2013届高考数学第一轮立体几何初步专项复习教案

时间:2019-05-15 03:21:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013届高考数学第一轮立体几何初步专项复习教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013届高考数学第一轮立体几何初步专项复习教案》。

第一篇:2013届高考数学第一轮立体几何初步专项复习教案

§3 三视图

【课时目标】 1.初步认识简单几何体的三视图.2.会画出空间几何体的三视图并会由空间几何体的三视图画出空间几何体.

1.空间几何体的三视图是指__________、__________、__________.

2.三视图的排列规则是__________放在主视图的下方,长度与主视图一样,__________放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.

3.三视图的主视图、俯视图、左视图分别是从________、__________、________观察同一个几何体,画出空间几何体的图形.

一、选择题

1.下列说法正确的是()A.任何几何体的三视图都与其摆放的位置有关 B.任何几何体的三视图都与其摆放的位置无关 C.有的几何体的三视图与其摆放的位置无关 D.正方体的三视图一定是三个全等的正方形

2.如图所示的一个几何体,哪一个是该几何体的俯视图()

3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()

A.①②

B.①③

C.①④

D.②④ 4.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()

5.实物图如图所示.无论怎样摆放物体,如图所示中不可能为其主视图的是()

6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()

二、填空题

7.根据如图所示俯视图,找出对应的物体.

(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.

8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.

9.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.

三、解答题

10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).

11.如图是截去一角的长方体,画出它的三视图.

能力提升

12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.

13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?

在绘制三视图时,要注意以下三点:

1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.

2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.

3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.

§3 三视图

答案

知识梳理

1.主视图 左视图 俯视图 2.俯视图 左视图

3.正前方 正上方 左侧 作业设计

1.C [球的三视图与其摆放位置无关.] 2.C

3.D [在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.] 4.C

[由三视图中的正、左视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.] 5.D [A图可看做该物体槽向前时的主视图,B图可看做槽向下时的主视图,C图可看做槽向后时的主视图.] 6.A

7.(1)D(2)A(3)E(4)C(5)B 8.2 4 解析 三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.

9.7 10.解 图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.

11.解 该图形的三视图如图所示.

12.解 该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.

13.解 由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.

而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.

第二篇:XX届高考数学第一轮不等式专项复习教案

XX届高考数学第一轮不等式专项复习教

本资料为woRD文档,请点击下载地址下载全文下载地址课

件www.xiexiebang.com 第六章不等式

●网络体系总览

●考点目标定位

.理解不等式的性质及应用.2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单地应用.3.掌握比较法、分析法、综合法证明简单的不等式.4.掌握不等式的解法.5.理解不等式|a|-|b|≤|a±b|≤|a|+|b|.●复习方略指南

本章内容在高考中,以考查不等式的性质、证明、解法和最值方面的应用为重点,多数是与函数、方程、三角、数列、几何综合在一起被考查,单独考查不等式的问题较少,尤其是不等式的证明题.借助不等式的性质及证明,主要考查函数方程思想、等价转化思想、数形结合思想及分类讨论思想等数学思想方法.含参数不等式的解法与讨论,不等式与函数、数列、三角等内容的综合问题,仍将是今后高考命题的热点.本章内容理论性强,知识覆盖面广,因此复习中应注意:

.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、判别式法、构造法、几何法,这些方法可作了解,但要控制量和度,切忌喧宾夺主.3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来.4.注意重要不等式和常用思想方法在解题中的作用.5.利用平均值定理解决问题时,要注意满足定理成立的三个条件:一“正”、二“定”、三“相等”.6.对于含有绝对值的不等式(问题),要紧紧抓住绝对值的定义实质,充分利用绝对值的几何意义.7.要强化不等式的应用意识,同时要注意到不等式与函数方程的对比与联系.6.1不等式的性质

●知识梳理

.比较准则:a-b>0a>b;

a-b=0a=b;a-b<0a<b.2.基本性质:(1)a>bb<a.(2)a>b,b>ca>c.(3)a>ba+c>b+c;a>b,c>da+c>b+d.(4)a>b,c>0ac>bc;a>b,c<0ac<bc;a>b>0,c>d>0ac>bd.(5)a>b>0

>(n∈N,n>1);a>b>0an>bn(n∈N,n>1).3.要注意不等式性质成立的条件.例如,重要结论:a>b,ab>0

<,不能弱化条件得a>b

<,也不能强化条件得a>b>0

<.4.要正确处理带等号的情况.如由a>b,b≥c或a≥b,b>c均可得出a>c;而由a≥b,b≥c可能有a>c,也可能有a=c,当且仅当a=b且b=c时,才会有a=c.5.性质(3)的推论以及性质(4)的推论可以推广到两个以上的同向不等式.6.性质(5)中的指数n可以推广到任意正数的情形.特别提示

不等式的性质从形式上可分两类:一类是“”型;另一类是“”型.要注意二者的区别.●点击双基

.若a<b<0,则下列不等式不能成立的是

A.>

B.2a>2b

c.|a|>|b|

D.()a>()b

解析:由a<b<0知ab>0,因此a•<b•,即>成立;

由a<b<0得-a>-b>0,因此|a|>|b|>0成立.又()x是减函数,所以()a>()b成立.故不成立的是B.答案:B

2.(XX年春季北京,7)已知三个不等式:ab>0,bc-ad>0,->0(其中a、b、c、d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是

A.0

B.1

c.2

D.3

解析:由ab>0,bc-ad>0可得出->0.bc-ad>0,两端同除以ab,得->0.同样由->0,ab>0可得bc-ad>0.ab>0.答案:D

3.设α∈(0,),β∈[0,],那么2α-的范围是

A.(0,)

B.(-,)

c.(0,π)

D.(-,π)

解析:由题设得0<2α<π,0≤≤.∴-≤-≤0.∴-<2α-<π.答案:D

4.a>b>0,m>0,n>0,则,,的由大到小的顺序是____________.解析:特殊值法即可

答案:>>>

5.设a=2-,b=-2,c=5-2,则a、b、c之间的大小关系为____________.解析:a=2-=-<0,∴b>0.c=5-2=->0.b-c=3-7=-<0.∴c>b>a.答案:c>b>a

●典例剖析

【例1】已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.剖析:∵a+b,a-b的范围已知,∴要求2a+3b的取值范围,只需将2a+3b用已知量a+b,a-b表示出来.可设2a+3b=x(a+b)+y(a-b),用待定系数法求出x、y.解:设2a+3b=x(a+b)+y(a-b),∴解得

∴-<(a+b)<,-2<-(a-b)<-1.∴-<(a+b)-(a-b)<,即-<2a+3b<.评述:解此题常见错误是:-1<a+b<3,①

2<a-b<4.②

①+②得1<2a<7.③

由②得-4<b-a<-2.④

①+④得-5<2b<1,∴-<3b<.⑤

③+⑤得-<2a+3b<.思考讨论

.评述中解法错在何处?

2.该类问题用线性规划能解吗?并试着解决如下问题:

已知函数f(x)=ax2-c,满足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的最大值和最小值.答案:20-1

【例2】(XX年福建,3)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(-∞,-1]∪[3,+∞),则

A.“p或q”为假

B.“p且q”为真

c.p真q假

D.p假q真

剖析:只需弄清命题p、q的真假即可.解:∵|a+b|≤|a|+|b|,若|a|+|b|>1不能推出|a+b|>1,而|a+b|>1一定有|a|+|b|>1,故命题p为假.又函数y=的定义域为|x-1|-2≥0,∴|x-1|≥2.∴x≤-1或x≥3.∴q为真.答案:D

【例3】比较1+logx3与2logx2(x>0且x≠1)的大小.剖析:由于要比较的两个数都是对数,我们联系到对数的性质,以及对数函数的单调性.解:(1+logx3)-2logx2=logx.当或即0<x<1或x>时,有logx>0,1+logx3>2logx2.当①或②时,logx<0.解①得无解,解②得1<x<,即当1<x<时,有logx<0,1+logx3<2logx2.当x=1,即x=时,有logx=0.∴1+logx3=2logx2.综上所述,当0<x<1或x>时,1+logx3>2logx2;

当1<x<时,1+logx3<2logx2;

当x=时,1+logx3=2logx2.评述:作差看符号是比较两数大小的常用方法,在分类讨论时,要做到不重复、不遗漏.深化拓展

函数f(x)=x2+(b-1)x+c的图象与x轴交于(x1,0)、(x2,0),且x2-x1>1.当t<x1时,比较t2+bt+c与x1的大小.提示:令f(x)=(x-x1)(x-x2),∴x2+bx+c=(x-x1)(x-x2)+x.把t2+bt+c与x1作差即可.答案:t2+bt+c>x1.●闯关训练

夯实基础

.(XX年辽宁,2)对于0<a<1,给出下列四个不等式:

①loga(1+a)<loga(1+);②loga(1+a)>loga(1+);③a1+a<a1;④a1+a>a.其中成立的是

A.①③

B.①④

c.②③

D.②④

解析:∵0<a<1,∴a<,从而1+a<1+.∴loga(1+a)>loga(1+).又∵0<a<1,∴a1+a>a.故②与④成立.答案:D

2.若p=a+(a>2),q=2,则

A.p>q

B.p<q

c.p≥q

D.p≤q

解析:p=a-2++2≥4,而-a2+4a-2=-(a-2)2+2<2,∴q<4.∴p>q.答案:A

3.已知-1<2a<0,A=1+a2,B=1-a2,c=,D=则A、B、c、D按从小到大的顺序排列起来是____________.解析:取特殊值a=-,计算可得A=,B=,c=,D=.∴D<B<A<c.答案:D<B<A<c

4.若1<α<3,-4<β<2,则α-|β|的取值范围是____________.解析:∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.∴-3<α-|β|<3.答案:(-3,3)

5.已知a>2,b>2,试比较a+b与ab的大小.解:∵ab-(a+b)=(a-1)(b-1)-1,又a>2,b>2,∴a-1>1,b-1>1.∴(a-1)(b-1)>1,(a-1)(b-1)-1>0.∴ab>a+b.6.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N时,求证:A≥B.证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)

=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得

当x≥1时,x-1≥0,x2n-1-1≥0;

当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.培养能力

7.设0<x<1,a>0且a≠,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.解:∵0<x<1,∴①当3a>1,即a>时,|log3a(1-x)3|-|log3a(1+x)3|=|3log3a(1-x)|-|3log3a(1+x)|

=3[-log3a(1-x)-log3a(1+x)]=-3log3a(1-x2).∵0<1-x2<1,∴-3log3a(1-x2)>0.②当0<3a<1,即0<a<时,|log3a(1-x)3|-|log3a(1+x)3|=3[log3a(1-x)+log3a(1+x)]

=3log3a(1-x2)>0.综上所述,|log3a(1-x)3|>|log3a(1+x)3|.8.设a1≈,令a2=1+.(1)证明介于a1、a2之间;

(2)求a1、a2中哪一个更接近于;

(3)你能设计一个比a2更接近于的一个a3吗?并说明理由.(1)证明:(-a1)(-a2)=(-a1)•(-1-)=<0.∴介于a1、a2之间.(2)解:|-a2|=|-1-|=||

=|-a1|<|-a1|.∴a2比a1更接近于.(3)解:令a3=1+,则a3比a2更接近于.由(2)知|-a3|=|-a2|<|-a2|.探究创新

9.已知x>-1,n≥2且n∈N*,比较(1+x)n与1+nx的大小.解:设f(x)=(1+x)n-(1+nx),则(x)=n(1+x)n-1-n=n[(1+x)n-1-1].由(x)=0得x=0.当x∈(-1,0)时,(x)<0,f(x)在(-1,0)上递减.当x∈(0,+∞)时,(x)>0,f(x)在(0,+∞)上递增.∴x=0时,f(x)最小,最小值为0,即f(x)≥0.∴(1+x)n≥1+nx.评述:理科学生也可以用数学归纳法证明.●思悟小结

.不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0a>b,a-b=0a=b,a-b<0a<b,这是比较两数(式)大小的理论根据,也是学习不等式的基石.2.一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用.3.对两个(或两个以上)不等式同加(或同乘)时一定要注意不等式是否同向(且大于零).4.对于含参问题的大小比较要注意分类讨论.●教师下载中心

教学点睛

.加强化归意识,把比较大小问题转化为实数的运算.2.通过复习要强化不等式“运算”的条件.如a>b、c>d在什么条件下才能推出ac>bd.3.强化函数的性质在大小比较中的重要作用,加强知识间的联系.拓展题例

【例1】已知f(x)=|log2(x+1)|,m<n,f(m)=f(n).(1)比较m+n与0的大小;

(2)比较f()与f()的大小.剖析:本题关键是如何去掉绝对值号,然后再判断差的符号.解:(1)∵f(m)=f(n),∴|log2(m+1)|=|log2(n+1)|.∴log22(m+1)=log22(n+1).∴[log2(m+1)+log2(n+1)][log2(m+1)-log2(n+1)]=0,log2(m+1)(n+1)•log2=0.∵m<n,∴≠1.∴log2(m+1)(n+1)=0.∴mn+m+n+1=1.∴mn+m+n=0.当m、n∈(-1,0]或m、n∈[0,+∞)时,由函数y=f(x)的单调性知x∈(-1,0]时,f(x)为减函数,x∈[0,+∞)时,f(x)为增函数,f(m)≠f(n).∴-1<m<0,n>0.∴m•n<0.∴m+n=-mn>0.(2)f()=|log2|=-log2=log2,f()=|log2|=log2.-==->0.∴f()>f().【例2】某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果甲、乙两家旅行社的原价相同,请问该家庭选择哪家旅行社外出旅游合算?

解:设该家庭除户主外,还有x人参加旅游,甲、乙两旅行社收费总金额分别为y1和y2.一张全票价格为a元,那么y1=a+0.55ax,y2=0.75(x+1)a.∴y1-y2=a+0.55ax-0.75a(x+1)=0.2a(1.25-x).∴当x>1.25时,y1<y2;

当x<1.25时,y1>y2.又因x为正整数,所以当x=1,即两口之家应选择乙旅行社;

当x≥2(x∈N),即三口之家或多于三口的家庭应选择甲旅行社.课

件www.xiexiebang.com

第三篇:XX届高考数学立体几何复习教案

XX届高考数学立体几何复习教案

本资料为woRD文档,请点击下载地址下载全文下载地址

立体几何总复习

一、基本符号表示..点A在线m上:Am;

2.点A在面上:A

3.直线m在面内:m

4.直线m与面交于点A:m

=A;

5.面与面相交于直线m:=m;

二、点A到面的距离.(第一步:作面的垂线)

①作法:过点A作Ao

于o,连结线段Ao,即所求。

②求法:

(一)直接法;

(二)等体法(等积法包括:等体积法和等面积法);

(三)换点法。

如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(II)求点A到平面PBc的距离.(例2)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(III)求点B到平面PcD的距离。

(例3)如图,直三棱柱中,Ac⊥cB,D是棱的中点。(I)求点B到平面的距离.三、两条异面直线m与n所成角.①作法:平移,让它们相交.(若mn,则可证出mn所在的平面)

②求法:常用到余弦定理.③两条异面直线所成角的范围:

;任意两

条异面直线所成角的范围:

.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(II)当为的中点时,求异面直线与所成角的大小;

四、线m与面所成角.(第一步:作面的垂线)

①作法:在线m上任取一点P(异于A),作Po

于o,连结Ao,则Ao为斜线PA在面内的摄影,m与面所成的角。

②求法:一般根据直角三角形来解。

③线面角的范围:

.已知正四棱柱中,AB=2。(II)求直线与侧面所成的角的正切值.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(III)求与平面所成角的最大值. 五、二面角(注:若所求的二面角为直二面角,一般转化为求它的补角—锐角).(一)定义法:

①作法:在棱c上取一“好”点P,在两个半平面内分别作c的垂线(射线)m、n,则角即二面角—c—的平面角。

②求法:一般根据余弦定理。

(二)三垂线法:(第一步:作面的垂线)

①作法:在面或面内找一合适的点A,作Ao

于o,过A作ABc于B,则Bo为斜线AB在面内的射影,为二面角—c—的平面角。

三垂线法的步骤:

1、作面的垂线;

2、作棱的垂线,并连结另一边(平面角的顶点在棱上);

3、计算。

②求法:一般根据直角三角形来解。

③二面角的取值范围:

.如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(III)求二面角的正切值。

(例2)已知正四棱柱中,AB=2。(III)求二面角的正切值。

(例3)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(II)求二面角D—Pc—A的大小;

(例4)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(III)求二面角B—PA—c的余弦值.(例5)如图,直三棱柱中,Ac⊥cB,D是棱的中点。(II)求二面角的大小。

六、三垂线定理.(第一步:作面的垂线)

.定理:PA为斜线,Po

于o,oA为射影,m,AomPAm.2.逆定理:PA为斜线,Po

于o,oA为射影,m,PAm

Aom.已知正四棱柱中,AB=2。(I)求证:.七、线面平行()..定义:

2.判定定理:

3.性质定理:

(例1)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(I)求证:Bc//平面PAD.八、线面垂直()..定义:

2.判定定理:

3.性质定理:

(例1)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(I)求证:Bc⊥平面PAc;

(例2)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(II)若E、F分别为PB、AD的中点,求证:EF⊥平面PBc.九、面面平行()..定义:

2.判定定理:

3.性质定理:

十、面面垂直()..定义:

2.判定定理:

3.性质定理:

如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(I)求证:平面PcB⊥平面mAB.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(I)求证:平面平面;

十一、有关对角线..平行四边形:

对角线平分.2.菱形:

对角线垂直且平分.3.矩形:

对角线相等且平分.4.正方形:

对角线相等且垂直且平分.十二、平移的方法..三角形(或梯形)的中位线:

且等于底边(上下两底之和)的一半.2.平行四边形:对边

且相等.3.等比例线段:

十三、重要辅助线的添加方法..见到中点,考虑:①中位线;②

;③

.2.见到平行四边形(菱形、矩形、正方形同理),考虑:①连结对角线;②对边平行且相等.十四、求三角形面积的通用方法.十五、三棱锥的任何一个面都可以作为底面,方便使用等体法.十六、立体几何解题策略(附加:在做立体几何大题时,后以文经常用到前一问的结论,平时注意)..由已知想性质;

2.由结论想判定;

3.由需要做辅助线或辅助平面.十七、有关棱柱.棱柱——————————直棱柱—————————正棱柱..两底面平行;

+1.侧棱垂直于底面

+1.底面是正多边形

2.侧棱平行

十八、有关棱锥.棱锥——————————正棱锥..一面一点一连;

+1.底面是正多边形;

2.顶点在底面的射影正好是底面正多边形的中心.

第四篇:XX届高考数学第一轮不等式的证明专项复习教案_1

XX届高考数学第一轮不等式的证明专项

复习教案

本资料为woRD文档,请点击下载地址下载全文下载地址

6.3不等式的证明

(二)●知识梳理

.用综合法证明不等式:利用不等式的性质和已证明过的不等式以及函数的单调性导出待证不等式的方法叫综合法,概括为“由因导果”.2.用分析法证明不等式:从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.3.放缩法证明不等式.4.利用单调性证明不等式.5.构造一元二次方程利用“Δ”法证明不等式.6.数形结合法证明不等式.7.反证法、换元法等.特别提示

不等式证明方法多,证法灵活,其中比较法、分析法、综合法是基本方法,要熟练掌握,其他方法作为辅助,这些方法之间不能截然分开,要综合运用各种方法.●点击双基

.(XX年春季北京,8)若不等式(-1)na<2+对任意n∈N*恒成立,则实数a的取值范围是

A.[-2,)

B.(-2,)

c.[-3,)

D.(-3,)

解析:当n为正偶数时,a<2-,2-为增函数,∴a<2-=.当n为正奇数时,-a<2+,a>-2-.而-2-为增函数,-2-<-2,∴a≥-2.故a∈[-2,).答案:A

2.(XX年南京市质检题)若<<0,则下列结论不正确的是

A.a2<b2

B.ab<b2

c.+>2

D.|a|+|b|>|a+b|

解析:由<<0,知b<a<0.∴A不正确.答案:A

3.分析法是从要证的不等式出发,寻求使它成立的 A.充分条件

B.必要条件

c.充要条件

D.既不充分又不必要条件

答案:A

4.(理)在等差数列{an}与等比数列{bn}中,a1=b1>0,an=bn>0,则am与bm的大小关系是____________.解析:若d=0或q=1,则am=bm.若d≠0,画出an=a1+(n-1)d与bn=b1•qn-1的图象,易知am>bm,故am≥bm.答案:am≥bm

(文)在等差数列{an}与等比数列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),则an+1与bn+1的大小关系是____________.解析:an+1=≥==bn+1.答案:an+1≥bn+1

5.若a>b>c,则+_______.(填“>”“=”“<”)

解析:a>b>c,(+)(a-c)=(+)[(a-b)+(b-c)]

≥2•2=4.∴+≥>.答案:>

●典例剖析

【例1】设实数x、y满足y+x2=0,0<a<1.求证:loga(ax+ay)<loga2+.剖析:不等式左端含x、y,而右端不含x、y,故从左向右变形时应消去x、y.证明:∵ax>0,ay>0,∴ax+ay≥2=2.∵x-x2=-(x-)2≤,0<a<1,∴ax+ay≥2=2a.∴loga(ax+ay)<loga2a=loga2+.评述:本题的证题思路可由分析法获得.要证原不等式成立,只要证ax+ay≥2•a即可.

【例2】已知a、b、c∈R+,且a+b+c=1.求证:

(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).剖析:在条件“a+b+c=1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“a+b+c”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证明:∵a、b、c∈R+且a+b+c=1,∴要证原不等式成立,即证[(a+b+c)+a]•[(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a]•[(a+b+c)-b]•[(a+b+c)-c].也就是证[(a+b)+(c+a)][(a+b)+(b+c)]•[(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①

∵(a+b)+(b+c)≥2>0,(b+c)+(c+a)≥2>0,(c+a)+(a+b)≥2>0,三式相乘得①式成立.故原不等式得证.【例3】已知a>1,n≥2,n∈N*.求证:-1<.证法一:要证-1<,即证a<(+1)n.令a-1=t>0,则a=t+1.也就是证t+1<(1+)n.∵(1+)n=1+c

+…+c()n>1+t,即-1<成立.证法二:设a=xn,x>1.于是只要证>x-1,即证>n.联想到等比数列前n项和1+x+…+xn-1=,①

倒序xn-1+xn-2+…+1=.②

①+②得2•=(1+xn-1)+(x+xn-2)+…+(xn-1+1)

>2+2+…+2>2n.∴>n.思考讨论

本不等式是与自然数有关的命题,用数学归纳法可以证吗?读者可尝试一下.●闯关训练

夯实基础

.已知a、b是不相等的正数,x=,y=,则x、y的关系是

A.x>y

B.y>x

c.x>y

D.不能确定

解析:∵x2=(+)2=(a+b+2),y2=a+b=(a+b+a+b)>(a+b+2)=x2,又x>0,y>0.∴y>x.答案:B

2.对实数a和x而言,不等式x3+13a2x>5ax2+9a3成立的充要条件是____________.解析:(x3+13a2x)-(5ax2+9a3)

=x3-5ax2+13a2x-9a3

=(x-a)(x2-4ax+9a2)

=(x-a)[(x-2a)2+5a2]>0.∵当x≠2a≠0时,有(x-2a)2+5a2>0.由题意故只需x-a>0即x>a,以上过程可逆.答案:x>a

3.已知a>b>c且a+b+c=0,求证:<a.证明:要证<a,只需证b2-ac<3a2,即证b2+a(a+b)<3a2,即证(a-b)(2a+b)>0,即证(a-b)(a-c)>0.∵a>b>c,∴(a-b)•(a-c)>0成立.∴原不等式成立.4.已知a+b+c=0,求证:ab+bc+ca≤0.证法一:(综合法)∵a+b+c=0,∴(a+b+c)2=0.展开得ab+bc+ca=-,∴ab+bc+ca≤0.证法二:(分析法)要证ab+bc+ca≤0,∵a+b+c=0,故只需证ab+bc+ca≤(a+b+c)2,即证a2+b2+c2+ab+bc+ca≥0,亦即证[(a+b)2+(b+c)2+(c+a)2]≥0.

而这是显然的,由于以上相应各步均可逆,∴原不等式成立.证法三:∵a+b+c=0,∴-c=a+b.∴ab+bc+ca=ab+(b+a)c=ab-(a+b)2

=-a2-b2-ab=-[(a+)2+]≤0.

∴ab+bc+ca≤0.培养能力

5.设a+b+c=1,a2+b2+c2=1且a>b>c.求证:-<c<0.证明:∵a2+b2+c2=1,∴(a+b)2-2ab+c2=1.∴2ab=(a+b)2+c2-1=(1-c)2+c2-1=2c2-2c.∴ab=c2-c.又∵a+b=1-c,∴a、b是方程x2+(c-1)x+c2-c=0的两个根,且a>b>c.令f(x)=x2+(c-1)x+c2-c,则

6.已知=1,求证:方程ax2+bx+c=0有实数根.证明:由=1,∴b=.∴b2=(+c)2=+2ac+2c2=4ac+(-c)2≥4ac.∴方程ax2+bx+c=0有实数根.7.设a、b、c均为实数,求证:++≥++.证明:∵a、b、c均为实数,∴(+)≥≥,当a=b时等号成立;

(+)≥≥,当b=c时等号成立;

(+)≥≥.

三个不等式相加即得++≥++,当且仅当a=b=c时等号成立.探究创新

8.已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.求证:a、b、c、d中至少有一个是负数.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数.●思悟小结

.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,两法结合在证明不等式中经常遇到.4.构造函数利用单调性证不等式或构造方程利用“Δ≥0”证不等式,充分体现相关知识间的联系.●教师下载中心

教学点睛

.在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.2.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等.拓展题例

【例1】已知a、b为正数,求证:

(1)若+1>,则对于任何大于1的正数x,恒有ax+>b成立;

(2)若对于任何大于1的正数x,恒有ax+>b成立,则+1>.分析:对带条件的不等式的证明,条件的利用常有两种方法:①证明过程中代入条件;②由条件变形得出要证的不等式.证明:(1)ax+=a(x-1)++1+a≥2+1+a=(+1)2.∵+1>b(b>0),∴(+1)2>b2.(2)∵ax+>b对于大于1的实数x恒成立,即x>1时,[ax+]min>b,而ax+=a(x-1)++1+a≥2+1+a=(+1)2,当且仅当a(x-1)=,即x=1+>1时取等号.故[ax+]min=(+1)2.则(+1)2>b,即+1>b.评述:条件如何利用取决于要证明的不等式两端的差异如何消除.【例2】求证:≤+.剖析:|a+b|≤|a|+|b|,故可先研究f(x)=(x≥0)的单调性.证明:令f(x)=(x≥0),易证f(x)在[0,+∞)上单调递增.|a+b|≤|a|+|b|,∴f(|a+b|)≤f(|a|+|b|),即≤=≤.思考讨论

.本题用分析法直接去证可以吗?2.本题当|a+b|=0时,不等式成立;

当|a+b|≠0时,原不等式即为≤.再利用|a+b|≤|a|+|b|放缩能证吗?读者可以尝试一下!

第五篇:初三数学第一轮复习教案统计初步教案精品

初三数学第一轮复习教案

代数部分 第七章:统计初步

教学目的:

1、了解总体、个体、样本、样本容量等概念。

2、理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式,理解加权平均数的概念,掌握它的计算公式,会用样本平均数估计总体平均数。

3、理解众数、中位数的意义,掌握它们的求法

4、了解样本方差。总体方差。样本标准差的意义,会计算样本方差和标准差,会利用方差或标准差比较两组样本数据的波动情况。

5、理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。知识点:

一、总体和样本:

在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

二、反映数据集中趋势的特征数

1、平均数

(1)x1,x2,x3,,xn的平均数,x1(x1x2xn)

n

(2)加权平均数:如果n个数据中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1f2fkn),则x

(3)平均数的简化计算:

当一组数据x1,x2,x3,,xn中各数据的数值较大,并且都与常数a接近时,设

1(x1f1x2f2xkfk)nx1a,x2a,x3a,,xna的平均数为x'则:xx'a。

2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。

3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。一组数据的众数可能不止一个。

三、反映数据波动大小的特征数:

1、方差:

(x1x)2(x2x)2(xnx)

2(l)x1,x2,x3,,xn的方差,S

n22xx2xn2

(2)简化计算公式:S1x(x1,x2,x3,,xn为较小的整数

n222时用这个公式要比较方便)

(3)记x1,x2,x3,,xn的方差为S,设a为常数,x1a,x2a,x3a,,xna的方差为S`,则S=S`。

注:当x1,x2,x3,,xn各数据较大而常数a较接近时,用该法计算方差较简便。

2、标准差:方差(S)的算术平方根叫做标准差(S)。

注:通常由方差求标准差。

四、频率分布

1、有关概念

(1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在100个以内时,通常分成5-12组。

(2)频数:每个小组内的数据的个数叫做该组的频数。各个小组的频数之和等于数据总数n。

(3)频率:每个小组的频数与数据总数n的比值叫做这一小组的频率,各小组频率之和为l。

(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。

(5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。

图中每个小长方形的高等于该组的频率除以组距。

每个小长方形的面积等于该组的频率。

所有小长方形的面积之和等于各组频率之和等于1。

样本的频率分布反映样本中各数据的个数分别占样本容量n的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。

2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:

(1)计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列领率分布表;(5)绘频率分布直方图。22222例题:

1、某养鱼户搞池塘养鱼,放养鳝鱼苗20000尾,其成活率为70%,随意捞出10尾鱼,称得每尾的重量如下(单位:千克)0.

8、0.

9、1.

2、1.

3、0.

8、1.l、1.0、1.

2、0.

8、0.9

根据样本平均数估计这塘鱼的总产量是多少千克?

分析:先算出样本的平均数,以样本平均数乘以20000,再乘以70%。

解:略

[规律总结]求平均数有三种方法,即当所给数据比较分散时,一般用平均数的概念来求;著所给数据较大且都在某一数a上下波动时,通常采用简化公式;若所给教据重复出现时,通常采用加权平均数公式来计算。

2、一次科技知识竞赛,两次学生成绩统计如下

已经算得两个组的人均分都是80分,请根据你所学过的统计知识进一步判断这两个组成绩谁优谁次,并说明理由

解:(l)甲组成绩的众数90分,乙组成绩的众数为70分,从众数比较看,甲组成绩好些。

(2)算得S甲=172,S乙256

所以甲组成绩较乙组波动要小。

(3)甲、乙两组成绩的中位数都是80分,甲组成绩在中位数以上的有33人,乙组成绩在中位数以上的有26人,从这一角度看甲组的成绩总体要好。

(4)从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以,乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好。

[规律总结]明确方差或标准差是衡量一组数据的波动的大小的,恰当选用方差的三个计算公式,应抓住三个公式的特征,根据题中数据的特点选用计算公式。

3、到从某学校3600人中抽出50名男生,取得他们的身高(单位cm),数据如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167

167 167 166 l66 l66 166 166 165 165

165

163 163 162 161 160 158 157

1、计算频率,并画出频率分布直方图

2、上指出身高在哪一组内的男学生人数所占的比最大

3.请估计这些初三男学生身高在166.5cm以下的约有多少人? 22

解:

1、各组频率依次是:0.08,0.22,0.22,0.36,0.12

2、从频率分布表(或图)中,可见身高在171.5—176.5组内男学生人数所占的比最大。

3、这个地方男学生身高166.5侧以下的约为3000(0.080.22)900(人)

[规律总结]要掌握获得一组数据的频率分布的五大步骤,掌握整理数据的步骤和方法。会对数据进行合理的分组。

下载2013届高考数学第一轮立体几何初步专项复习教案word格式文档
下载2013届高考数学第一轮立体几何初步专项复习教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    XX届高考英语第一轮总复习教案(精选)

    XX届高考英语第一轮总复习教案 课 件www.xiexiebang.com 高考英语一轮重点复习module8 Unit1&Unit2 一、重点单词 .happenv.发生 happeningn.事件;偶然发生的事情 归纳:h......

    高考数学专题复习专题七 立体几何教案 文

    专题七 立体几何 自查网络 核心背记 一、空间几何体的结构特征 (一)多面体 1.棱柱可以看成是一个多边形(包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.......

    XX届高考化学第一轮化学平衡要点复习教案_2

    XX届高考化学第一轮化学平衡要点复习教案 本资料为woRD文档,请点击下载地址下载全文下载地址§3.2 化学平衡 (4等效平衡) 【归纳与整理】一、含义 时间 n n n 0 0 0.8 0.68 0.6......

    XX届高考政治第一轮文化与社会复习教案

    XX届高考政治第一轮文化与社会复习教案 江苏省南京六中XX年高考政治复习教学讲义(学案+测试) 第一课文化与社会一、 关注考点 文化与社会 ①文化的内涵与形式 ②文化与经济、......

    名师谈高考数学第一轮复习

    名师谈高考数学第一轮复习(15问) 【高三数学复习一般分为三轮:】熟悉三轮复习的内容和目标 第一轮重点是“三基”(基础知识、基本技能、基本方法)复习,目标是全面、扎实、系统、......

    名师谈高考数学第一轮复习

    名师谈高考数学第一轮复习(15问) 【高三数学复习一般分为三轮:】熟悉三轮复习的内容和目标 第一轮重点是“三基”(基础知识、基本技能、基本方法)复习,目标是全面、扎实、系统、......

    2013届高考语文第一轮考点专项复习教案26

    第四讲1.阅读下面这首诗,完成后面的题目。 北斋雨后 (宋)文同 小庭幽圃绝清佳,爱此常教放吏衙。 雨后双禽来占竹,秋深一蝶下寻花。 唤人扫壁开吴画,留客临轩试越茶。 野兴渐......

    2013届高考语文第一轮考点专项复习教案25

    第三讲1.阅读下面这首宋诗,完成后面的题目。 舟中二首(其一) (宋)陈师道 恶风横江江卷浪,黄流湍猛风用壮。 疾如万骑千里来,气压三江五湖上。岸上空荒火夜明,舟中坐起待......