移项 并记2nc k2

mmd2x2ndxk2x0则上式化为

dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程

如果振动物体还受到铅直扰力

FHsin pt 的作用 则有

d2x2ndxk2xhsinpt

dtdt2H其中h 这就是强迫振动的微分方程

m

例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数

设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL  由电学知道

iqdqdi uc ELL

Cdtdt三峡大学高等数学课程建设组

高等数学教案

微分方程

根据回路电压定律 得

ELdiqRi0

dtCd2ucducRCucEmsint

LC2dtdt或写成

d2ucducEm22usint

0c2dtLCdtR 1 这就是串联电路的振荡方程 其中02LLC

如果电容器经充电后撤去外电源(E0) 则上述成为

d2ucduc220uc0

2dtdt

二阶线性微分方程 二阶线性微分方程的一般形式为

yP(x)yQ(x)yf(x)

若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的

二、线性微分方程的解的结构

先讨论二阶齐次线性方程

d2ydyQ(x)y0

yP(x)yQ(x)y0 即2P(x)dxdx

定理

1如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0的两个解 那么

yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数

齐次线性方程的这个性质表明它的解符合叠加原理

证明 [C1y1C2y2]C1 y1C2 y2

[C1y1C2y2]C1 y1C2 y2

因为y1与y2是方程yP(x)yQ(x)y0 所以有

y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20

从而

[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]

三峡大学高等数学课程建设组

高等数学教案

微分方程

C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000

这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解

函数的线性相关与线性无关

设y1(x) y2(x)     yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2     kn 使得当xI 时有恒等式

k1y1(x)k2y2(x)

    knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关

判别两个函数线性相关性的方法

对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关

例如 1 cos2x  sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无关的

定理2 如果如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0 的两个线性无关的解 那么

yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解

例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解

解 因为

y1y1cos xcos x0

y2y2sin xsin x0

所以y1cos x与y2sin x都是方程的解

因为对于任意两个常数k1、k2 要使

k1cos xk2sin x0

只有k1k20 所以cos x与sin x在(, )内是线性无关的

因此y1cos x与y2sin x是方程yy0的线性无关解

方程的通解为yC1cos xC2sin x

例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解

解 因为

三峡大学高等数学课程建设组

高等数学教案

微分方程

(x1)y1xy1y10xx0

(x1)y2xy2y2(x1)exxexex0

所以y1x与y2ex都是方程的解

因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的

因此y1x 与y2ex是方程(x1)yxyy0的线性无关解

方程的通解为yC1xC2e x

推论 如果y1(x) y2(x)    yn(x)是方程

y(n)a1(x)y(n1)    an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为

yC1y1(x)C2y2(x)     Cnyn(x)

其中C1 C2    Cn为任意常数

二阶非齐次线性方程解的结构

我们把方程

yP(x)yQ(x)y0 叫做与非齐次方程

yP(x)yQ(x)yf(x)对应的齐次方程

定理3 设y*(x)是二阶非齐次线性方程

yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么

yY(x)y*(x)是二阶非齐次线性微分方程的通解

证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]

 [Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]

0 f(x) f(x)

例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此

yC1cos xC2sin xx22 是方程yyx2的通解

定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如

三峡大学高等数学课程建设组

高等数学教案

微分方程

yP(x)yQ(x)yf1(x) f2(x)

而y1*(x)与y2*(x)分别是方程

yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解

证明提示

[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]

[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]

f1(x)f2(x)

作业:P331:1(1)(3)(5)(7),4(1)(3)(5)

§7 7 二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程 方程 ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解

我们看看

能否适当选取r 使yerx

满足二阶常系数齐次线性微分方程 为此将yerx代入方程

ypyqy0 得

(r 2prq)erx 0

由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解

特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式

pp24q

r 1,22求出

三峡大学高等数学课程建设组

高等数学教案

微分方程

特征方程的根与通解的关系

(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解

这是因为

函数y1er1x、y2er2x是方程的解 又因此方程的通解为

yC1er1xC2er2x

(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分方程的两个线性无关的解

这是因为 y1er1x是方程的解 又

r1xr1x2r1x

(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x

2er1x(2r1p)xe(r1pr1q)0

y1er1x(r1r2)x不是常数

ey2er2xy2xer1xx不是常数

所以y2xe也是方程的解 且y1er1xr1x

因此方程的通解为

yC1er1xC2xer1x

(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解

函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得

y1e(i)xex(cosxisinx)

y2e(i)xex(cosxisinx)

1y1y22excosx excosx(y1y2)

2三峡大学高等数学课程建设组

高等数学教案

微分方程

1y1y22iexsinx exsinx(y1y2)

2i故excosx、y2exsinx也是方程解

可以验证 y1excosx、y2exsinx是方程的线性无关解

因此方程的通解为

yex(C1cosxC2sinx)

求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为

第一步

写出微分方程的特征方程

r2prq0 第二步

求出特征方程的两个根r1、r2

第三步

根据特征方程的两个根的不同情况 写出微分方程的通解

例1 求微分方程y2y3y0的通解

解 所给微分方程的特征方程为

r22r30 即(r1)(r3)0

其根r11 r23是两个不相等的实根 因此所求通解为

yC1exC2e3x

例2 求方程y2yy0满足初始条件y|x0

4、y| x02的特解

解 所给方程的特征方程为

r22r10 即(r1)20

其根r1r21是两个相等的实根 因此所给微分方程的通解为

y(C1C2x)ex

将条件y|x04代入通解 得C14 从而

y(4C2x)ex

将上式对x求导 得

y(C24C2x)ex

再把条件y|x02代入上式 得C22 于是所求特解为

x(42x)ex

例 3 求微分方程y2y5y 0的通解

解 所给方程的特征方程为

三峡大学高等数学课程建设组

高等数学教案

微分方程

r22r50

特征方程的根为r112i r212i 是一对共轭复根

因此所求通解为

yex(C1cos2xC2sin2x)

n 阶常系数齐次线性微分方程 方程

y(n)p1y(n1)p2 y(n2)     pn1ypny0

称为n 阶常系数齐次线性微分方程 其中 p1

p2      pn1 pn都是常数

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去

引入微分算子D 及微分算子的n次多项式

L(D)=Dn p1Dn1p2 Dn2      pn1Dpn 则n阶常系数齐次线性微分方程可记作

(Dn p1Dn1p2 Dn2      pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy   Dnyy(n)

分析 令yerx 则

L(D)yL(D)erx(rn p1rn1p2 rn2      pn1rpn)erxL(r)erx

因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解

n 阶常系数齐次线性微分方程的特征方程

L(r)rn p1rn1p2 rn2      pn1rpn0 称为微分方程L(D)y0的特征方程

特征方程的根与通解中项的对应

单实根r 对应于一项 Cerx 

一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)

k重实根r对应于k项 erx(C1C2x    Ck xk1)

一对k 重复根r1 2 i 对应于2k项

ex[(C1C2x    Ck xk1)cosx(D1D2x    Dk xk1)sinx]

例4 求方程y(4)2y5y0 的通解

这里的特征方程为

r42r35r20 即r2(r22r5)0

三峡大学高等数学课程建设组

高等数学教案

微分方程

它的根是r1r20和r3 412i

因此所给微分方程的通解为

yC1C2xex(C3cos2xC4sin2x)

例5 求方程y(4) 4y0的通解 其中0

这里的特征方程为

r4 40

它的根为r1,22(1i) r3,42(1i)

因此所给微分方程的通解为

ye2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x)

作业:P340:1(1)(3)(2)(4)(5)(6)(8),2(2)(4)(6)

§7 8 二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程 方程

ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数

二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和

yY(x) y*(x)

当f(x)为两种特殊形式时 方程的特解的求法

一、f(x)Pm(x)ex 型

当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式

三峡大学高等数学课程建设组

高等数学教案

微分方程

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm 并得所求特解

y*Qm(x)ex

(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m1 次多项式

Q(x)xQm(x)

Qm(x)b0xm b1xm1   

bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1   

 bm 并得所求特解

y*xQm(x)ex

(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m2次多项式

Q(x)x2Qm(x)

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm  并得所求特解

y*x2Qm(x)ex

综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如

y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2

例1 求微分方程y2y3y3x1的一个特解

解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)

与所给方程对应的齐次方程为

y2y3y0

三峡大学高等数学课程建设组

高等数学教案

微分方程

它的特征方程为

r22r30

由于这里0不是特征方程的根 所以应设特解为

y*b0xb1

把它代入所给方程 得

3b0x2b03b13x1

比较两端x同次幂的系数 得

3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为

y*x

例2 求微分方程y5y6yxe2x的通解

解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)

与所给方程对应的齐次方程为

y5y6y0

它的特征方程为

r25r 60

特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为

YC1e2xC2e3x 

由于2是特征方程的单根 所以应设方程的特解为

y*x(b0xb1)e2x

把它代入所给方程 得

2b0x2b0b1x

比较两端x同次幂的系数 得

13132b01 2b01 2b0b10 2bb001三峡大学高等数学课程建设组

高等数学教案

微分方程

由此求得b01 b1 于是求得所给方程的一个特解为 121 y*x(x1)e2x

从而所给方程的通解为

yC1e2xC2e3x(x22x)e2x

提示

y*x(b0xb1)e2x(b0x2b1x)e2x

[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x

[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x

y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x

方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式

应用欧拉公式可得

ex[Pl(x)cosxPn(x)sinx]

ex[Pl(x)12ei xei xP(x)ei xei x] n22i

[Pe(i)x[Pe(i)x

l(x)iPn(x)]l(x)iPn(x)]

P(x)e(i)xP(x)e(i)x

其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}

设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x

则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解

其中k按i不是特征方程的根或是特征方程的根依次取0或1

于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为

三峡大学高等数学课程建设组

12121212高等数学教案

微分方程

y*xkQm(x)e(i)xxkQm(x)e(i)x

xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)

xk ex[R(1)m(x)cosxR(2)m(x)sinx]

综上所述 我们有如下结论

如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程

ypyqyf(x)的特解可设为

y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]

其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1

例3 求微分方程yyxcos2x的一个特解

解 所给方程是二阶常系数非齐次线性微分方程

且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)

与所给方程对应的齐次方程为

yy0

它的特征方程为

r210

由于这里i2i 不是特征方程的根 所以应设特解为

y*(axb)cos2x(cxd)sin2x

把它代入所给方程 得

(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x

比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x

提示

y*(axb)cos2x(cxd)sin2x

y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x

三峡大学高等数学课程建设组

134

91349高等数学教案

微分方程

(2cxa2d)cos2x(2ax2bc)sin2x

y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x

(4ax4b4c)cos2x(4cx4a4d)sin2x

y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x

3a13b4c014由 得a b0 c0 d 3c0394a3d0作业:P347:1(1)(2)(5)(9)2(2)(3)(4)

三峡大学高等数学课程建设组

第四篇:同济版高等数学教案第五章 定积分

高等数学教案

第五章 定积分

第五章

定积分

教学目的:

1、理解定积分的概念。

2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。

3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。

4、了解广义积分的概念并会计算广义积分。

教学重点:

1、定积分的性质及定积分中值定理

2、定积分的换元积分法与分部积分法。

3、牛顿—莱布尼茨公式。

教学难点:

1、定积分的概念

2、积分中值定理

3、定积分的换元积分法分部积分法。

4、变上限函数的导数。§5 1 定积分概念与性质

一、定积分问题举例

1 曲边梯形的面积

曲边梯形 设函数yf(x)在区间[a b]上非负、连续 由直线xa、xb、y0及曲线yf(x)所围成的图形称为曲边梯形 其中曲线弧称为曲边

求曲边梯形的面积的近似值

将曲边梯形分割成一些小的曲边梯形 每个小曲边梯形都用一个等宽的小矩形代替 每个小曲边梯形的面积都近似地等于小矩形的面积 则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是 在区间[a b]中任意插入若干个分点

ax0 x1 x2    xn1 xn b

把[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ]

它们的长度依次为x1 x1x0  x2 x2x1      xn  xn xn1 

经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n个窄曲边梯形 在每个小区间 [xi1 xi ]上任取一点i  以[xi1 xi ]为底、f(i)为高的窄矩形近似替代第i个窄曲边梯形(i1 2     n) 把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值 即

Af(1)x1 f(2)x2   f(n)xnf(i)xi

i1n

求曲边梯形的面积的精确值

显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积A的近似值就越接近曲边梯天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

形面积A的精确值 因此 要求曲边梯形面积A的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记

max{x1 x2   xn } 于是 上述增加分点 使每个小曲边梯形的宽度趋于零 相当于令0 所以曲边梯形的面积为

Alimf(i)xi

0i1n

2 变速直线运动的路程

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数 且v(t)0 计算在这段时间内物体所经过的路程S 

求近似路程

我们把时间间隔[T 1 T 2]分成n 个小的时间间隔ti  在每个小的时间间隔ti内 物体运动看成是均速的 其速度近似为物体在时间间隔ti内某点i的速度v(i) 物体在时间间隔ti内 运动的距离近似为Si v(i)ti  把物体在每一小的时间间隔ti内 运动的距离加起来作为物体在时间间隔[T 1  T 2]内所经过的路程S 的近似值 具体做法是

在时间间隔[T 1  T 2]内任意插入若干个分点

T 1t 0 t 1 t 2   t n1 t nT 2

把[T 1  T 2]分成n个小段

[t 0 t 1] [t 1 t 2]    [t n1 t n] 

各小段时间的长依次为

t 1t 1t 0 t 2t 2t 1   t n t n t n1

相应地 在各段时间内物体经过的路程依次为

S 1 S 2    S n

在时间间隔[t i1 t i]上任取一个时刻 i(t i1 i t i) 以 i时刻的速度v( i)来代替[t i1 t i]上各个时刻的速度 得到部分路程S i的近似值 即

S i v( i)t i

(i1 2     n)

于是这n段部分路程的近似值之和就是所求变速直线运动路程S 的近似值 即

Sv(i)ti

i1n

求精确值

记  max{t 1 t 2   t n} 当0时 取上述和式的极限 即得变速直线运动的路程

Slimv(i)ti

0i1n

设函数yf(x)在区间[a b]上非负、连续 求直线xa、xb、y0 及曲线yf(x)所围成的曲边梯形的面积

(1)用分点ax0x1x2   xn1xn b把区间[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ] 记xixixi1(i1 2     n)

(2)任取i[xi1 xi] 以[xi1 xi]为底的小曲边梯形的面积可近似为

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(i)xi(i1 2     n) 所求曲边梯形面积A的近似值为

Af()x iii1nn

(3)记max{x1 x2   xn } 所以曲边梯形面积的精确值为

Alim0f()x iii1

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数

且v(t)0 计算在这段时间内物体所经过的路程S 

(1)用分点T1t0t1t2  t n1tnT2把时间间隔[T 1  T 2]分成n个小时间 段 [t0 t1] [t1 t2]    [tn1 tn]  记ti titi1(i1 2     n)

(2)任取i[ti1 ti] 在时间段[ti1 ti]内物体所经过的路程可近似为v(i)ti

(i1 2     n) 所求路程S 的近似值为

Sv()tii1nni

(3)记max{t1 t2   tn} 所求路程的精确值为

Slim0v()t iii

1二、定积分定义

抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括 就抽象出下述定积分的定义

定义

设函数f(x)在[a b]上有界 在[a b]中任意插入若干个分点

a x0 x1 x2    xn1 xnb

把区间[a b]分成n个小区间

[x0 x1] [x1 x2]    [xn1 xn] 

各小段区间的长依次为

x1x1x0 x2x2x1   xn xn xn1

在每个小区间[xi1 xi]上任取一个点 i(xi1  i  xi) 作函数值f( i)与小区间长度xi的乘积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f( i)xi(i1 2   n) 并作出和

Sf(i)xi

i1n记  max{x1 x2   xn} 如果不论对[a b]怎样分法 也不论在小区间[xi1 xi]上点 i 怎样取法 只要当0时 和S 总趋于确定的极限I 这时我们称这个极限I为函数f(x)在区间[a b]上的定积分 记作af(x)dx

limf(i)xi af(x)dx0i1bnb其中f(x)叫做被积函数 f(x)dx叫做被积表达式 x叫做积分变量 a 叫做积分下限 b 叫做积分上限 [a b]叫做积分区间

定义

设函数f(x)在[a b]上有界 用分点ax0x1x2   xn1xnb把[a b]分成n个小区间 [x0 x1] [x1 x2]    [xn1 xn]  记xixixi1(i1 2   n)

任 i[xi1 xi](i1 2   n) 作和

Sf()xii1ni

记max{x1 x2   xn} 如果当0时 上述和式的极限存在 且极限值与区间[a b]的分法和 i的取法无关 则称这个极限为函数f(x)在区间[a b]上的定积分 记作即

根据定积分的定义 曲边梯形的面积为Aaf(x)dx

变速直线运动的路程为ST2v(t)dt

1baf(x)dx

baf(x)dxlimf(i)xi

0i1nbT

说明

(1)定积分的值只与被积函数及积分区间有关 而与积分变量的记法无关 即

af(x)dxaf(t)dtaf(u)du

(2)和f(i)xi通常称为f(x)的积分和

i1nbbb

(3)如果函数f(x)在[a b]上的定积分存在 我们就说f(x)在区间[a b]上可积

函数f(x)在[a b]上满足什么条件时 f(x)在[a b]上可积呢?

定理

1设f(x)在区间[a b]上连续 则f(x)在[a b]上可积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

定理2 设f(x)在区间[a b]上有界 且只有有限个间断点 则f(x)在[a b]上可积

定积分的几何意义

在区间[a b]上 当f(x)0时 积分af(x)dx在几何上表示由曲线yf(x)、两条直线xa、xb 与x轴所围成的曲边梯形的面积 当f(x)0时 由曲线y f(x)、两条直线xa、xb 与x轴所围成的曲边梯形位于x轴的下方 定义分在几何上表示上述曲边梯形面积的负值

babf(x)dxlimf(i)xilim[f(i)]xia[f(x)]dx

0i10i1nnb

当f(x)既取得正值又取得负值时 函数f(x)的图形某些部分在x轴的上方 而其它部分在x轴的下方 如果我们对面积赋以正负号 在x轴上方的图形面积赋以正号 在x轴下方的图形面积赋以负号 则在一般情形下 定积分af(x)dx的几何意义为 它是介于x轴、函数f(x)的图形及两条直线xa、xb之间的各部分面积的代数和

b用定积分的定义计算定积分

例1.利用定义计算定积分0x2dx

把区间[0 1]分成n等份分点为和小区间长度为

xii(i1 2   n1) xi1(i1 2   n)

nn

取ii(i1 2   n)作积分和 n

1f(i)xii1i1nni2xi(i)21

ni1nnn1i2131n(n1)(2n1)1(11)(21)

3ni1n66nn

因为1 当0时 n 所以n

n12xdxlim00i11(11)(21)1f(i)xinlim6nn

3利定积分的几何意义求积分:

例2用定积分的几何意义求0(1x)dx 解: 函数y1x在区间[0 1]上的定积分是以y1x为曲边以区间[0 1]为底的曲边梯形的面积 因为以y1x为曲边以区间[0 1]为底的曲边梯形是一直角三角形 其底边长及高均为1 所以 1天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0(1x)dx211211

1三、定积分的性质

两点规定

(1)当ab时

(2)当ab时 af(x)dx0

af(x)dxbf(x)dx

bbbab

性质

1函数的和(差)的定积分等于它们的定积分的和(差)即

a[f(x)g(x)]dxaf(x)dxag(x)dx

bb 证明:a[f(x)g(x)]dxlim[f(i)g(i)]xi

0i1nnn

limf(i)xilimg(i)xi

0i1b0i1

af(x)dxag(x)dx

性质2 被积函数的常数因子可以提到积分号外面 即

bakf(x)dxkaf(x)dxbnnbbb

这是因为akf(x)dxlimkf(i)xiklimf(i)xikaf(x)dx

0i10i1性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即

af(x)dxaf(x)dxcbcbf(x)dx

这个性质表明定积分对于积分区间具有可加性

值得注意的是不论a b c的相对位置如何总有等式

af(x)dxaf(x)dxcf(x)dx af(x)dxaf(x)dxbf(x)dx

天津工业大学理学院基础数学系高等数学、经济数学教研室 cbcbcb成立 例如 当a

高等数学教案

第五章 定积分

于是有

af(x)dxaf(x)dxbf(x)dxaf(x)dxca1dxadxba

af(x)dx0(ab)

af(x)dxag(x)dx(ab)

ag(x)dxaf(x)dxa[g(x)f(x)]dx0

af(x)dxag(x)dx

bbbbbbbbbbbbbcccbf(x)dx

性质

4如果在区间[a b]上f(x)1 则

性质

5如果在区间[ab]上 f(x)0 则

推论

1如果在区间[ab]上 f(x) g(x)则

这是因为g(x)f(x)0 从而

所以

推论2 |af(x)dx|a|f(x)|dx(ab)

这是因为|f(x)|  f(x) |f(x)|所以

a|f(x)|dxaf(x)dxa|f(x)|dx

即 |af(x)dx|a|f(x)|dx|

性质6 设M 及m 分别是函数f(x)在区间[ab]上的最大值及最小值 则

m(ba)af(x)dxM(ba)(ab)

证明

因为 m f(x) M  所以

从而

m(ba)af(x)dxM(ba)

性质7(定积分中值定理)

如果函数f(x)在闭区间[ab]上连续 则在积分区间[ab]上至少存在一个点 使下式成立 bbbbbbb

amdxaf(x)dxaMdxbbb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxf()(ba) b这个公式叫做积分中值公式

证明

由性质6

m(ba)af(x)dxM(ba) 各项除以ba

b

m1af(x)dxM

bab再由连续函数的介值定理 在[ab]上至少存在一点  使

b

f()1af(x)dx

ba于是两端乘以ba得中值公式

af(x)dxf()(ba) b

积分中值公式的几何解释

应注意 不论ab 积分中值公式都成立

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 2 微积分基本公式

一、变速直线运动中位置函数与速度函数之间的联系

设物体从某定点开始作直线运动 在t时刻所经过的路程为S(t) 速度为vv(t)S(t)(v(t)0) 则在时间间隔[T1 T2]内物体所经过的路程S可表示为

S(T2)S(T1)及T2v(t)dt

1T即 T2v(t)dtS(T2)S(T1)

1T

上式表明 速度函数v(t)在区间[T1 T2]上的定积分等于v(t)的原函数S(t)在区间[T1 T2]上的增量

这个特殊问题中得出的关系是否具有普遍意义呢?

二、积分上限函数及其导数

设函数f(x)在区间[a b]上连续 并且设x为[a b]上的一点我们把函数f(x)在部分区间[a x]上的定积分

af(x)dx

xx称为积分上限的函数 它是区间[a b]上的函数 记为 (x)af(x)dx 或(x)af(t)dt

定理1 如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

在[a b]上具有导数 并且它的导数为

x

(x)daf(t)dtf(x)(ax

dxxx

简要证明

若x(a b) 取x使xx(a b)

(xx)(x)a

af(t)dtxxxxxxf(t)dtaf(t)dt

xf(t)dtaf(t)dt x天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

xxxf(t)dtf()x

应用积分中值定理 有f()x

其中在x 与xx之间 x0时 x  于是

(x)limlimf()limf()f(x)

x0xx0x

若xa  取x>0 则同理可证(x) f(a) 若xb  取x<0 则同理可证(x) f(b)

定理

2如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

就是f(x)在[a b]上的一个原函数

定理的重要意义 一方面肯定了连续函数的原函数是存在的 另一方面初步地揭示了积分学中的定积分与原函数之间的联系

三、牛顿莱布尼茨公式

定理

3如果函数F(x)是连续函数f(x)在区间[a b]上的一个原函数 则

xaf(x)dxF(b)F(a)

xb此公式称为牛顿莱布尼茨公式 也称为微积分基本公式

这是因为F(x)和(x)af(t)dt都是f(x)的原函数 所以存在常数C 使

F(x)(x)C(C为某一常数)

由F(a)(a)C及(a)0 得CF(a) F(x)(x)F(a) 由F(b)(b)F(a) 得(b)F(b)F(a) 即

af(x)dxF(b)F(a)

xb

证明 已知函数F(x)是连续函数f(x)的一个原函数 又根据定理2 积分上限函数

(x)af(t)dt

也是f(x)的一个原函数 于是有一常数C 使

F(x)(x)C(axb)

当xa时 有F(a)(a)C 而(a)0 所以CF(a) 当xb 时 F(b)(b)F(a)

所以(b)F(b)F(a) 即

af(x)dxF(b)F(a) b 为了方便起见 可把F(b)F(a)记成[F(x)]ba 于是天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

aF(b)F(a)

af(x)dx[F(x)]bb

进一步揭示了定积分与被积函数的原函数或不定积分之间的联系

例1.计算0x2dx

解 由于1x3是x2的一个原函数 所以 11213131xdx[1x3]1010 03333

3例2 计算1dx2

1x

解 由于arctan x是12的一个原函数 所以

1x

13 ( )7

dx[arctanx]3arctan3arctan(1)134121x2

1例3.计算21dx

x

解 12ln 1ln 2ln 22xdx[ln|x|]11

例4.计算正弦曲线ysin x在[0 ]上与x轴所围成的平面图形的面积

解 这图形是曲边梯形的一个特例 它的面积

A0sinxdx[cosx]0(1)(1)2

例5.汽车以每小时36km速度行驶 到某处需要减速停车设汽车以等加速度a5m/s2刹车 问从开始刹车到停车 汽车走了多少距离?

从开始刹车到停车所需的时间

当t0时 汽车速度

v036km/h361000m/s10m/s

3600刹车后t时刻汽车的速度为

v(t)v0at 105t 

当汽车停止时 速度v(t)0 从

v(t)105t 0 得 t2(s)

于是从开始刹车到停车汽车所走过的距离为

210(m)

s0v(t)dt0(105t)dt[10t51t2]0222天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

即在刹车后 汽车需走过10m才能停住

例6.设f(x)在[0, )内连续且f(x)>0 证明函数F(x)在(0 )内为单调增加函数

xx 证明 d0 tf(t)dtxf(x) d0f(t)dtf(x) 故

dxdx0tf(t)dt

x0f(t)dtxF(x)xf(x)0f(t)dtf(x)0tf(t)dt(0f(t)dt)xx2xxf(x)0(xt)f(t)dt(0f(t)dt)x2x

按假设 当0tx时f(t)>0(xt)f(t) 0  所以

0f(t)dt0 x0(xt)f(t)dt0

cosxetdtx212从而F (x)>0(x>0) 这就证明了F(x)在(0 )内为单调增加函数

例7.求limx0

解 这是一个零比零型未定式 由罗必达法则

limx0cosxetdtx2x212limx01cosxt2edtx2cosxlimsinxe1

x02x2e2提示 设(x)1etdt 则(cosx)1cosxt2edt

dcosxet2dtd(cosx)d(u)dueu2(sinx)sinxecos2x

dx1dxdudx

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 3 定积分的换元法和分部积分法

一、换元积分法

定理

假设函数f(x)在区间[a b]上连续 函数x(t)满足条件

(1)()a  ()b

(2)(t)在[ ](或[ ])上具有连续导数 且其值域不越出[a b] 则有

af(x)dxf[(t)](t)dt

这个公式叫做定积分的换元公式

证明

由假设知 f(x)在区间[a b]上是连续 因而是可积的 f [(t)](t)在区间[ ](或[ ])上也是连续的 因而是可积的

假设F(x)是f(x)的一个原函数 则

baf(x)dxF(b)F(a)

另一方面 因为{F[(t)]}F [(t)](t) f [(t)](t) 所以F[(t)]是f [(t)](t)的一个原函数 从而

bf[(t)](t)dtF[()]F[()]F(b)F(a)

因此 af(x)dxf[(t)](t)dt

例1 计算0a2x2dx(a>0)

解 ab0aa2x2dx 令xasint 02acostacostdt 

2a2222(a0costdt1cos2t)dt

20天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

221a2

a[t1sin2t]0224提示 a2x2a2a2sin2tacost dxa cos t  当x0时t0 当xa时t 例2 计算02cos5xsinxdx

解 令tcos x 则

20cosxsinxdx02cos5xdcosx

011 1t5dt0t5dt[1t6]01

令cosxt提示 当x0时t1 当x时t0

2或

20cosxsinxdx02cos5xdcosx 521cos61cos601

[1cos6x]066266

例3 计算0sin3xsin5xdx

解 0sin3xsin5xdx0sin2x|cosx|dx

3 2sin2xcosxdxsin2xcosxdx

023

32sin20xdsinx32sin2xdsinx

55222 [sinx]0[sin2x]2(2)4

555525提示 sinxsinxsinx(1sin35323x)sin2x|cosx|

在[0, ]上|cos x|cos x 在[, ]上|cos x|cos x

4例4 计算x2dx

02x

1解 04x2dx 令2x1t21232x1t32 1tdt11(t23)dt

t2312711122

[t33t]1[(9)(3)]232333天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

2t提示 x1 dxtdt 当x0时t1 当x4时t3

2例5 证明 若f(x)在[a a]上连续且为偶函数 则

af(x)dx20aaaf(x)dx

0a

证明 因为af(x)dxaf(x)dx0f(x)dx 而

所以

af(x)dx a0令xt af(t)dt0f(t)dt0f(x)dx

a0aaaf(x)dx0aaf(x)dx0f(x)dx

aa

0[f(x)f(x)]dxa2f(x)dx20f(x)dx

讨论

若f(x)在[a a]上连续且为奇函数 问af(x)dx?

提示

若f(x)为奇函数 则f(x)f(x)0 从而

aaf(x)dx0[f(x)f(x)]dx0

aa

例6 若f(x)在[0 1]上连续 证明

(1)02f(sinx)dx02f(cosx)dx(2)0xf(sinx)dx 20f(sinx)dx

证明(1)令xt 则 02f(sinx)dx20f[sin(t)]dt

2

2f[sin(t)]dt2f(cosx)dx

002(2)令xt 则

00xf(sinx)dx(t)f[sin(t)]dt

t)]dt0(t)f(sint)dt

0(t)f[sin(0f(sint)dt0tf(sint)dt

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0f(sinx)dx0xf(sinx)dx

所以

0xf(sinx)dx20 f(sinx)dx

x24xe x0

例7 设函数f(x)1 计算1f(x2)dx 1x01cosx

解 设x2t 则

14f(x2)dx1f(t)dt1201dt2tet2dt

01cost220

[tant]1[1et]0tan11e41

22222提示 设x2t 则dxdt 当x1时t1 当x4时t2

二、分部积分法

设函数u(x)、v(x)在区间[a b]上具有连续导数u(x)、v(x) 由

(uv)uv u v得u vu vuv  式两端在区间[a b]上积分得

baauvdx 或audv[uv]aavdu auvdx[uv]bbbbb这就是定积分的分部积分公式

分部积分过程

baavdu[uv]aauvdx    

auvdxaudv[uv]bbbbb 例1 计算 解 12arcsinxdx 0

12arcsinxdx0112[xarcsinx]012xdarcsinx0

102xdx

261x21 021221d(1x2)

1x212231

[1x]012122 例2 计算0exdx

解 令xt 则

10e1xdx20ettdt

天津工业大学理学院基础数学系高等数学、经济数学教研室 1高等数学教案

第五章 定积分

20tdet

2[tet] 0 20etdt

2e2[et] 0 2

例3 设In02sinnxdx 证明

(1)当n为正偶数时 Inn1n331

nn242

2(2)当n为大于1的正奇数时 Inn1n342

nn2

53证明 In2sinnxdx0111102sinn1xdcosx

n1 2x] 0

[cosxsin02cosxdsinn1x



(n1)02cos2xsinn2xdx(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得

Inn1In2

n

I2m2m12m32m531I0

2m2m22m442

I2m12m2m22m442I1

2m12m12m353而I002dx I102sinxdx1

2因此

I2m2m12m32m531

2m2m22m4422

I2m12m2m22m4422m12m12m353 例3 设In02sinnxdx(n为正整数) 证明

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

I2m2m12m32m531 2m2m22m442 I2m12m2m22m442 2m12m12m353 证明 In02sinnxdx02sinn1xdcosx

[cosxsinn1 2x] 0(n1)02cos2xsinn2xdx

(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得 Inn1In2 n

I2m2m12m32m531I0 2m2m22m442

I2m12m2m22m442I1 2m12m12m353特别地 I02dx02 I102sinxdx1 因此

I2m2m12m32m531 2m2m22m4422

I2m12m2m22m442 2m12m12m3

53天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 4 反常积分

一、无穷限的反常积分

定义1 设函数f(x)在区间[a )上连续 取b>a  如果极限

blimaf(x)dx

b存在 则称此极限为函数f(x)在无穷区间[a )上的反常积分 记作af(x)dx 即

a这时也称反常积分af(x)dx收敛f(x)dxlimaf(x)dx

bb

如果上述极限不存在 函数f(x)在无穷区间[a )上的反常积分af(x)dx就没有意义 此时称反常积分af(x)dx发散

类似地 设函数f(x)在区间( b ]上连续 如果极限

alimaf(x)dx(a

bb存在 则称此极限为函数f(x)在无穷区间( b ]上的反常积分 记作f(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(x)dxalimf(x)dx

a这时也称反常积分f(x)dx收敛如果上述极限不存在 则称反常积分f(x)dx发散

设函数f(x)在区间( )上连续 如果反常积分 bbbbf(x)dx和0f(x)dx

都收敛 则称上述两个反常积分的和为函数f(x)在无穷区间( )上的反常积分 记作

0f(x)dx 即

f(x)dxf(x)dx00a0f(x)dx

b

limaf(x)dxlim0f(x)dx

b这时也称反常积分f(x)dx收敛

如果上式右端有一个反常积分发散 则称反常积分f(x)dx发散

定义1

连续函数f(x)在区间[a )上的反常积分定义为

af(x)dxlimaf(x)dx

bb

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地 连续函数f(x)在区间( b]上和在区间( )上的反常积分定义为

f(x)dxlimaf(x)dx

abbf(x)dxlimaf(x)dxlim0f(x)dx

ab0b

反常积分的计算 如果F(x)是f(x)的原函数 则

af(x)dxlimaf(x)dxlim[F(x)]ba

bbb

limF(b)F(a)limF(x)F(a)

bx可采用如下简记形式

类似地 af(x)dx[F(x)]alimF(x)F(a)

xF(b)limF(x)

f(x)dx[F(x)]bxb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

limF(x)limF(x)

f(x)dx[F(x)]xx 例1 计算反常积分12dx

1x

解 

11x2dx[arctanx]

limarctanxlimarctanx

xx

 ( ) 例2 计算反常积分0teptdt(p是常数 且p>0)

解 0teptdt[teptdt]0[1tdept]0

p

[1tept1eptdt]0pp

[1tept12ept]0pp

lim[1tept12ept]1212

tpppp提示 limteptlimtptlim1pt0

ttetpe 例3 讨论反常积分a 解 当p1时

当p<1时

当p>1时 1dx(a>0)的敛散性

xpa1dx1dx[lnx] 

aaxxpa1dx[1x1p] 

a1pxpa1dx[1x1p] a1p

a1pp1xp1p 因此 当p>1时 此反常积分收敛 其值为a 当p1时 此反常积分发散

p

1二、无界函数的反常积分

定义

2设函数f(x)在区间(a b]上连续 而在点a的右邻域内无界 取>0 如果极限

talimf(x)dx tbb存在 则称此极限为函数f(x)在(a b]上的反常积分 仍然记作af(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dx

这时也称反常积分af(x)dx收敛

如果上述极限不存在 就称反常积分af(x)dx发散

类似地 设函数f(x)在区间[a b)上连续 而在点b 的左邻域内无界 取>0 如果极限

tbbblimf(x)dx abt存在 则称此极限为函数f(x)在[a b)上的反常积分 仍然记作af(x)dx 即

f(x)dx

af(x)dxlimatbbt这时也称反常积分af(x)dx收敛 如果上述极限不存在 就称反常积分af(x)dx发散

设函数f(x)在区间[a b]上除点c(a

都收敛 则定义

cbaf(x)dxaf(x)dxcf(x)dx

否则 就称反常积分af(x)dx发散

瑕点 如果函数f(x)在点a的任一邻域内都无界 那么点a称为函数f(x)的瑕点 也称为无界

定义2

设函数f(x)在区间(a b]上连续 点a为f(x)的瑕点 函数f(x)在(a b]上的反常积分定义为 bbcbaf(x)dxtlimatbbf(x)dx

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地函数f(x)在[a b)(b为瑕点)上的反常积分定义为

f(x)dx

af(x)dxlimatbbt

函数f(x)在[a c)(c b](c为瑕点)上的反常积分定义为

af(x)dxtlimcabtf(x)dxlimf(x)dx

ttcb反常积分的计算

如果F(x)为f(x)的原函数 则有

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dxlim[F(x)]bt

ta

F(b)limF(t)F(b)limF(x) taxa可采用如下简记形式

aF(b)limF(x)

af(x)dx[F(x)]bxab类似地 有

alimF(x)F(a)

af(x)dx[F(x)]bxbb当a为瑕点时af(x)dx[F(x)]bF(x)

aF(b)limxab当b为瑕点时af(x)dx[F(x)]bF(x)F(a)

alimxbb当c(acb)为瑕点时

F(x)F(a)][F(b)limF(x)]

af(x)dxaf(x)dxcf(x)dx[xlimcxcbcb 例4 计算反常积分 解 因为limxaa01dx

2ax21 所以点a为被积函数的瑕点

a2x 0a1alimarcsinx0 dx[arcsinx] 0a2xaaa2x2

1例5 讨论反常积分112dx的收敛性

x

解 函数12在区间[1 1]上除x0外连续 且lim12

x0xx0 0 由于112dx[1]lim(1)1

1xxx0x01即反常积分112dx发散 所以反常积分112dx发散

xx

例6 讨论反常积分a

解 当q1时

当q1时 bbbdx的敛散性

(xa)qdxbdx[ln(xa)] b

aa(xa)qaxadx[1(xa)1q] b

aa(xa)q1q天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

当q1时 dx[1(xa)1q] b1(ba)1q

aa(x1qa)q1qb 因此 当q<1时 此反常积分收敛 其值为1(ba)1q 当q1时 此反常积分发散

1q

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

天津工业大学理学院基础数学系高等数学、经济数学教研室

第五篇:高等数学教案Word版第一章1

第一章函数与极限(4课时)Ⅰ 授课题目(章节)

1.1 映射与函数

Ⅱ 教学目的与要求:

1.理解集合、区间、邻域等基本概念,掌握集合的运算及构造法

2.理解函数的概念;明确函数定义有两个要素;依赖关系、定义域;掌握函数表达式的运用

3.了解函数的基本性质;知道判定诸性质的思路 4.掌握将复合函数由外及里分解为简单函数的方法 Ⅲ 教学重点与难点

重点:理解集合、邻域的概念 难点:函数的性质 Ⅳ 讲授内容

一.集合

1. 集合概念

集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素(简称:元)

注:本课程中所有说的集合必须具有明确的界定,即对任何一个对象都可以按标准判断其是否属于所说的“总体”

介绍子集、真子集、空集、集合的相等,等概念 2.集合的运算

集合的基本运算有以下几种:并、交、差、直积 介绍全集(基本集)与余集(补集)的概念 3.区间和邻域

设>0,点X0的领域是指满足XX0的一切实数X的集合。X0称为改邻域的中心,成为该邻域的半径

二.映射

1.定义:设X,Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作f:XY、其中y称为元素x(在映射f下)的像,并记作f(x),即yf(x),而元素x称为元素y(在映射f下)的一个原像

注:映射是指两个集合之间的一种对应关系。判断两集合之间的对应关系是否构成一个映射,关键是抓住两个要点:第一,对于第一个集合中的每一个元素,按照规则能否在另一个集合中找到一个与之对应的元素;第二,对于第一个集合中的每一个元素,第二个集合与之对应的元素是不是唯一的 2.逆映射

定义:设fX到Y的单射,则由定义,对每个yRf,有唯一的xX,适合f(x)y。于是,我们可定义一个从Rf到X的新映射g,即x,这x满足f(x)y。这个映g:RfX,对每个yRf,规定g(y)射g称为f的逆映射,记作f2. 复合映射:

定义:设有两个映射g:XY1,f:Y2Z,其中Y1Y2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个xX映成fg(x)Z。显然,这个对应法则确定了一个从X到Z的映射,这个映射称为映射g和f构成的复合映射,记作fg,即fg:XZ,(fg)(x),xX fg(x)三.函数

1.函数的概念

定义:设数集DR,则称映射f:DR为定义在D上的函数,通常简记为 yf(x),xD,其中x称为自变量,y称为因变量,D称为定义域,记作Df,即DfD

函数定义中,对每个xD,按对应法则f,总有唯一确定的值y与之对应,这个值称为函数f在x出的函数值,记作f(x),即yf(x)。因变量y与自变量x之间的这种依赖关系,通常称为函数关系。函数值yf(x)的全体所构成的集合称为函数 f的值域,记作Rf或f(D),即 Rff(D)yyf(x),xD

注:函数的概念中涉及五个因素:(1)自变量(2)定义域(3)应变量(4)对应规律(5)值域;在这五个因素中最重要的是定义域和因变量关于自变量的对应规律,这两者常称为函数的二要素

介绍单值函数与多值函数的概念

例.判断下列各对函数是否相同

(1)f(x)=lnx2 g(x)=2lnx(2)f(x)=1 g(x)=sin2x+cos2x(3)f(x)=|x| g(u)=u2

1,其定义域Df1Rf,值域Rf1X

解:(2)中的f(x)与g(x)相同,(3)中的f(x)与g(x)相同 例.求下列函数的定义域

(1)f(x)x134x1 2x5x6x(2)f(x)log2log4log7

(3)f(x)1x21 x解:(1)Dfxx2且x3

(2)Dfxx7

(3)Dfxx0且x2 2.函数的几种特性

(1)函数的有界性(2)函数的单调性(3)函数的奇偶性

定义:教材P12P13 例:判断f(x)lnx21x的奇偶性

1x1x2解:f(x)ln((x)21xln f(x)为奇函数(4)数的周期性

3.反函数于复合函数

f(x)

(5)反函数定义:设函数f:Df(D)是单射,则它存在逆映射f1:f(D)D,称此映射f1为函数f的反函数。

按此定义,对每个yf(D),有唯一的xD,使得f(x)=y,于

1是有f(y)x。这就是说,反函数f1的对应法则是完全由函数f的对应法则所确定的

与反函数问题有关的题型主要有两类:判断给定函数是否存在反函数或求给定函数的反函数

对严格单调函数有以下结论 严格单调函数必存在反函数(6)复合函数有关的问题大致可分为两类:一是判断若干个函数能否构成复合函数;二是将一个复合函数分解为若干个简单函数

复合函数的定义:设函数yf(u)的定义域为D1,函数ug(x)在D上有定义,且g(D)D1,则由下式确定的函数

构成的复合函数,它的,xD称为由函数ug(x)和函数yf(u)yfg(x)定义域为D,变量u称为中间变量。函数g与函数f构成的复合函数通常记为

 fg,即(fg)(x)fg(x)3.函数的运算

4.初等函数 定义:由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数 5.双曲函数与反双曲函数

Ⅴ小结与提问:

小结:本讲内容十分重要,特别是缺点函数的两个要素务必弄懂;分段函数也须引起重视;函数的几种特性直接通过论证来判断;函数的反函数的存在性需重视。复合函数是本讲重点之一,掌握它,对学好微分与积分有很大的作用;要善于分析一个初等函数的结构

提问:是否yf(u),ug(x)一定能复合成y为x的函数? Ⅴ 课外作业

P21 6(4)(6)7(3)8.12.14(3)17

下载同济第六版《高等数学》教案WORD版-第12章 微分方程word格式文档
下载同济第六版《高等数学》教案WORD版-第12章 微分方程.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学教案Word版第一章2

    第二讲(4课时) Ⅰ.授课题目(章节) §1.2 数列的极限 §1.3 函数的极限 Ⅱ.教学目的与要求 1. 理解数列极限与函数极限的概念;明确极限是描述变量的变化趋势;了解极限的N,,X定义......

    高等数学教案(五篇模版)

    第五章 定积分 §5.1 定积分的概念与性质 1.曲边梯形的面积: 设yf(x)在[a , b]上非负、连续.由直线xa、xb、y0及曲线yf(x)所围成的图形称为曲边梯形,其面积记为A. ①把区间[a......

    高等数学教案12

    第十二章 无穷级数 §12.1 常数项级数的概念和性质 1.无穷级数 (级数): u1u2un 记为un. 一般项(第n项)un,部n1分和(前n项和)snu1u2un. sns,则称级数un2.如果limnn1收敛,并写成......

    三上数学教案第六单元

    第六单元 多位数乘一位数 第一课时:口算乘法 教学内容:教材第68—69页内容及练习十五的第1—3题。 教学目标:1、使学生理解和掌握多位数乘一位数的口算方法,能正确进行口算。2、......

    第十章____重积分(高等数学教案)

    高等数学教案 重积分 重积分 【教学目标与要求】 1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。 2.掌握二重积分的(直角坐标、极坐标)计算方法。......

    高等数学教案ch 8.4~8.8

    §8 4 多元复合函数的求导法则 设zf(u v) 而u(t) v(t) 如何求dz?dt设zf(u v) 而u(x y) v(x y) 如何求z和z? xy1 复合函数的中间变量均为一元函数的情形 定理1 如果函数u(t)及......

    高等数学教案ch 8.2 偏导数

    §82 偏导数 一、偏导数的定义及其计算法 对于二元函数zf(x y) 如果只有自变量x 变化 而自变量y固定 这时它就是x的一元函数 这函数对x的导数 就称为二元函数zf(x y)对于x的......

    高等数学教案ch 11 无穷级数

    第十一章无穷级数 教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P级数的收敛与发散的条件。 3.掌握正......