全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

时间:2019-05-15 03:21:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题》。

第一篇:全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集

第二十六讲 含参数的一元二次方程的整数根问题

对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法.

例1 m是什么整数时,方程

(m2-1)x2-6(3m-1)x+72=0

有两个不相等的正整数根.

解法1 首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得

由于x1,x2是正整数,所以

m-1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2.这时x1=6,x2=4.

解法2 首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知

所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即

m2=3,4,5,7,9,10,13,19,25,37,73,只有m2=4,9,25才有可能,即m=±2,±3,±5.

经检验,只有m=2时方程才有两个不同的正整数根.

说明 一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法.

例2 已知关于x的方程

a2x2-(3a2-8a)x+2a2-13a+15=0

(其中a是非负整数)至少有一个整数根,求a的值.

分析 “至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来.

解 因为a≠0,所以

所以

所以只要a是3或5的约数即可,即a=1,3,5.

例3 设m是不为零的整数,关于x的二次方程

mx2-(m-1)x+1=0

有有理根,求m的值.

解 一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令

Δ=(m-1)2-4m=n2,其中n是非负整数,于是

m2-6m+1=n2,所以(m-3)2-n2=8,(m-3+n)(m-3-n)=8.

由于m-3+n≥m-3-n,并且

(m-3+n)+(m-3-n)=2(m-3)

是偶数,所以m-3+n与m-3-n同奇偶,所以

说明 一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决.

例4 关于x的方程

ax2+2(a-3)x+(a-2)=0

至少有一个整数解,且a是整数,求a的值.

解 当a=0时,原方程变成-6x-2=0,无整数解.

当a≠0时,方程是一元二次方程,它至少有一个整数根,说明判别式

Δ=4(a-3)2-4a(a-2)=4(9-4a)

为完全平方数,从而9-4a是完全平方数.令9-4a=n2,则n是正奇数,要使x1为整数,而n为正奇数,只能n=1,从而a=2.要使x2为整数,即n-3|4,n可取1,5,7,从而a=2,-4,-10.

综上所述,a的值为2,-4,-10.

说明 本题是前面两种方法的“综合”.既要用判别式是平方数,又要用直接求根.有时候,往往是几种方法一同使用.

例5 已知关于x的方程

x2+(a-6)x+a=0 的两根都是整数,求a的值.

解 设两个根为x1≥x2,由韦达定理得

从上面两式中消去a得

x1x2+x1+x2=6,所以(x1+1)(x2+1)=7,所以a=x1x2=0或16.

说明 利用韦达定理,然后把参数消去,得到的是关于x1,x2的不定方程,而求解这个对称的不定方程往往是容易入手的.

例6 求所有有理数r,使得方程

rx2+(r+1)x+(r-1)=0 的所有根是整数.

分析 首先对r=0和r≠0进行讨论.r=0时,是关于x的一次方程;r≠0时,是关于x的二次方程,由于r是有理数,处理起来有些困难,这时用直接求根或用判别式来做,均不能奏效.可用韦达定理,先把这个有理数r消去.

解 当r=0时,原方程为x-1=0,所以x=1.

当r≠0时,原方程是关于x的一元二次方程,设它的两个整数根为x1,x2,且x1≥x2,则

消去r得

x1x2-x1-x2=2,所以(x1-1)(x2-1)=3.

例7 已知a是正整数,且使得关于x的一元二次方程

ax2+2(2a-1)x+4(a-3)=0

至少有一个整数根,求a的值.

解 将原方程变形为

(x+2)2a= 2(x+6).

显然x+2≠0,于是

由于a是正整数,所以a≥1,即

所以 x2+2x-8≤0,(x+4)(x-2)≤0,所以-4≤x≤2(x≠-2).

当x=-4,-3,-1,0,1,2时,得a的值为1,6,10,3,说明 从解题过程中知,当a=1时,有两个整数根-4,2;当a=3,6,10时,方程只有一个整数根.有时候,在关于x的一元二次方程中,如果参数是一次的,可以先对这个参数来求解.

例8 已知方程x2+bx+c=0与x2+cx+b=0各有两个整数根x1,x2

(2)求证:b-1≤c≤b+1;

(3)求b,c的所有可能的值.

解(1)由x1x2>0知,x1与x2同号.若x1>0,则x2>0,(2)由(1)知,x1<0,x2<0,所以x1≤-1,x2≤-1.由韦达定理

c-(b-1)=x1x2+x1+x2+1

=(x1+1)(x2+1)≥0,所以 c≥b-1.

同理有

所以 c≤b+1,所以 b-1≤c≤b+1.

(3)由(2)可知,b与c的关系有如下三种情况:

(i)c=b+1.由韦达定理知

x1x2=-(x1+x2)+1,所以(x1+1)(x2+1)=2,解得x1+x2=-5,x1x2=6,所以b=5,c=6.

(ii)c=b.由韦达定理知

x1x2=-(x1+x2),所以(x1+1)(x2+1)=1,所以x1=x2=-2,从而b=4,c=4.

(iii)c=b-1.由韦达定理知

所以

综上所述,共有三组解:(b,c)=(5,6),(4,4),(6,5).

练习二十六

1.填空:

(1)方程x2+px+1997=0恰有两个正整数根x1,x2,(2)已知k为整数,且关于x的方程

(k2-1)x2-3(3k-1)x+18=0

有两个不相同的正整数根,则k=____.

(3)两个质数a,b恰好是关于x的方程x2-21x+t=0的两个根,(4)方程x2+px+q=0的两个根都是正整数,并且p+q=1992,则方程较大根与较小根的比等于____.

(5)已知方程(a2-1)x2-2(5a+1)x+24=0有两个不相等的负整数根,则整数a的值是____.

2.设m为整数,且4<m<40,又方程

(x2-2(2m-3)x+4m2-14m+8=0

有两个整数根,求m的值及方程的根.

3.已知关于x的一元二次方程

x2+(m-17)x+m-2=0 的两个根都是正整数,求整数m的值.

4.求使关于x的方程a2x2+ax+1-7a2=0的两根都是整数的所有正数a.

5.求所有的整数a,使得关于x的二次方程

ax2+2ax+a-9=0

至少有一个整数根.

第二篇:全国初中数学竞赛辅导(八年级)教学案全集第12讲平行线问题

全国初中数学竞赛辅导(八年级)教学案全集

第十二讲平行线问题

平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段.

正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识.

正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.

现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”.

在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用.

例1 如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90°

分析 由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=

过C点作直线 l,使 l∥a(或 b)即可通过平行线的性质实现等角转移.

证 过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以

∠1+∠2=180°(同侧内角互补).

因为AC平分∠1,BC平分∠2,所以

又∠3=∠CAE,∠4=∠CBF(内错角相等),所以

∠3+∠4=∠CAE+∠CBF

说明 做完此题不妨想一想这个问题的“反问题”是否成立,即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?”

由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.

例2 如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.

分析 本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即

∠A1+∠A2=∠B1. ①

猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.

证 过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所示).

因为AA1∥BA2,所以B1E∥BA2.从而

∠1=∠A1,∠2=∠A2(内错角相等),所以

∠B1=∠1+∠2=∠A1+∠A2,即 ∠A1-∠B1+∠A2=0.

说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有

∠A1+∠A2+∠A3=∠B1+∠B2.

(即那些向右凸出的角的和=向左凸的角的和)即

∠A1-∠B1+∠A2-∠B2+∠A3=0.

进一步可以推广为

∠A1-∠B1+∠A2-∠B2+„-∠Bn-1+∠An=0.

这时,连结A1,An之间的折线段共有n段A1B1,B1A2,„,Bn-1An(当然,仍要保持 AA1∥BAn).

推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.

(2)这个问题也可以将条件与结论对换一下,变成一个新问题.

问题1 如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?

问题2 如图1-25所示.若

∠A1+∠A2+„+∠An=∠B1+∠B2+„+∠Bn-1,问AA1与BAn是否平行?

这两个问题请同学加以思考.

例3 如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.

分析 利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标.

解 过F到 FG∥CB,交 AB于G,则

∠C=∠AFG(同位角相等),∠2=∠BFG(内错角相等).

因为 AE∥BD,所以

∠1=∠BFA(内错角相等),所以

∠C=∠AFG=∠BFA-∠BFG =∠1-∠2=3∠2-∠2 =2∠2=50°.

说明(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧.

(2)在学过“三角形内角和”知识后,可有以下较为简便的解法:∠1=∠DFC=∠C+∠2,即

∠C=∠1-∠2=2∠2=50°.

例4 求证:三角形内角之和等于180°.

分析平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决,下面方法是最简单的一种.

证 如图1-27所示,在△ABC中,过A引l∥BC,则

∠B=∠1,∠C=∠2(内错角相等).

显然 ∠1+∠BAC+∠2=平角,所以 ∠A+∠B+∠C=180°.

说明 事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法.

例5 求证:四边形内角和等于360°.

分析 应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程.

证 如图1-28所示,四边形ABCD中,过顶点B引BE∥AD,BF∥CD,并延长 AB,CB到 H,G.则有∠A=∠2(同位角相等),∠D=∠1(内错角相等),∠1=∠3(同位角相等).

∠C=∠4(同位角相等),又 ∠ABC(即∠B)=∠GBH(对顶角相等).

由于∠2+∠3+∠4+∠GBH=360°,所以

∠A+∠B+∠C+∠D=360°.

说明(1)同例3,周角的顶点可以取在平面内的任意位置,证明的本质不变.

(2)总结例

3、例4,并将结论的叙述形式变化,可将结论加以推广:

三角形内角和=180°=(3-2)×180°,四边形内角和=360°=2×180°=(4-2)×180°.

人们不禁会猜想:

五边形内角和=(5-2)×180°=540°,„„„„„„„„„„ n边形内角和=(n-2)×180°.

这个猜想是正确的,它们的证明在学过三角形内角和之后,证明将非常简单.

(3)在解题过程中,将一些表面并不相同的问题,从形式上加以适当变形,找到它们本质上的共同之处,将问题加以推广或一般化,这是发展人的思维能力的一种重要方法.

例6 如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证: A,B,C三点在同一条直线上.

分析A,B,C三点在同一条直线上可以理解为∠ABC为平角,即只要证明射线BA与BC所夹的角为180°即可,考虑到以直线l上任意一点为顶点,该点分直线所成的两条射线为边所成的角均为平角,结合所给平行条件,过B作与l相交的直线,就可将l上的平角转换到顶点B处.

证 过B作直线 BD,交l于D.因为AB∥l,CB∥l,所以

∠1=∠ABD,∠2=∠CBD(内错角相等).

又∠1+∠2=180°,所以

∠ABD+∠CBD=180°,即∠ABC=180°=平角.

A,B,C三点共线.

思考 若将问题加以推广:在l的同侧有n个点A1,A2,„,An-1,An,且有AiAi+1∥l(i=1,2,„,n-1).是否还有同样的结论?

例7 如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.

求证:∠3=∠B.

分析 如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.

证 因为∠1=∠2,所以

AD∥BC(内错角相等,两直线平行).

因为∠D=90°及EF⊥CD,所以

AD∥EF(同位角相等,两直线平行).

所以 BC∥EF(平行公理),所以

∠3=∠B(两直线平行,同位角相等).

练习十二

1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.

2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.

3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?

4.证明:五边形内角和等于540°.

5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.

第三篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲 自测题

全国初中数学竞赛辅导(八年级)教学案全集

第三十二讲 自测题

自测题一

1.分解因式:x4-x3+6x2-x+15.

2.已知a,b,c为三角形的三边长,且满足

a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.

3.已知a,b,c,d均为自然数,且

a5=b4,c3=d2,c-a=19,求d-b的值.

4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.

5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交

6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?

7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△

8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.

9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?

自测题二

1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.

2.对于集合

p={x丨x是1到100的整数}

中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:

(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;

(2)用列举法表示集合

{x丨==5,x∈P}.

3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.

4.已知方程x2-3x+a+4=0有两个整数根.

(1)求证:这两个整数根一个是奇数,一个是偶数;

(2)求证:a是负偶数;

(3)当方程的两整数根同号时,求a的值及这两个根.

5.证明:形如8n+7的数不可能是三个整数的平方和.

7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:

8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.

9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?

自测题三

2.对于任意实数k,方程

(k2+1)x2-2(a+k)2x+k2+4k+b=0

总有一个根是1,试求实数a,b的值及另一个根的范围.

4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:

5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=

7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.

9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.

(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?

(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?

(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?

自测题四

1.求多项式2x2-4xy+5y2-12y+13的最小值.

2.设

试求:f(1)+f(3)+f(5)+…+f(1999).

3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.

4.若a,b,c为有理数,且等式成立,则a=b=c=0 .

5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.

6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.

7.设x1,x2,…,x9均为正整数,且

x1<x2<…<x9,x1+x2+…+x9=220.

当x1+x2+…+x5的值最大时,求x9-x1的值.

8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?

9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:

FA·BC=AE·CD.

(2)当E点移动到D点时,命题(1)将会怎样?

(3)当E点在AD的延长线上时又会怎样?

自测题五

2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根

3.设x+y=1,x2+y2=2,求x7+y7的值.

4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.

5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.

6.a,b,c是三个自然数,且满足

abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.

7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.

8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);

(2)当A点在BC上时,将怎样?

按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?

第四篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲 复习题

全国初中数学竞赛辅导(八年级)教学案全集

第三十一讲复习题

1.分解因式:3x2+5xy-2y2+x+9y-4.

2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.

5.已知

求ab+cd的值.

为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.

8.求分式 的值.

9.已知:

求证:px+qy+rz=(p+q+r)(x+y+z).

11.已知实数x,y满足等式

求x,y的值.

12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.

13.解方程:x2+2x-3丨x+1丨+3=0.

14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.

15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.

16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.

17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.

18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.

19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.

20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:

CD=CE.

21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:

22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.

23.在(凸)四边形ABCD中,求证:

AC·BD≤AB·CD+AD·BC.

24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB于E.求证:

25.已知n是正整数,且n2-71能被7n+55整除,求n的值.

26.求具有下列性质的最小正整数n:

(1)它以数字6结尾;

(2)如果把数字6移到第一位之前,所得的数是原数的4倍.

27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.

28.把 1,2,3,„,81这 81个数任意排列为:a1,a2,a3,„,a81.计算

丨a1-a2+a3丨,丨a4-a5+a6丨,„,丨a79-a80+a81丨;

再将这27个数任意排列为b1,b2,„,b27,计算

丨b1-b2+b3丨,丨b4-b5+b6丨,„,丨b25-b26+b27丨.

如此继续下去,最后得到一个数x,问x是奇数还是偶数?

29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:

BC+AD>AB+CD.

31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.

32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.

33.已知一元二次方程

x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.

34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.

35.求证:当p,q为奇数时,方程

x2+px+q=0

无整数根.

36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.

37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.

38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?

39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?

40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?

41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?

42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?

43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?

44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?

45.唐代诗人王之涣的著名诗篇:

白日依山尽,黄河入海流. 欲穷千里目,更上一层楼.

按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.

46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?

47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?

48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?

49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?

50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:

(1)以x,y的对应值(x,y)为点的坐标,画出散点图;

(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.

第五篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形

全国初中数学竞赛辅导(八年级)教学案全集

第八讲平行四边形

平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.

由平行四边形的定义决定了它有以下几个基本性质:

(1)平行四边形对角相等;

(2)平行四边形对边相等;

(3)平行四边形对角线互相平分.

除了定义以外,平行四边形还有以下几种判定方法:

(1)两组对角分别相等的四边形是平行四边形;

(2)两组对边分别相等的四边形是平行四边形;

(3)对角线互相平分的四边形是平行四边形;

(4)一组对边平行且相等的四边形是平行四边形.

例1 如图2-32所示.在EF与MN互相平分.

ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:

分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.

证 因为ABCD是平行四边形,所以

AD

BC,AB

CD,∠B=∠D.

又AE⊥BC,CF⊥AD,所以AECF是矩形,从而

AE=CF.

所以

Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以

△BEM≌△DFN(SAS),ME=NF. ①

又因为AF=CE,AM=CN,∠MAF=∠NCE,所以

△MAF≌△NCE(SAS),所以 MF=NF. ②

由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.

例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.

分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.

证 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而

△ABG≌△HBG(AAS),所以 AB=HB. ①

在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以 △ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.

下面证明四边形EHCF是平行四边形.

因为AD∥GH,所以

∠AEG=∠BGH(内错角相等). ②

又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以

∠AGB=∠GEH.

从而

EH∥AC(内错角相等,两直线平行).

由已知EF∥HC,所以EHCF是平行四边形,所以

FC=EH=AE.

说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.

人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.

例3 如图2-34所示.∠EMC=3∠BEM.

ABCD中,DE⊥AB于E,BM=MC=DC.求证:

分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.

证 延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以

△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知

∠F=∠MDC,又由已知MC=CD,所以

∠MDC=∠CMD,则

∠MCF=∠MDC+∠CMD=2∠F.

从而

∠EMC=∠F+∠MCF=3∠F=3∠BEM.

例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.

分析 只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.

证 延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD. ①

又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以

∠CHG=∠CFH+∠FCH=45°,所以 ∠CFH=45°-∠FCH. ②

由①,②

∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有

CA=CF.

例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:

分析 作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.

证 如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以

FA=FH.

设正方形边长为a,在Rt△ADF中,从而

所以 Rt△ABG≌Rt△HCG(AAS),从而

Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.

分析 准确地画图可启示我们证明∠GDH=∠GHD.

证 因为DEBD=FD,所以

BC,所以四边形BCED为平行四边形,所以∠1=∠4.又

所以 BC=GC=CD.

因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以

所以 ∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.

练习十二

1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.

2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.

3.如图2-40所示.CB于E.求证:BE=CF.

ABCD中,AF平分∠BAD交BC于F,DE⊥AF交

4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.

5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分

下载全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题word格式文档
下载全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐